
Zeitschrift fur Analysis 
und ihre Anwendunqen 
Vol. 2(1992)2,285-9O 

On a General Inequality with Applications 

D. S. MITRINOVIc±, J. E. PEARIc± and L. E. PERSSON 

A general set - valued inequality is proved in two analogical forms. As applications we obtain 
some simple inequalities for convex, concave, subadditive and superadditive functions. We 
also point out that some classical inequalities (e.g., those by Minkowski and by Beckenbach 
and Dresher) and some fairly new results (e.g. by Pearic and Beesack [7] and Peetre and 
Persson [81) are special cases of our results. 
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1. Introduction 

In this paper we denote by D an additive Abelian semigroup and by I a subset of 

Rn . We consider vectors U = (u i , u21 ... , us ), V = (v 1 , v21 ... , v) E Rn and we will 

write US v if u 2^ v 1 , u2 !^ v21 ... , u 15 v. We say that a function f : D —. R"1 is 
subadditive if 

f(a+b):9f(a) +f(b)	 (1.1) 

for all a,b E D. If (1.1) holds in the reversed direction, then we say that f is 
superadditive. If equality holds in (1.1), then we say that f is affine.The 

function F: I —. R is non—decreasing (non—increasing) if the inequality ii ^ 

implies that FCii) :5 F(-v) (F(ti) ^: F(), respectively).  
For definitions and basic facts about classical inequalities we refer to the 

books [2] and [5]. Moreover, some recent advances about inequalities can be 
found in the books [31 and [6] and the references given there. In this paper we 
prove some new inequalities for convex, concave, subadditive and 
superadditive functions, e.g., the following ones. 

Proposition 1.1 : Let F: I -4 R, g: D — R and f: D - I be given functions. 

(a) Assume that F is convex and that one of the following conditions holds: 
(a) 1 f is affine 
(a)2 F is non—increasing and f is superadditive
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(a)3 F is non-decreasing and f is subadditive. 
If g is affine or if g is superadditive and F(0) !^ 0, then 

((x+y) \	(f(x) \ () g(x+y)
f 

F1	I ^ g(x)F1 - I + gyF(L.) 
'. g(x+y))	' g(xLi 

(b) Suppose that F is concave and that one of the following conditions holds: 
(a) 1 f is affine 
(a)4 F is non-increasing and f is subadditive 
(a)5 F is non-decreasing and f is superadditive. 
If g is affine or if g is superadditive and F(0) 2t 0, then 

g(x+y)F( f(x+y)
	1 f(x) \ 

^g(x)FI - J+g(y) g(x+y))	'g(x).i	F(-) 

We remark that some classical inequalities (e.g., those by Minkowski and by 
Beckenbach and Dresher) and some fairly new results (e.g., by Peearie and 
Beesack [7] and by Peetre and Persson [81) are special cases of Proposition 1.1 (see 
Section 3 and compare also with [81). In Section 2 we present and prove 
Proposition 1.1 in a somewhat more general "set-valued" setting (see Theorems 
2.1 and 2.2). One reason for that is that we want to incooperate also some recent 
inequalities by Peetre and Persson [8] and another reason is that we get more 
possibilities to obtain new applications. In Section 3 we present some examples 
and concluding remarks. 

2. A general inequality in two analogical forms 

Let P(Q) denote the power set of the set Q, i.e., the set of subsets of Q. We state 
and prove the following "set-valued" versions of the inequalities in Proposition 
1.1.

Theorem 2.1 :Let the function F: I -, R be convex and let C: D - P(R) 
and f: D - I be arbitrary functions. Then the function 

fi (x)= inf aF(..) ,xE D, 
aEG(x)	a 

is subadditive if one of the conditions (a) 1 , (a)2 or (a) 3 holds and if, for all a E 

C(x) and b € G(y), a+b E G(x+y) or if there exists c ^t a+b such that c G G(x+y) 
and F(0) _-^ 0. 

Theorem 2.2 : Let the function F: I -*R be concave and let G: D —. P(R) 
and f: D - I be arbitrary functions. Then the function 

I f2(x)= suaF1 f(x) —) ,XED, 
aEGx)	a



On a General Inequality	287 

is superadditive if one of the conditions (a) 1 , (a)4 or (a)5 holds and if, for all a 

E G(x) and b E G(y), a+b E G(x+y) or if there exists c 2t a+b such that c e 
G(x+y) and F(0) 2t 0. 

Remark : Theorem 2.1 may be seen as a further generalization of results in 
[8, Theorem 2.11 and [10, Theorem 11. Moreover, Theorem 2.2 generalizes 
Theorem 2 in [10] in a similar way (compare also with Theorem 2.2 in [81). 

Proof of Theorem 2.1 : First we assume that F(0) :5 0, F is non-decreasing, f 
is subadditive and, for all a E G(x) and b e G(y), there exists c ^t a + b such that c € 

G(x+y). Consider a € G(x) and b € G(y). We note that the function H(t) = F(tf(x)), 
^t 0, is convex and (since also F(0) 5 0) we conclude that the function H(t)/t is 
non-decreasing. Therefore, by also using the assumptions that f is subadditive 
and F is convex and non-decreasing , we obtain that, for some c ^! a + b such that 
c e G(x+y),

f(x+y) 
	 (a+b) 

F' f(x+y) ) (a+b)F( f(x)+f(y) 
^ 

a qf(x) \ +b qf(y)) 
I —I '	c ,'	.a+b a+b ,'	a) 

Therefore, for any e, 0 < e < 1/2, there exists c E G(x+y) such that 

C F( f(x+y) ) 15(1+c) f, (X) + (1+c) f1 (y). '.	c  

By taking infimum once more and letting c - 0 we obtain 

f1 (x+y) :5 f1 (x) + f, (Y). 

The proofs of the remaining cases only consist of making obvious modifications 
of the proof above so we omit the details I 

Proof of Theorem 2.2 Suppose that f is superadditive, F(0) ^: 0, F is non-
decreasing and, for all a E G(x) and b € G(y), there exists c -^t a + b such that c € 

G(x+y). Then, in particular, we find that H(t) = F(tf(x)), t ^ 0, is a concave function 
and, thus, that the function H(t)/t is non-increasing. Hence, by arguing in a 
similar way as in the proof of Theorem 2.1, we find that, for any c, 0 <c < 1/2, 

and some c e G(x+y), 

(1-c) f2(x) + (1-c) f2(y) :5 
c F( f(x+y)) 

and by taking supremum once more and letting e —. 0 we find that the function 
f2 is superadditive. The proofs of the other cases are similar I
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Proof of Proposition 1.1 : A proof of Proposition 1.1 follows by applying 
Theorems 2.1 and 2.2 with G(x) = {g(x)) (the singleton case) I 
3. Concluding remarks and examples 

We apply Proposition 1.1 with F(u) = uP, p = a/(a-13), f(x) = (Jxa d)l /a, g(x) = 
(JxI3 dj.)110 and obtain 

Example 3.1 (Beckenbach-Dreshers inequality, see [1,2,4,81): Let x,y > 0 a.e. on 
n.IfO!5a!^1 :513orif O!513:51 15 cc, a^13, then 

I (x+y)adj.t

 

	

77 

I x 

ad 	I yU 

+	 . 
J(x+y)di	Jx dt	Jydt	

(3.1)


If 13 --q 0 !^ a 15 1 or if a ^ 0 0 :5 l.a 13, then (3.1) holds in the reversed direction. 

In view of our discussion above it is obvious that Example 3.1 easily can be 
generalized in various directions. Here we only mention the following examples 
of such generalizations/ complements 

1. By using a general isotone linear functional A(x) instead of the special 
cases A(x) = fox dj.i we obtain (generalized forms of) some versions of the 
Beckenbach-Dresher inequality previously proved by Pe&ri6 and Beesack [71 and 
by Peetre and Persson [8] (see also [9,101). 

2. The inequality (3.1), in its turn, is a subadditivity condition and the 
reversed inequality is a superadditivity condition. Therefore, we can use 
Proposition 1.1 and iterate the procedure. After the first step we obtain the 
following generalization of Example 3.1: If 0 I a, y !^ 0 5 6 15 1, a ^ 13, y ^ 6, 
a-13-y+6 ^t 0, then 

(x+y)adJj/(x+y)&d1 LxadpLx8dp a-p-*o 

J(x+y) dJ1L(x+y)1dt	jx dLLJ xTdJi	+dRyTd1 

Moreover, if V5 0 :5 a !^ 1, 7!5 0:5 5 !^ l.a	y# 8, a-f3-5+y^! 0, then 

	

(J(x+y)adpJ(x+y)Tdj 7+941	xadl1jXyd gLyldp -0-&Y 
(x+y) d(x+y)8dJ	^ I	dpj 	+	dyödJ 

3. By using the continuity property of generalized Gini means (see [81) we 
obtain the inequalities corresponding to the exceptional cases in Example 3.1
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(and the inequalities in case 2 above), e.g., for the extremal case a = = I the 
inequality (3.1) reads 

	

(J (x+y)ln(x+y)d.t	(5 xlnxd.t '\	I ylnydp.

 I 
 _____________ II

5expl	 I+exP 
5 (x+y)d 

expi

J
j.i I	Ixd.t I	Jydp. 

'O	) 

and the corresponding inequality for the other limiting case a = P = 0 reads 

( 1 fin x dL) + exp(_f in y d.t). exp( () 5lnx+y dii) 2texp-_j5. 

A special case of this inequality is the following well-known inequality for 
positive sequences (see, e.g., [2,p. 261): 

1/n r	1/n	'	1/n 
(fflxk + yk))	 , (rI Xk) + (ii yk) 

So far we have only given applications of our general theorems for one 
extremal case, namely the single—valued case presented in Proposition 1.1. We 
also present an application for another extremal case namely when G(x) = R for 
all x E D. 

Example 3.2: Let D = R', f(x) = x = (x 11 x21 ... ,x), G() = R for all x E D and 
consider the (Amemiya) norm 

n
( 

(
	
Xk)) 

lix ll b = infal 1+1 4D 
aER 	k=1	a 

where the function 0: R — R + is convex. By applying Theorem 2.1 with 

FCu)=1 +cI(IUkI) 

we find that 

I1X+YII 0 :5 IIXILD+IIyIId,, 
and, thus, we have obtained another proof of Minkowskis inequality for Oriicz 
sequence spaces. Moreover, by using Theorem 2.2 in a similar way we find that 
the inequality 

II+llP ^ IIlIP+II'lI'l' 
holds, where the function 'P : R —. R is concave and 

n 

(1 

	( 
IIxIIp=Sup a+	

X 
tI1_ 

	

k=1	a 

20	Analysis. Bd. II. Hell 2 (1992)
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Finally we remark that the Beckenbach-Dresher inequality (Example 3.1) means 
that (integral forms of) the classical Gini means are subadditive or super—
additive with certain restrictions on the parameters involved. Some new results 
concerning generalized Gini means have recently been obtained in [8] and [11]. 
These results can be useful to investigate the "intermediate' cases in Theorems 
2.1 and 2.2 but this possibility is not fully investigated yet. 

Acknowledgement : The authors are deeply grateful to one of the referees 
for some valuable suggestions and remarks, which have improved the final 
version ofthe paper. 
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