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Introduction

‘In this paper we will deal with critical values of maximmm-minimum type of functionals which
arise in the study of boundary value and eigenvalue problems for semilinear elliptic partial
differential equations. Our aim is to investigate such critical values under perturbations of the
primary functional. In order to explain the basic ideas let X be a real Banach space and let
& : X — R be a functional having the Fréchet derivative $'. By a critical point of ¢ we mean
an u € X such that $/(u) = 0; the corresponding value ¢ = ®(u) is called a critical value of &.
The number

c= Is(tgac‘}g;( B(u), (1)

where X is a suitable class of subsets of X, under certain assumptions is a criticai value of ®.
Analogously one investigates critical values of the restriction of a functional ® to a certain subset
M of X. We will study perturbation problems of the following kind:

Let ¢, defined according to (1), be a critical value of ®. Given € > 0, is there a critical value
c. of the functional ®, = ® + ¥ such that ¢, € (¢ — €,c + ¢€), provided the functional ¥ is, ina
certain sense, sufficiently small?

We will study this perturbation problem for free local extrema (minima, maxima, critical
values of mountain pass type) and for critical values of the restriction of a functional to a Banach
manifold M in X using Ekeland’s variational principle and the so-called deformation theorem,
respectively. The use of these techniques is essentially based on the Palais-Smale condition (PS)
or on the local Palais-Smale condition (PS), at level ¢ (cf. Subsection 2.2). Because of this,
the following stabslity problem for the Palais-Smale condition will play an important role in our
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investigations:

Let & satisfy the Palais-Smale condition (PS) (resp. (PS), ). Does the functional &. =
& + ¥ satisfy the Palais-Smale condition (PS) (resp. (PS),, for allc. € (¢ — €,c +¢) ) if the
functional ¥ is, in a certain sense, sufficiently small?

Perturbation problems of the above kind have been treated in [4,8]. There are studied
critical values of the restriction of & to a subset M which is bounded and homeomorphic to the
unit sphere by the radial projection mapping (for other perturbation results for critical values
of functionals we refer to [1,5-7]).

In the present paper we are able to treat a wider class of problems, since we study critical
values of the restriction of  to a Banach manifold M in X not necessarily homeomorphic to
the unit sphere in X. This is done in Section 2, especially in Subsection 2.4, which is our
main result in the application to semilinear elliptic partial differential equations. Furthermore,
the investigations of the examples in Subsection 1.2 and 1.4 with respect to the perturbation
problem is new.

In Section 1 we investigate free local extrema, especially minima, maxima, and critical values
‘of mountain pass type. In Section 2 we consider critical values under smooth side conditions. The
theorems in Section 1 and 2 aim to the application to boundary value and eigenvalue problems
for semilinear elliptic partial differential equations. Equally, all examples are concerned with
such problems. Subsection 2.5, including the Example to Theorem 4, is based on [4].

Acknowledgements. I would like to thank Prof. E. Zeidler for bringing to my attention
the problem and Prof. D. Klatte for helpful suggestions in improving this paper. Furthermore I
thank F. Schuricht for helpful discussions.

Notation

For a Banach space X we denote the dual space by X’ and the value of f € X’ at u € X by
{(f,u). Strong convergence (resp. weak convergence) in X will be denoted by — (resp. —).
R (resp. N) denotes the set of all real numbers (resp. positive integers). If a,b € R, then
(a,0)={z€R|a<z<bd}and (a,b]={z€R|a<z < b}

Let  : X — R be a functional on X. Then, & € C'(X,R) means that & is continuously
Fréchet differentiable; $’ denotes its derivative. ¥ is said to be weakly continuous if u,, — u
implies $(um) — $(u) as m — oo.

Suppose A : X — X’ is an operator from X into X'. Then A is said to be compact if it is
continuous and maps bounded sets into relatively compact sets. The operator A is said to be

strongly continuous if 4, — u in X implies A(%m) — A(u) in X' as m — oo. Furthermore,
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A is said to be bounded if it maps bounded sets into bounded sets. The operator A is said
to satisfy (S), if Um — u and A(tm) — v imply um — u a8 m — oco. If & € C}(X,R), then
the Fréchet derivative &' is an operator from X into X'; if ' is strongly continuous, then & is
weakly continuous.

For topological spaces M, N we denote by C(M,N) the set of all continuous mappings
of M into N. Let Q be a domain in R™. Then 80 (resp. ) denotes its boundary (resp. its
closure). Cp(Q x R, R) is the set of all functions from C(xR,R), which are uniformly bounded
on{l x R.

L,(f) is the Lebesgue space of all r-integrable functions over  with the norm || - [|,.
Finally, in all estimates we denote by C constants without prescribed value and by C,,Ca, ...

certain values of a constant.

1. Free local extrema

In this section we consider functionals & € C'(X,R), where X is a real Banach space. We use
the notation

crity ® = {ue X | &' (u) =0,8(u)=c},c€R.
& is said to satisfy the Palais-Smale condition if the following holds:

(PS) Each sequence (up) in X such that ®(u,,) is bounded and &'(up,) - 0

as m — oo has a convergent subsequence.

1.1. Minima and maxima
We suppose the following assumptions:

(A1) X is a real Banach space, ® € C'(X,R).
(A2) ® is bounded below on X ; ¢ = infycx ®(u).
The following result is an immediate consequence of Ekeland’s variational principle. For

the proof we refer to (3].

Proposition 1: Suppose (A1), (A2) hold. Then for each o > 0 there ezists u, € X such
that $(u,) < c+ 0 and [|#'(u,)]| < 0.

We have the following perturbation result.

Theorem 1: Suppose (A1), (A2) hold. Let S be a class of functionals ¥ € C*(X,R) such
that ®. = & + ¥ satisfies (PS) forall ¥ € S. If ¥ € S satisfies |¥(u)| < € for all ue X with
€> 0 and c. = infucx P.(u), then c. € {c — €,c + €] and critx . 8. # 0.
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Proof: The estimate c, € [c — ¢,¢ + €] is obvious. It remains to show that crity ., ®. # 0.
The functional &, satisfies the assumptions of Proposition 1. Hence there is a sequence (un) C X
such that ®,(un) < c.+1/m and ||¥/,(um)|| < 1/m for all m € N. We can choose a subsequence
which converges to v € X, since &, satisfies (PS). The continuity of &, and &', yields $.(v) = c.
and ¥',(v)=0,i.e., v € critx . 5. 8

Remark: If ¢ additionally satisfies (PS), then critx . ® # @ . To investigate the stability
of the critical value ¢ we have to find an appropriate class S which guarantees the stability of
(PS) (i. e. , such that &, = & + ¥ satisfies (PS) for ¥ € ). '

Corollary 1: An analogous theorem holds for c, = sup,cx ®.(u) if & is bounded above
on X.

Now, we give an example for the application of Theorem 1 to semilinear elliptic partial

differential equations.

1.2. An example to Theorem 1

Let 2 C R be a bounded domain with sufficiently smooth boundary 612, and let X = W(} ‘2(9)
‘e the Sobolov space with the norm ||u|| = {f |Vu|’dz}l/z. We consider functionals on W2?(f)
of the type -
Bw)=j [IVoPdet ] [wtae-1 [ wa
T2 n 4 J/a 3Jn

and use the following assumptions:

(P1) pe C(A xR,R).
(P2) There are constants a,b > 0 such that |p(z,t)| < a + bjt|* for all (2,t) € Q x R,
where0<s<(n+2)/(n-2)ifn>2and0<s< 400 ifn =1,2.
We define P(z,t) = J; p(z, z) dz, where (z,t) € 0 x R, and consider the following functionals &
and T on W3(Q):
S frttde s [ Pewde, 8w =3 [Vl + 1),

where s <r<(n+2)/(n—-2)ifn>2and s < rif n=1,2. To simplify our formulas we here

T(u) =

and in the following write f, P(z,u) dz instead of [, P (z,u(z))dz. Furthermore, we set

So {Q € C( x R, R) | Qz,t) = /o‘ o(e,2)dz, g€ Cy(@ x R, n)} :
{w W) - R | 9(u) = /nQ(z,u)dz, Qc 50}-

It is our aim to prove that ¢ and S satisfy all assumptions of Theorem 1. For this, after the

S

following remarks, we formulate two lemmas.
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Remarks: 1) If the assumptions of Theorem 1 are fulfilled, then u € critx ® resp.
u € crity ., ®. is a weak solution of the boundary value problem
—Au + ulu|""! + p(z,u) = 0 in ,u=0o0n 80

resp.
-Au+ulu|""' +p(z,u) + ¢(z,u) =0 in 0Q,u=0o0n 8.

2) For € > 0 the condition |¥(u)| < € for all u € X, i.e. |f;Q(z,u)dz| < e for all u € X, is
fulfilled if, for example, sup, s)caxrQ(2,t) < €/2]~1.

Lemma 1 (cf. [5: Appendix B]): Under the assumptions stated above it holds (for arbitrary
¥Yes):
1) 8,9, TeC! (wo‘"(n),n), and for all u,v € W)?() we have

#Wo) = [VeTede+ (Tw,v),  (F@0) = [ @i,

(T'(u),v) = /;u]u|"1vdz+/np(z,u)vdz.

2) &, T : Wg?(2) —» R are weakly continuous; ¥/, T’ : Wg?(Q2) — [Wol'z(ﬂ)]l are compact.

Lemma 2: If (P1), (P2) hold, then ®, = ® + ¥ satisfies (PS) for each ¥ € S.

Remark: Since the functional ¥ = 0 belongs to S, Lemma 2 yields that & satisfies (PS).

Proof of Lemma 2: a) If ¢ € Cy(2 x R,R), then p. = p + ¢ satisfies:

(P1), p. € C(Q x R,R).

(P2), There are constants a.,b, > 0 such that |p.(z,t)| < a. + b.]t|* for all (2,t) € 2 X R,

where s is the number from (P2).

The validity of (P1), is obvious, (P2), follows from [p.(z,t)| < |p(2,t)| + |g(z,t)| < a. + b.[t}*
with 6. = a + sup(. y)enxr l9(2, )] L b = b

b) Let (up) C Wg?(02) be a sequence such that |®.(um)] < M < oo for all m € N and
$.'(um) — 0 as m — co. We show that this sequence is bounded in Wy'*(Q2). From (P2), there
follows the existence of constants A, B > 0 such that |P(z,t) + Q(z,t)| < A + B|t|*+! for all
z € Q. The Hélder inequality yields for all u € Wa*(Q)

YW+EW = 7 [ rtide+ [ (Pew) + e w)d
1
> r+l - / _ / a+1 .
> r+1/ﬂ|u| de—a[de-B [ jur+ide )
> L[ |u*idz - Bja)FH 1) _ g0
> g [ lurtide - BiaE { [ jureiaa} ™ - ajal

r—

O 1 _
= Ml { g s - B0

§}-A|n|zc.

17  Analysis, Bd. 11, Heft 2 (1992)
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Hence, for the sequence (upm) we have M > &,(tm) > 1|luml||* + C, and, therefore, this sequence
is bounded in Wg'?(f2). A

c) Let D : Wg*(Q) — [W;"(Q)]I be the duality mapping given by (Du,v) = [, VuVvdz
for all u,v € Wo'*(Q2). Then, it holds

D7 '¢\(u) = u~ D7 'T'(u) - D71 (u) (3)

for each u € Wy*(§). The operators D=1’ and D~'¥’ are compact since D! is continuous
and T/, ¥’ are compact. The sequence (u,,) is bounded, therefore, there exists a subsequence
() € (ttm) such that (D=1 T'(up,)) and (D~'¥'(uy)) are convergent in Wy'*(2). Further-
more, D~ 1®, (upm) — 0 if m' — o0, and (3) yields the convergence of (ty,) B

Now, setting ¥ = 0 in (2) we see that $(u) > }||ul|* + C for all u € Wo?(9). It follows

that & is bounded below on Wg'*(f). So, for our example, all assumptions of Theorem 1 are
satisfied.

1.3. Critical values of mountain pass type

In this subsection we assume:

(B1) X is a real Banach space, ® € C*(X,R).

(B2) There are positive constants R and a such that &(u) > a forall u € X with ||u|| = R.

(B3) There exists uy € X with ||uy|| > R and ¥(w;) < a; ¥(0) < a.

(B4) X = {p({0,1])|p € C([0,1], X), p(0) = 0, P(1) = w1}, ¢ = suPkex SuPuex B(u)-

Using Ekeland’s variational principle and the subdifferential calculus of convex functions,
one gets the following result (cf. [3]).

Proposition 2: Assume (B1) to (B4) hold. Then given o > 0 there ezists u, € X such
that ¢ < $(u,) < c+ o and [|&'(u,)| <o.

Our perturbation result reads as follows.

Theorem 2: Suppose (Bl) to (B4) hold. Let S be a class of functionals ¥ € C}(X,R) such
that the functional &, = & + ¥ satisfies (PS) for all ¥ € S. Then for each € > 0 there ezists
a § > 0 such that, if ¥ € S satisfies |¥(u)| < § for all u € X and ¢, = infgex sup,cx B.(u),
then c, € (¢ — €,c + €) and critx ., $. # 0.

Proof: Let ¢ > O be a given number, and set B = max {$(0), $(u,),0}. It holds 8 < a, by
(B3). Set § = min {¢/2,(a — B)/3} and let ¥ be a functional satisfying the assumptions of our

theorem. Obviously c, € [c— 8,4+ 8] C (¢ —¢€,¢c+ €), so that it remains to prove critx ., . # 0.
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Setting a. = (a + f)/2 we find $.(0) = $(0) + ¥(0) < B+ 6 < B+ (a - B)/2 < a., and
analoguously ®.(u;1) < a.. For u € X with |ju]| = R it holds ®.(u) = &(u) + ¥(u) > a-§ >
a - (a-B)/3 > a.. Now, we apply Proposition 2 to the functional ®.. A repetition of the
proof of Theorem 1 yields critx ., &. # 01

In the following, using the setting of the Example to Theorem 1, we give an application.

1.4. An example to Theorem 2

We consider functionals on Wy+(f) of the type
B(u) = l/ |Vul*dz — L R
“2Ja 4 Ja )

To this end, we add to (P1), (P2) in the Example to Theorem 1 the following assumptions:

(P3) p(z,t) = o(t) ast — 0 for all z € .
(P4) There are constants u > 2,r > 0 such that 0 < uP(z,t) < tp(z,t) forall|t| > »
and z € 01, where P(z,t) = [i p(z,2)dz. ‘
Remarks: 1) If n = 1, (P2) can be dropped while if n = 2, it suffices that |p(z,t)| <
aexp(¢(t)) for all z € 0 where ¢(t)¢t=2 — 0 as |t| —» oo . 2) Integrating condition (P4) shows
that there exist constants a;,b; > 0 such that

P(z,t) > a|t]* - b (4)
forallze Q.

Let S be as in the Example to Theorem 1, and consider the following functionals on W,(22):

T(u) = - /n P(z,u)dz,  ®(u)= % /n |Vul*dz + T(u).

Now, it is our aim to prove that ¢ and S satisfy all assumptions of Theorem 2. For this, after

the following remarks, we premise a lemma.

Remarks: 1) Under the assumptions of Theorem 2, u € critx . resp. u € critx ., $. is a

weak solution of the boundary value problem

—Au - p(z,u) =0 "inQ,u=00n 80
resp. ]
-Au-p(z,u)+¢(z,u) =0 in 0, u=0ondN.

2) Cf. Remark 2) before Lemma 1. 3) Under our assumtions Lemma 1 stays true if we make
the change (Y'(u),v) = — [y p(z,u)vdz.
17*
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Lemma 3: If (P1), (P2) and (P4) are satisfied, then &, = & + ¥ satisfies (PS) for all
functionals ¥ € S.

Proof: a) If ¢ € Cy(t x R,R), then p, = p — ¢ satisfies (P1),, (P2), and the condition:
(P4), There are constants g, > 2,r, > 0 such that 0 < u,P.(2,t) < tp.(2,t)
for all |¢| > r, and z € 02 where P.(z,t) = [; p.(2,2) dz.
Indeed, the validity of (P1),, (P2), was proved in Lemma 2. To verify (P4), we choose an
arbitrary number u. € (2, p).
i) Using (4) we get
B.Pu(2,t) = pP(z,t) — p.Q(z,t) 2 p. (axltl“ —|t| sup Q(z»t)) — by,
(z.t)efIxR
Since p > 2, there is an #) > 0 such that p.P.(z,t) > 0 for |t| > ),
ii) From (4) it follows that there exists r>) > 0 such that for all lt] > ¥ it holds

(1= p)P(2,8) 2 (B — pa) (@a]t] — b)) 2 (pe +1)It]  sup qu(z,t)l .
Hence, (el

eP(2,) - 1Q(2,1) + te(2,1) < BeP(2,1) + 4alQ(2, )] + [tllg(2,2)]
UaP(2,t) + (e + 1)|t| sup qu(z,t)l

(=,t)eftx
puP(z,t)

IA

IA

and using (P4) we obtain for [t| > D

poPu(2,t) = p.P(2,t) — p.Q(z,t) < pP(2,t) — tg(z,t) < tp.(2,t).
If we set r, = max{rg),rsz)}, then from i), ii) it follows 0 < p.P.(z,t) < tp.(z,t) for all
| >r.andz €.
b) We show that each sequence (um) C Wy () such that |®.(um)] < M < oo for all

m € N and &/ (un) — 0 as m — oo is bounded. In fact, using (P1),, (P2),, and (P4), we get
for all m > myg, myg sufficiently large:

M2 &(um) = gluml? - [ Pufeum)de
= % {llumllz - /np.(z,umwm ‘k} + (% - “l) e
_./n [P,(z,u,,.) - ip.(m%)urn] dz

- %(Q'_(um),um) + (% - “L‘) [t |2 _/{ [P.(z,w..) - %p.(z,m)%] dz

um>re}

- -/{um<r.} [P'(z’u"‘) - ‘%Pt(%%)%] dz

1 11
—— & ()] o +<-———) Um||? 4+ C
. 122 (um)l| Humll + {5 o) el

1 11
= —-— +(—-—) umll?+C.
PR B ¢l llumll
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¢) Now, it follows analogously to step c) of the proof of Lemma 2 that (u,,) contains a

convergent subsequence §

To show that for our example all assumptions of Theorem 2 are satisfied it remains to verify
(B1) to (B3).

(B1): This follows from Lemma 1.

(B2): From (P3) follows that for any € >0 there exists a § > 0 such that

|P(2,t)| < et?/2 (5)
for all z € {1, |t| < 6. Furthermore, given any § > 0, there exists an A > 0 such that
|P(2,t)] < Alt|*+? (6)

for all z € , |t| > §. To see this we observe that (P2) implies

t
|P(z,t)] < |/ (a + blz|*) dz| < alt| + _b_.|t|o+1
0 s+1

for all (z,t) € 2 x R, and (6) follows if we choose A > a§~* + b(s + 1)~*. Inequalities (5) and
(6) imply |P(z,t)| < et?/2 + AJt|**! for all z € 2, t € R. Hence, using the Sobolev imbedding
Wi2(2) — Ly(9) for g(n — 2) < 2n we have for u € Wp(Q)

€ €
<2 2 / s+1 < (_ a—l) 2
T < § [ wde+ 4 [ utide <G5+ Al ™) lul
with a positive constant C;, depending only on Q. It follows
1 42 € -1 2_ (1 € 2 a1
[2(u)] 2 3 llul® = G (5 + Allu] lull® = {3 -C13 lull® — CLA[lu]l**". (™

If we choose € € (0, Cl‘l), then there are positive constants R and a such Ithat (1/2—-C1¢/2)R? -
C1AR**! > a. For u € Wy () with ||u|| = R relation (7) yields #(u) > a.

(B3): Obviously it holds #(0) = 0 < a. Let u € Wj?(R) be arbitrary such that u # 0.
Then for all t € R we have

t? t?
B(tw) = Slul? - [ Ple,twdz < Slulf - o [ |tulds + by
tz
< Gl - arlel [ uidz ~ i

where we did use (4). Because of 4 > 2 it follows $(tu) — —oo as |t| — oo, and (B3) is satisfied.

2. Perturbation of local extrema with smooth side conditions

In this section we consider the perturbation of critical values of functionals which are restricted
to manifolds. First of all we state an abstract perturbation principle.
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2.1. General perturbation principle for critical values of maximum-minimum type

Let us consider a real Banach space X and a functional & : M C X — R. For a fixed real
number ¢ we denote by crity,.® a certain subset of M (in our applications this will be the set
of critical points of the restriction of the functional & to the manifolci M).

We now formulate the following hypotheses.

(H1) $: M C X — R is a functional on the real Banach space X; M # 0.
(H2) X is a non-empty class of non-empty subsets of M. For ¢ defined by

= inf & 8
c ;téx;c‘}g}‘((u) (8)

it holds ¢ # too.
(H3) D is a subset of C(M, M) such that K is invariant under D, i. e. dc Dand K €K
implie d(K) € K.
(H4) If critar 3 = 0, then there ezists a real number ¢ > 0 and a mapping d € D such that
®(u) > c—€,u € M, implies (d(u)) > c+e. (9)

Proposition 3: With the assumtions (H1) to (H4), critar 2 #0 .

Proof (Cf. [10: Chapter 44.2]): Let us assume that crityr & = 0. By (H4), there exist
€ > 0 and d € D such that (9) holds. We choose K € K for which infyex $(u) > ¢ — ¢, thus
infueq k) B(u) 2 ¢ + €. Due to (H3), d(K) € X, i. e. , infyeqx) $(u) < c by (8). This is a
contradiction 8

Remark: In the applications it is possible to choose for D in (H3) the set of all homeo-
morphisms of M onto itself. '

We now assume (H1) to (H4) and put the question if for a perturbed functional &, = &+ ¥
there exists a real number c, in a neighbourhood of ¢ such that critare, 8. # 0 (where crity,, 8.
is defined analogously to critar® by formally replacing ¢,® by c.,®., respectively). To this
end, we formulate in addition to (H1) - (H4) the following hypotheses:

(H5) ¥ : M C X — R is a functional and § > 0 is a real number such that
|¥(u)] <8 forallue M.
(H8) K. C K is non-empty. For the functional &, =& + ¥ we define
¢ = sup Inf 2.(u). (10)

(H7) There ezists g real number o > 0 and a set K, € K, such that

uiGnIt('. d(u)>c—o. (11)
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(H8) D. is a subset of C(M, M) such that K, is invariant under D,.
(H9) If critar., ®. = 0, then there ezists a real number ¢, > 0 and a mapping d. € D,
such that

$.(u) > c. —€,u€ M, implies .(de(u)) > ¢ + €. (12)
Proposition 4: With the assumptions (H1) to (H7), it holds
& €(c~8-0oc+6]. (13)
Proof: By (H5), (H6), we have

< i i < .
c._;:&ﬁi.(u)ﬁa%$§(u)+6_c+6

On the other hand, from (H7) it follows that
. Zuxen’g.§.(u) Zuxel}gvi(u)—J >e—o0-41

Proposition 5: If (H1) to (H6) hold and if K, = K, thenc, € [¢— §,¢ + §].

Proof: Since K, = K, for every real number o > 0 there is a set K, € K such that (11)
holds. Now, the assertion follows from Proposition 4 8

Proposition 8: With the assumptions (H1) to (H9), crity,. . #90.

The proof is a repetition of that of Proposition 3

Corollary 2: Propositions I to { remain true if (8) to (13) are replaced, respectively, by

¢ = infxex supyex B(u),
®(u) < c+ ¢, u € M, implies $(d(u)) < c —¢,
c. = infxex, supyex $.(u),
sup,cx, B(u) < e+ o, ‘
®.(u) < e + €., u€ M, implies $,(de(u)) < c. — ¢,

& €Efc—-b,ct+d+0).

Remark: Im many applications of the perturbation principle it is possible to choose KX, = K
in (H6). This occurs in Subsection 2.3. But it could be necessary to choose a class K (e. g. ,
to get more information on the number of critical values) such that it is not possible to take
K. = K, because the mappings d.‘fxom (H9) do not guarantee d,(K) € K for all X € K. This

is the case in Subsection 2.5.
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2.2. Stability of the Local Palais-Smale Condition

In this subsection we suppose the following assumptions:

(C1) X is a real reflexive Banach space, &,T € C'(X,R).

(C2) a is a fized real number, M = {u€ X | Y(uv) = a}.

(C3) There ezists a continuous function v : M — X such that |v(u)|| =1 forallue M
and infycx |(Y'(u), v(u))]| > 0 for each bounded set K C M.

(C4) T : X — X' is bounded and locally Lipschitz continuous on M.

(C5) There is a set M D M which is closed with respect to the weak convergence in X such
that *(B) N M is bounded for each bounded set B C R..

We define for u € X

HO = ¥ T, 0 = (ST

We want to study the sets
critme® = {ue M [#(u) =0, 8(w)=c}, ceR.

Remark: If u € crity,.®, then it holds &'(u) = AT'(u) with a real number A,i.e. ,uis a
critical point of the restriction of the functional ¢ to the manifold M.

Let ¢ be a fixed number. The functional ® is said to satisfy a local Palais-Smale condition
(PS), on M if the following holds:

(PS), Every sequence (un) C M with ®(up,) — ¢ and &' (up) > 0asm — 00
has a strongly convergent subsequence.

We need the following so-called Deformation Theorem which here is formulated as

Lemma 4: Assume that (C1) to (C5) are satisfied and that & satisfies (PC), on M, c € R.
If aitpg @ = 0, there ezist ¢ > 0 and d € C(M X% [0,1), M) such that the following hold:

1) The mapping u — d(u,t) is a homeomorphism of M -onto itself for all t € [0,1].

2) d(4,0) = u forallu e M.

3) #(d(u,t)) > ®(u) forallue M, te[0,1).

4) $(u)>c-¢€u eM implies ®(d(u,1)) > '+ .

In [9: Proposition 1], the Proof is given for the case that v(u) = u/||u|| satisfies (C3), and

that of Lemma 4 is completely analogous §



On the Perturbation of Critical Values 257

Lemma 5: (PS), holds under the following hypotheses.
a) Assumptions (C1) to (C5) are satisfied.

b) T’ satisfies (S),.

c) ¥ : X — X' is strongly continuous.

d) Ifun — u asm — o0, (um) C M, and &(u) = ¢, then $'(u) # 0.

Proof: Let (u,,) C M such that $(um) — ¢ and $'(um) — 0 as m — co. This sequence
is bounded, by (C5); therefore, there exists a subsequence (um:) C (um) such that un — uo
as m — oo. (C1) and c) implie that the functional & is weakly continuous, and it follows
®(upm) = $(uo) as m' — oo and P(uo) = c. Now, ¥'(uo) # 0, by d).

The sequence (A(um')) is bounded because of (C3) and c}, hence there is a further subse-
quence (umr) C (ume) such that A(umn) — Ao as m” — 0. It holds Ag # 0. Otherwise, because
of $(umn) = ¥'(Umn) = A(thm#)T'(tmn) , '(tmv) — 0 as m” — oo and the boundedness of
(T'(um»)) (by (C4)), Ao = 0 would imply &'(um») — 0 as m” — oo, which fs a contradiction to
$'(uo) # 0. :

For m" sufficiently large it holds T/(tm#) = A(ttm) " (#'(mr ) — #'(t4av)), and from c) and
#'(umr) — 0 as m” — oo it follows that the sequence (T'(upmn)) is convergent. Hence um» — uo

as m" — oo, by b) #

Now, we consider perturbations ®, = & + ¥ of the functional &. The key is to guarantee
that &, satisfies (PS),, for all c, in a neighbourhood of ¢c. For that, assumption d) in Lemma 5§

is to weak. This motivates the following considerations.

Lemma 6: Assume:

a) Assumptions (C1) to (C5) are satisfied.

b) T’ satisfies (S),.

c) @' is strongly continuous on X.

d) ¢;,c2 € RU {to0} are such that T = inf{||<§’(u)|| Iu EMnd?! ((cl,q))} > 0.

e) & is a positive real number such that § < 7.

f) ¥ € C}(X,R) has a strongly continuous derivative ¥', and it holds for all u € M :

|2 ()] + [ (w)ll < 8 (14)

Then, it holds:
1) The functional & satisfies (PS)_ for every c € (c1,c¢a).
2) The functional , = & + ¥ satisfies (PS),_ for every c € (c; + §,¢2 — §).



258 F.BENKERT

Proof: 1) follows immediately from Lemma 5.

2) We show that the perturbed functional &, satisfies the assumptions of Lemma 5 for every
number ¢ € (¢; + §,c2 — 6).

a) (C1) to (C4) are satisfied, it remains to verify (C5). Let B C R be a bounded set, then
there exist real numbers U,V such that B lies in the interval (U, V). Inequality (14) implies

$Y(B)NM C ¥P((U,V)NM C &(U-6V+8)nM,

and the last set is bounded, by (C5).

b) Assumptions b) and ¢) of Lemma 5 are obviously satisfied.

¢) To verify d) from Lemma 5, let () C M be such that u,, — u as m — oo and
®.(u) = ¢, ¢ € (c1 + 6,62 — §). It follows u € M, and (14) implies #(u) € (c;,¢;). From
the definition of r in d) it follows ||®(u)|| > 7. Hence [|®.(u)]] > ||®'(w)]|-6§ > 7 -6 > 0,
ie.,®(u)#0n

2.3. Functionals on bounded level sets I

We make the following assumptions:

(D1) X is a real reflezive Banach space, diimX = oo ; ¢, T € C*(X,R).

(D2) a # 0 is a fized real number, M = {u€ X : Y(u) = a} is non-empty. The set
{u € X : T(u) < a} is bounded; there is u; € X, u; # 0, such that
T(w1) < a, T(-u1) < a. It holds T(0) = 0.

(D3) There ezists a continuous function v : M — X such that |jv(u)|| =1 forallue M
and infuear [(X'(u),»(u))| >0 .

(D4) T': X — X' satisfies (S), and is bounded and locally Lipschitz continuous on M.

(D5) There is  bounded set M D M which is closed with respect to the weak convergence
in X.

(D6) &' : X — X' is strongly continuous. ®(u) > 0 for allu € M and & s bounded on M.
For u € M it holds F(u)=0<=>u=0+= d(u)=0.

Theorem 3: With the assumptions (D1) to (D6) the following assertions hold:

1) There ezists a sequence (ci) of real numbers c; > 0 such that critare, @ £ 0 for k> 1.

2) For every k > 1 and € > 0 there ezists § > 0 such that for all ¥ € C)(X,R) with
strongly continuous derivative ¥' and |¥(u)| + ||¥'(u)]] < & for all u € M there is ¢ number
Co € (cx ~ €, ¢ + €) for which critpg,, B, # 0 (where &, = & + ).
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Remark: In 1) it may happen that all numbers ¢, are equal to each other.

Before we are able to prove Theorem 3 we need some preparations. For every £ € N we

define

There is an e € R*, e #£ 0 such that K is homeomorphic
K=< KCM | tothe boundary of an open bounded nesghbourhood of the
set {e,—e} in R*\{0}

Lemma 7: Assume (D1) to (D6). Then Ky # 0 for allk € N.

Proof: Let (uy,), m > 1, be a sequence of linearly independent elements of X, where u,
is taken as in (D2). For k € N, the subspace Ej = span{uy,...,us} is isomorphic to R* by the
canonical isomorphism ¢ : E, — R*. The set V = {u € Ej : T(u) < a} is bounded by (D2)
and contains 4, and —u,. Its boundary satisfies 8V C M since T is continuous. Furthermore,
8V = ¢} (8(¥x(V)), and ¢¥4(V) is an open bounded neighbourhood ofA{¢;,(u1),—¢,,(u;)} in
R*\{0}. Hence, 8V € K\ 1

Now we define for K € N

¢y = sup inf ¥(u).
Kek, v€K ()

Lemma 8: With the assumptions (D1) to (D6), 0 < ¢x < +00 for k € N.

Proof: Let k£ € N. By Lemma 7, there is a K¢ € Ki. The set Ky is compact, and &(u) > 0
for u € M (by (D2), (D6)), hence inf,ex, #(u) > 0. It follows ¢, > 0. Furthermore, cx < +o0,
since & is bounded on M, by (D6) 8

Proof of Theorem 3/1): We show that for Ky, ci, k£ € N, assumptions (H1) to (H4) of
Subsection 2.1 are satisfied. Then, the assertion follows from Proposition 3.

(H1) is trivially satisfied, and (H2) follows from Lemma 7 and 8.

(H3): If we choose D = Hom(M, M) (the set of all homeomarphisms of M onto itself), then
it is clear that X is invariant under D.

(H4): Under the assumptions (D1) to (D6), all assumptions of Lemma 5 for ¢ = ¢ are
satisfied. Especially, since ¢, > 0 by Lemma 8, (D6) implies assumption d) of Lemma 5. Hencve,
& satisfies (PS)_ , and Lemma 4 implies that the mapping d(-,1) fulfills (H4) 8

ca’?

We set for fixed k€ N

7 = inf {||#'(u)| | u€ M, &(u) € (cu/2,3c/2) } - (15)
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Lemma 9: Suppose that (D1) to (D6) hold. Then r > 0.

Proof: We give a proof by contradiction, by supposing 7 = 0. Then, there is a sequence
(um) C M such that ®(u,) € (cx/2,3cx/2) for m € N and [|®'(um)| — 0 as m — oo.
Since M is bounded there exists a subsequence (up') C (um) such that 4 — u € M as
m’ — oo. The operator &' is strongly continuous (and hence & is weakly continuous), therefore,

®(u) € [cx/2,3¢cx/2] and &'(u) = 0, in contradiction to (D6) 8

Proof of Theorem 3/2): Let k € N be fixed, and let ¢ > 0 be given. We assume € < cx/2.
Let T > 0 be the number defined in (15). Now, we choose § > 0 such that

§ < min {e,T,¢c;/4} . (16)

Let ¥ € C'(X,R) such that ¥’ is strongly continuous and |¥(u)| + ||¥'(u)|| < & for all u € M.
It is our aim to apply Propositions 5 and 6, so we have to verify (H5) to (H9). To this end, we
set X, = K and D, = D.

(H5) to (H8) are obviously satisfied.

(H9): From Proposition 5 it follows ¢, € [¢x — §,ck + 8] . If we set in Lemma 6 ¢; = ¢;/2,
¢z = 3¢k /2, then we see that the functional & satisfies (PS), for every ¢ € (cx/2+8,3cx/2-8), by
Lemma 9. It holds [ci — §,¢x + 8] C (cx/2 + 6,3, /2 — 6) , by (16), and therefore the functional
&, satisfies (PS),, . Now, from Lemma 4 it follows that (H9) is fulfilled.

From Proposition 6 it follows crita, ®. # 0, and c. € (cx — ¢€,¢ci + €) because we have

€. €[cx— 8,64+ 6) and (16) §.

As an application of Theorem 3 we consider the following example.

2.4. An example to Theorem 3 ~

Let R C R, n < 3 and X = Wy *(2) as in the Example to Theorem 1. We consider the
following functionals on Wy**(Q) :

T(u)

ll

1 2 - ’\ 2 1 4
2/0|Vu|dz+I‘(u), F(u) = 2/nudz+4/nudz,

(u) % /n |ul*dz , Y(u)=o /n P(z,u)dz,

where 0 < ¢ < 6, 0 € R, P(2,t) = [; p(z,z) dz for (z,t) € 2 x R and p satisfies (P1), (P2) (cf.
Example to Theorem 1). The number X in the functional I will be specified below. To show
that Theorem 3 applies to this example, after the following remark, we premise three lemmas.

Remark: If we assume that the assumptions of Theorem 3 are fulfilled, then u € crit Mc®
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resp. u € critar,, $. is a weak solution of the eigenvalue problem

p(—Au - du + u®) = yjul?? infl,u=00nd0
resp.
w(—Au—Au+u®) = ulu|?"? + op(z,u) inQ,u=00n80.
We consider the linear eigenvalue problem
- Au = Au. 4 (17)

It is well known that (17) possesses a sequence of eigenvalues (Am) With 0 < A; < Az < ... and

Am — +00 a8 m — oo. For the parameter A in I’ we assume
A <A< ' (18)
Before we choose the number a we prove
Lemma 10: The functional Y is bounded below on W () and inf,,cp1a(q) T(u) < 0.
Proof: a) Using the Holder inequaltity and the Sobolev imbedding Wa () — Ly(1) we
get the inequality
T(w) 2 lull - S0l + Sl > Sl + € (1)
for u € W2?(Q), i. e. T is bounded below on W*(22).
b) Let # be an eigensolution of (17) to the first eigenvalﬁe A1, hence @ € Wgi(Q),

@ # 0, [|Vi|’dz = A, J i?dz. We study the functional T along the one-dimensional sub-
space span{ii}. For t € R we set

v(t) = T(ta) = At* + Be*,
where
A=1/a‘dz, B=1’—’Vﬁ/ |Valtdz .
4 Ja 2 1]
From (18) it follows B < 0, consequently there is a 2o € R such that v(to) < 0. Hence
infueW:"(n) T(u)<on
Now, we choose a number a such that

inf T(u)<a<O. 20
i@ () (20)
Analogously to Lemma 1 we have
Lemma 11 (cf. [5] and [10: Corollary 26.14]): Under the assumptions stated above it holds:
1) T,8,T,% € C{(Wy*(Q),R) and for all u,v € W,(2) we have
(Y'(u),v)

(®'(u),v)

/‘;Vqu dz + (I'(u),v) . (T'(u),v) = —z\/nuv dz +/nusv dz,

/nulul”zvdz, ' ('I"(u),v):[_)q(z,u)udz.
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2) 8,1, : Wy*(@) —+ R are weakly continuous, &,I", ' : Wa(Q) — [Wa?()] are
strongly continuous (and hence compact).

It will be important that we know the exact number of critical points of T:

Lemma 12: For A € (A1,2) the equation T/(u) = 0 has ezactly three solutions 0, u;, —u,
in W3(Q), where u; # 0 and T(uy) = T(-uy) = inf e pa(ny T(v).

For the Proof, which uses the theory of proper nonlinear Fredholm operators, we refer
to2]m

Now, for the Example to Theorem 3 it is our aim to show that all assumptions (D1) - (D6)
are satisfied. For (D1) and (D2) this can be shortly done.

(D1) follows from Lemma 11.

(D2): The set {u € W (Q) | T(u) < a} is bounded since (19) implies T(u) — +oco0 as
|lulf = oo . Moreover, since T is continuous and a > infuewo"’(n) T(u) we have M # 0. The
remainding part follows from Lemma 12 and from (20).

To verify (D3) we first state

Lemma 13: Under the assumptions stated above it holds inf,eas || T'(u)|| > 0.

Proof: We give a proof by contradiction. If infyep ||Y'(u)]| = 0, then there exists a
sequence (um) C M (i. e. , T(um) = a for all m € N) such that ||‘I"(u,,.)|| — 0 asm — oo.
The functional T satisfies (PS) since it is a functional of the type considered m the Example to
Theorem 1 (denoted there by &), especially the assumptions of Lemma 2 are satisfied. Hence
there is a subsequence (tm) C (4m) such that u, — w in Wy'3(2) as m' — co. The derivative
T’ is continuous, therefore, T'(w) = 0. From Lemma 12 there follows either T(w) = T(0) > a
or T(w) = i”‘fueWo‘"(Q) <a,i. e, T(w) # a. On the other hand, because of the continuity of
T it holds T(w) = a, which is a contradiction §

(D3): We set B = infuear || X'(u)l|. For each u € M we choose v, € Wg'*(R), ||v]| = 1, such
that (T'(u), »,) > 28/3. Since T’ is continuous, for each u € M there is an open neiéhbourhood
N, of uin M such that (T'(w),») > B/2 for all w € N,,. The family {N,} is an open covering
of M. Since every subset of a Banach space is paracompact, there are a locally finite refinement .
{N:} of {N,} and corresponding »; € Wo*(Q), ||vs|| = 1, such that (T'(w),»;) > B/2 for all
w€ N;, i€ N.

Now, let {1;} be a partition of unity on M subordinate to {N;}, and set u(u) = i mi(u)y;,
4 € M. Then the mapping ps: M — W,2(9) is continuous, |lu(u)ll <1 for all u € M, and we
have (T’(u),p(u)) = Xim(u)(T'(u), %) > ¥, mB/2 = B/2. Therefore, p(u) # 0 for all u € M.
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We set v(u) = p(u)/||u(u)|| for v € M . Then, v is continuous on M and [j¥(u)|| = 1 for all
u € M. Furthermore, (T'(u), »(u)) = (T'(u),m(u))/|im(u)l} > 8/2 > 0 for all u € M, and (D3)
is satisfied. )

(D4): Y’ is the sum of the uniformly monotone operator T/—I" and the strongly continuous
operator I/ (cf. Lemma 11), hence it satisfies (S),, cf. [10: Chapter 27.1]. Now, we prove that T’
is Lipschitz continuous on M (hence locally Lipschitz continuous). For u,v € M, w € Wg’z(ﬂ)
we get with the Holder inequality

[(T'(w) = T'(v), w)|
< l/n V(u- v)dezl +2A /n(u - v)wdz /n(u - v)(u? - 2uv + v¥)wdz
< llw = vll lwll + Allu = vllaliwlla + lhs = vlla(llv?ll2 + 2lluvllz + [[o*]i2)llwlls.

+

By the Sobolev imbedding Wo'?(f)) — L4(f2) and the fact that the set M is bounded we get
[{T'(u) — T'(v),w)| < c|lu — v]|||w]||, where the constant C does not depend on u,v. Hence
[IT(u) — Y/(v)|| £ Cllu — v|| for all u,v € M, i. e., T’ is Lipschitz continuous on M. Since M
is bounded, it immediately follows that T is bounded on M.

(D5): We choose M = convM (the closure of the convex hull of M). M is bounded since
M is, and it is well known that M is closed with re#pect to the weak convergence in Wol’z(ﬂ).

(D6): @' is strongly continuous, by Lemma 11. It is 6bvious that &(u) > 0 on M. Further-
more, it holds $(u) = p~!|Ju|jf < C‘||u||’ because of the Sobolev imbedding Wy2(Q) — Ly(f)
for p < 6. Thus, ® is bounded on M, since M is bounded in Wg'z(ﬂ). It is easy to see that for
u € Wa(02) it holds:

B(u) =0+=u=0<= ¥(u)=0.
So, (D1) - (D6) are fulfilled and we have shown that Theorem 3 applies to our example.

Finally, we will prove that we can choose the number ¢ in the functional ¥ in such a way
that the condition [¥(u)| + ||¥(u)|| < & for all u € M is fulfilled. Note that, by Lemma 11,
¥ € CY(Wy?(N),R) and ¥ is strongly continuous independent of ¢ € R..

Lemma 14: For the functional ¥ given above there ezists ¢ number oo > 0 such that for
o with |o| < oo it holds |¥(u)| + [|¥'(u)|| < § for allu e M.

Proof: a) From (P2) it follows the existence of constants a;,b; > 0 such that |P(z,t)| <
a1 + by t|*+? for all z € 0. For u € Wo(Q) it follows

(@) <10l [ [P(z,wldz < o] [ (@1 +biuf**) dz < [ol(ar]f] + Cbiul*),
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using the imbedding W3*(f1) — L,41(Q) since s + 1 < 6.
b) By (P2), for u,v € W'*(Q) we have

(@)l < lof [ p(z,wl vl do
o/(a+1) 1/(s41)
< ol {] e werreas | [ piriaa )
o/(e41) 1/(s+1)

< s\(s+1)/s } { 41 }

< o {/n(a+b|u| ) dz /‘;|v| dz

< ol (al1/C*D 4 bljullsy, ) llollosa

< lof (alQ/¢*D + Chlju|*) o]

Since M is bounded from a) and b) there follows the existence of a number go > 0 such that
|¥(u)| < §/2 and ||¥’'(u)|| < §/2foralluc M 8

Remark: The set M consisered in our example is not homeomorphic to the unit sphere in
W‘}'z(ﬂ). To see this, we prove that M consists of at least two connected components. Let & be
an eigensolution of (17) to the first eigenvalue )y, and let £ = {u € Wy*(2) : (u, &) = 0} be the
hyperplane in W;’z(ﬁ) which is orthogonal to . We have, by the variational characterization
of the eigenvalues of (17), [ |Vu(2dz > A; f; u?dz for all u € E. Hence, using (18), for u € B

it followé

r(a)=%/n|vu|=az-%/nu=dz+§/nu4dzz%(1-:\":)/0|Vu|=dzzo.

Since a < 0 it holds M N £ = @. On the other hand, if u; is the element from Lemma 12,
each of the opposite rays {tu; : t > 0} and {tu; : t < 0} meets M at least in one point, by the

continuity of T and (20). Hence M has at least two connected components.

2.5. Functionals on bounded level sets 11

In this subsection we assume:

(E1) X is a real Hilbert space, ® € C'(X,R).

(B2) M = {ue X||lu| =1}, M = {u € X : ||ju|| < 1}. There ezist numbers k € N,
p > 0, and an odd mapping Yo € C(S*',M) such that yYo(S*!) Cc M, =
{u € M: &(u) > p}, where S*~1 is the unit sphere in R*, A

(E3) &' : X — X' is strongly continuous. $(u) > 0 for all u € X, and & is bounded
onM. Foru€ X stholds &(u)=0<=>u=0<= d'(u)=0.
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Theorem 4: Under the assumptions (E1) to (E3) the following holds:

1) There is a real number ¢ > p such that crity .3 # 0.

2) For every € > O there exists § > 0 such that for all ¥ € C}(X,R) with strongly contin-
uous derivative &' and |¥(u)| + ||¥'(u)|| < § for all u € M there is a number c. € (c — €,c + ¢€)
Jor which critar,., ®. # 0 (where . =3+ ¥).

Proof: 1) It is our aim to apply Proposition 3, hence we have to verify (H1) to (H4).
(H1) is obviously satisfied.
(H2): We define

5 = {BcMm, There is an odd mapping ¥ € C(S*~!, M,)
such that B = (S*1)
There isa B € B and a d € C(B x [0,1), M,) with

x = {kcm, | TherewwaBeBandadeC(Bx[0,1)M,) with [ (21)
d(u,0) = u for all u € Bsuch that K = d(B,1)

Obviously B C K, and since 3(5*~!) € B according to (E2) it follows X # 0. Now for the
number ¢ = supgxinfuex $(u) it holds ¢ < +oo since & is bounded on M. Furthermore,
because $o(S*~!) is compact it holds i wepo(st-1) B(u) > p , hence

e>p. (22)
(H3): We define

There is a d € C(M X [0,1), M) such that d(-,t) is a homeo-
morphism of M onto itself for all t € [0,1], d(u,0) = u and
®(d(u,t)) > (u) for all (u,t) € M x [0,1)and d(u) = d(u,1)
forallue M

D ={de C(M,M)

To prove that K is invariant under D let K € K, i. e. , K = di(B,1), where B and d; are
according to (21). Furthermore, let d; € D, da(-) = da(+,1). If we set

dy(u,2t) forue B,t€[0,1/2]

d(u,t)=¢
dy(dy(w,1),2t - 1) forue B, te(1/2,1],

(23)
then d(K) = d(B,1), and it is easy to see that d € C(B x [0,1],M,). Hence dy(K) € X.
(H4): It is our aim to apply Lemma 4. If we set T(u) = ||u|?, u € X, and a = 1, then
it is immediately clear that (C1), (C2), and (C4) are fulfilled, where (Y'(u),v) = 2(u,v) for
¢,v € X. Furthermore, in (C3) we can choose ¥(u) = 4, u € M. Assumption (C5) holds, since
M= {u € X :||u|]| = 1} is bounded and closed with respect to the weak convergence in X.
For (H4) it remains to show that & satisfies (PS), on M. For this, we use Lemma 5. From

18  Analysis. Bd. 11. Heft 2 (1992)
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(E3) there follow assumptions c) and d) of this lemma for all ¢ # 0. To verify b), let (um) C X
such that 4, — uin X, T'(um) — vin X’ as m — co. It holds T'(um) — T'(u) as m — oo since
(Y (tm), w) = 2(ttm,w), (T(v),w) = 2(u,w) for all w € X. Hence v = T'(u). The estimate

2t — tythn — ) = (T () = T(1), U — )
11T (ten) = T ()] i —

2|l — ulf?

IA

yields 4, — u in X as m — oo.
2) Let € > 0 be given. Set

7 = inf {||&'(w)ll | u € M, $(u) € (c/2,3¢/2)} - (24)
The same proof as in Lemma 9 yields 7 > 0 . Now, we choose positive numbers o, § such that
o < min{e/2,c — p}, § < min{e/2,7}, 0 + 2§ < min{c/2,¢c — p}. (25)

Note that ¢ > p, by (22). We shall apply Propositions 4 and 6, so we have to verify (H5) to
(H9).

(H5): Let § be the number choosen accordingly to (25). Under the assumptions of part 2)
of our theorem (H5) is fulfilled.

(H6),(H7): For the construction of a class K,, let & be taken accordingly to (25) and choose
a set K,_ € K such that inf,cx, ®(u) > ¢ — 0. We define

Thereisa d € C(M x{0,1},M) such that d(-,t) is a homeo-
morphism of M onto itself for all t € [0,1], d(u,0) = u and
®.(d(u,t)) > &.(u) for all (u,t) € M x [0,1], and d(u) = d(u,1)
forallue M

S
I

de C(M,M)

K. = { KCM | ThereisadeD. such that K = d(K,) }.

It holds K, # 0 since K, = id(K,) € K., where id is the identity mapping on M. It remains to
show K, C K. Let K € K,,i.e., K = d3(K,), d3 € D., d3(-) = da(-,1). Since K, € K, there is
a BeBandad € C(Bx[0,1],M,) with dj(u,0) = u for all u € B such that K, = d(B,1).
If we construct a mapping d € C(B x[0,1], M) accordingly to (23) we have K = d(B,1). Thus,
we have to show d € C(B x [0,1], M,), which is proven if we can show

&(d(u,t)) > p (26)

for all u € B, t € [0,1]. Obviously (26) holds for ¢ € [0,1/2] by construction of d. To verify
inequality (26) for all ¢ it suffices to prove

&(dy(u),t) > p (27)
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for all u € K,, t € [0,1], by (23) and K, = di(B,1). For u € K, it holds $(u) > p + 26 (note
(25)), hence ®.(u) > p + & since |¥(u)| < §. From the definition of D, it follows &.(da(u,t)) >
®.(u) > p + 6, therefore, ®(da(u,t)) > p for all £ € [0,1], and (27) is proven. ‘

(H8): D, is a semigroup with respect to the composition of mappings. This immediately
becomes clear if we use a cbnstruction analogous to (23). Now, by construction, K, is invariant
under D,.

(H9): If we choose T accordingly to (24), then the verification of (H4) in part 1) of our proof
shows that all assumptions of Lemma 6 are fulfilled. Hence the functional & satisfies (PS), for
all ¢ € (¢/2 + 6,3¢/2 — §). Proposition 4 yields c, € (¢ — § — o,c + §], and, by (25), it holds
¢f2+6<c—8—-0,3c/2-8>c+ 8. Therefore, ¥, satisfies (PS)_, and from Lemma 4 it
follows that (H9) is fulfilled. .

Now, Proposition 4 shows crita., ®. # 0, and ¢, € (¢ — €,¢ + ¢€), because inequalities (25)
yield e, € (c—8-0,c+8)C(c—€,c+¢€)

Remarks: 1) It is not possible to choose K. = K because X is not invariant under D,. If
K € K, d € D,, then in general d(K) is not a subset of M,. 2) In [4] there are used classes X
of the type considered above to obtain a series of distinct critical values by varying k .

Example to Theorem 4: Let 1 C R" and X = W,'*(1) as in the Example to Theorem 1.
We consider the functionals ¢ and ¥ from the Example to Theorem 3 under the assumption
1<g<+ooifn<2andl < g<2n/(n—1)if n > 2. It is our aim to prove that all assumptions
of Theorem 4 for our example are fulfilled.

(E1),(E3): They follows from Lemma 11. To see that $'(u) = 0 implies u = 0 we use the
identity ($'(u),u) = g ®(u) for all u € Wo*(f1).

(E2): Let k € N be an arbitrary number. Furthermore, let (u,,) be an orthonormized basis
in Wg(). Set E, = span{uy,...,uz}, and let ¢p : R* — E; be the canonical isomorphism.
Since the set yo(S*~!) (where S*~! C R*) is compact and since ®(u) > 0 for all u € M it
follows inf ¢4, (5s-1) #(u) > 0. Now, for every number p satisfying 0 < p < infyey,(,a-1) B(1)
assumption (E2) is fulfilled.

Remark: Under the assumptions of Theorem 4, u € critar®, resp. u € critpr,, &, is a
weak solution of the eigenvalue problem
—pAu = ulu?"? inQ,u=0o0n 8-

resp.
—pAu = ulu"? + op(z,u) inQ,u=0o0n6qQ.

Finally, we remark that the assertions of Lemma 11 for & and ¥ are valid and that Lemma
14 is also true under the setting of this example.

18*
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