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Some aspects in the geometry of pairs of positive linear forms on unital C'—algebras
are considered. Especially, the geometrical relations among the vector representatives
of the forms of such a pair within a representation, where both forms can be realized
as vectors simultaneously, are studied and discussed in detall. The results obtained in
this part extend early results of H. Araki and are intimately related to such functors
like the Bures distance and the algebraic transition probability considered by A. Uhlmann
and others. The results will be used to discuss and to investigate some extensions of
geometrical concepts, which have been found to be of interest recently in Mathematical
Physics in context of the problems of the so-called geometrical phase.
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0. Introduction

Let H be a complex Hilbert space, with scalar product <-,->. In all what follows we
suppose that <-,->: Hx H3{ &} < £ 7> behaves linearily with respect to £ and anti-
linearily with respect to 5. The C "-algebra of all bounded linear operators on H will be
denoted by B(H). Let w be a vector state on B(H), i.e. w is a positive linear form on
B(H), normalized to one, such that there exists a unit vector £¢ H with w(x) = <xEED
for all xe¢ B(H). The set of all vectors £ which obey the latter will be denoted by S(w).
Note that, for any given £ ¢ S(w), we have S(w) ={ Af: 2¢C, |A]=1}.

In quantum mechanics vector states are the basic objects for the mathematical
description of physical states (roughly speaking, in elementary quantum mechanics it
is supposed that physical states are in one-to-one correspondence to the vector states
on B(H) for an appropriately chosen H). In this context S(w) is referred to as the unit
ray of the vector state w, and each feStw), which is a representing vector or a
representative for w, corresponds to a state vector or wave function of the quantum
mechanical system in question. Suppose now, w and o are vector states. For given
vectors {e S(w) and 7 € S(o) the number P(w,0) =|< £ 7>]2 depends only on the pair
{w, o). Also this number plays a distinguished role in context of quantum mechanics.
It is the quantum mechanical transition probability between the vector states w and o.
From the mathematical point of view, the importance of the transition probability, if
seen as.a functional on the pairs of vector states or unit rays, is mainly due to a famous
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theorem of E.P.Wigner on symmetry operations. Wigner's theorem asserts that any
symmetry, i.e. a map ¥ acting from the set of all vector states onto itself which
preserves the transition probability : P( ¥(w), ¥(0)) = P{w, o) for any pair {w, o} of vec-
tor states, can be implemented by some unitary or anti-unitary operator u on H. This
means that we can associate with ¥ some unitary or anti-unitary operator u, with uf e
S(¥(w)) for any £e S(w) and each vector state w. This appears to be one of the basic
mathematical results on the foundations of axiomatic (algebraic)quantum theory (cf.
the lectures of R. Jost [18], or [11]e.g.). ’

Let us now consider a pair of vector states {w,0} and state vectors £, 7 being
representatives of them, £ ¢ S(w) and 7€ S(o). Assume the given vector states are not
mutually orthogonal, i.e. P(w,0) # 0.Then, <& n> = ei®P(w, 0)1”2 for some uniquely
determined complex number §(7, £) = e~ of modulus one. We call §(5,¢) the relative
phase between the representatives nand £ whereas £ = §(7, £)§ e S(w) is referred to as
the 5 -relative repreéentative of the vector state w. Obviously, for the given pair of
vector states {w, o) the - relative representative of the vector state w is the unique
state vector ¢ of the unit ray S(w) such that < ¢,7> >0. For some given number n ¢N,
let y={w,, @,, ..., Wy, } be a sequence of vector states such that w;* w;,, and w; is not
prthogonal with v, ,, for j=0,1,...,n, and w,,, = w,. We call such a sequence loop of
vector states (at w,). Assume ¢ ¢ S(w,) is fixed. Then, we construct another state
vector @(y)eS(w,) by the following recursive rule. For j =0 we define ¢; = ¢. For j 21
we define @, as the @;_,-relative representative of wy . Finally we put (7)) =@ .. In
practice, however, each of the vector states wg, @,, ... , W, is given by some particular
state vector {; taken from the unit ray S(w)). We take & = §pey = @ Then, having in
mind the above characterization of the relative representative, we easily see that ¢; =
58 &-y) (& &) 8L & 27 for any j. Thus, we have p(y)=8(&, &,) - 8(&, &) e.
Although the factors §(&), £;-,) heavily depend on the choice of the sequence {&,, ... ,£,}
of representatives £;¢ S{w)), the product of these factors §( &, &,) - 8(¢,, &) does not
depend on this choice. In fact, we have §( ¢, &) = <& §-,> K&, Ej_‘>|'l. for any j.
Since < &, £, =< &, &, is invariant under the replacement §; — z; {; , for any z; e C of
modulus |z;|=1, this fact also applies to 4(7) = M a, ..., 0,) =8(&, £,) - 8(¢,, &). Note
that A(y) is a complex number of modulus one. We shall refer to this number as the
global phase of the loop y. For n 22 the global phase can be non-trivial, i.e. there are
loops y with n 2 2 such that 4(y) #1. We remark that the complex unitary invariant 4(7y)
has been considered and discussed (at least in case of n=2) by V. Bargmann within his
treatise on Wigner's theorem in [8). We also note that A has been used there in order
to decide between both the possibilities of the unitary or anti-unitary implementability
of a given symmetry ¥. In fact, following Wigner's theorem, for a symmetry ¥ there
are only two principal possibilities. Either 4(¥(y))=4(y) for any loop y ( in using the
notations ﬁ‘_’f‘ above, v = ¥(7) is the loop of the vector states ¥( w])), or we find that
A(¥(y))=A(y) for any loop 7. In the first case ¥ can be unitarily implemented, in the
second case only an anti- unitary implementation is possible. In case of dim H 2 2, due
to the existence of loops y with Im 4(y) %0, both cases occur and describe an intrinsic
property of the symmetry ¥.

Besides this interesting meaning of 4(y) we discussed in context of the problem of
the implementability of symmetries there is yet another aspect under which the global
phase of a loop ¥ can be considered. A loop 7, as we defined this term, can also be
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considered as a caricature of a closed curve in the set of all vector states (with the
restriction that neighbouring states are mutually non-orthogonal). We can imagine
a variable w, with values in the set of all vector states, which we will force to drive
successively through the states of the curve y, starting with a state w,, and finally
ending up with the same state w,. Now, let us consider as a local law of transportation
(or law of conditional choice) for representatives £(w) ¢ S(w) of vector states from one
vector state w to some next neighbouring (non-orthogonal) state’ w’ the following
rule: if p =¢(w) e S(w) is given, then &(w') e S(w') is defined to be the ¢ -relative repre-
sentative of w'. Note that in our above discussions around 4(y) the sequence of vectors
{p;} was constructed from the starting vector ¢ by repeatedly applying this rule. Let
now {(w,) = ¢ be chosen in S(w,). Due to the fact that 4(y) is nontrivial in many cases
of loops, i.e. 4(y)*1 or even Im A(y) #0, transporting £(w) according to the given law
around the loop y globally will cause an effect of anholonomy. In other words this
means the phenomenon that if our driving parameter « has rounded the closed curve y
and w = w, is reached again we will in general have that {(w) =@(y) =A(y)p ¢+ p.

For a survey around problems of anholonomy, especially in quantum theory, we
refer the reader to M. Berry in [10]. Morever, concepts like relative phase and global
phase in more or less specific situations in physics are sometimes referred to as
Pancharatnam phase, Aharonov-Anandan phase or Berry phase (cf. [22], [1] and [9]; for
the mathematician {21] provides a nice short introduction to the phenomenon and gives
indications of its physical relevance ).

The aim of this paper will be to provide and to investigate some extensions of
geometrical concepts like relative phase, relative representative and global phase from
the context of considering vector states on B(H) into the more general context of
unital C "-algebras and their states, or even more generally, to positive linear forms.
This change into some wider algebraic context mathematically corresponds to a change
in the physical concepts from a pure quantum mechanics frame into that of quantum
statistical mechanics. Recently such generalizations have been proposed by A. Uhlmann
in [261, [301, and have been considered in the set of density operators (cf. [271-29]).

The generalizations we are aiming at will now be indicated. For this sake, let us
suppose {w, 0} to be a pair of positive linear forms on a given unital C *-algebra A.
Assume {7, H} is a unital - representation of A on a Hilbert space H such that vectors
., $eHexist with w(-) =<l )p, > and o(-) = (- )¢, ¢, i.e. p is a vector represen-
tative (w.r.t. ) of w, and ¢ is a vector representative (w.r.t. ) of ¢. Such representa-
tions always exist. Moreover, one can show that with respect to { =, H) the represen-
tatives @ and ¢ of wand o can always be chosen in such a way that the linear form hZy
defined by hJ (- )= <(-)¢, ¢> on the vN -algebra n{A)" (the commutant of n{A)) is
positive. This is a remarkable fact on its own.

But even more than this can happen. It can happen that ¢'= ¢ is the unique vector
representing o within { r, H) such that h:.d»' 20 and, at the same time, ¢' =@ is also the
unique representative of w within { &, H} such that hg- 4 2 0. As the analysis shows, if
this case occurs for a pair { g, ¢ } of representatives for { w, o} within { 7, H} such that
hZ 4,20, then the same fact also happens to be true for any other pair { ¢, ¢’} of repre-
sentatives for { w, o} within {x, H ) such that hZ. 4 2 0. With other words, this case
occurs if the positivity requirement for hJ , fixes the relative position in H of two
representatives ¢ and ¢ to each other uniquely for the given pair { , ¢}. Note also that
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in this case one finds that to each representative £ of w within {7, H} one can find.a
representative 7 of ¢ such thag hE, 20, and vice versa. Moreover, one can prove that, if
this occurs for a pair of positive linear forms { o, 0}, this fact is independent of the
special choice of the representation {r, H) provided both linear forms can be represen-
ted w.r.t. { -, H} simultaneously by vectors. Hence, the occurence of this fact reflects
an intrinsic geometrical property a pair of positive linear forms can possess. A pair of
positive linear forms { w, o} with the previously described property fulfilled will be
referred to as a «-minimal pair.

For the vector representatives ¢ and ¢ of the forms w and ¢ of a «-minimal pair
{ w, 0} in a representation { &, H } the notion of relative representatives can now be in-
troduced as follows. The representative ¢ will be referred to as the g -relative repre-
sentative of o (with respect to n) if ¢’ = ¢ is the unique vector representing o w.r.t. &
such that hJ ;-2 0. In this situation we will write ¢l ¢. By definition, il,. is symmetric,
i.e. if ¢ is the ‘p-relative representative of o (with respect to =), then also ¢ is the ¢ -
relative representative of w (with respect to 7). Note that, by definition of the term
«~minimal pair, to each representative ¢ of w w.r.t. {x, H} there is exactly one repre-
sentative ¢ of o w.r.t. { 7, H} such that ¢l . In this situation, let us assume ¢’is an-
other representative of o w.r.t. {m, H}). Then, we find a uniquely determined partial
isometry v e m{ A)' such that ¢ =v*¢’and p = vv"* is the smallest orthoprojection in n{A)"
such that p¢’ = ¢. The partial isometry v* =35,(@, ¢') will be referred to as relative
phase between the representatives ¢ of w and ¢’ of o w.r.t. {x, H}. It is evident that
both the notions of the relative representative and the isometry &, in a natural way
extend the notions of the relative representative and relative phase from the special
context of considering pairs of non-orthogonal vector states on B(H) w.r.t. the trivial
representation { id, H} (note that B(H)' = C ein this case) into a C *-algebraic context
of considering pairs of «-minimal positive linear forms of some unital C *-algebra A
w.r.t. a representation { n, H}, where both forms can be realized as vectors simulta-
neously. :

As mentioned above, for an arbitrary pair { w, o} of positive linear forms on a unital
C *-algebra A and given representation { 7, H } such that both forms can be realized as
vectors simultaneously, we have the remarkable fact to hold that representatives ¢
and ¢ of wand o can always be chosen in such a way that the functional h 4 on m{A)’
is positive, but possibly the relative position among the representing vectors is not.
uniquely determined by this condition of positivity. Assume hg{d:' 20, where ¢’and ¢’
are representatives of the same pair of linear forms w.r.t. another representation
{ ', H'). Then one observes that hJ ,(e) = h7:  -(e), i.e. the value taken by the form
hg 4 on the unity e is independent of the special representation 7 chosen provided
hJ 4 is positive. The real Py( w, o) = hJ 4(e)? which exists for any pair {w, o} of positive
linear forms, characterizes some aspects of the relative geometry of the components of
the pair { @, 6}. This number P4(w,0) can also be calculated without any reference to
some particular representation. One can prove e.g. P4( », 0) = inf w(x) o(x™1), with the
infimum extending on all invertible, positive elements x of A. Note that in the special
case of some pair of vector states { w, o} on B(H), and granting the above mentioned
observation to be true, Pg g ( ,0) =< @, ¢>|* had to be valid for any other two vector
representatives { @, ¢} of the pair of vector statesin question. Therefore, in this case
P,( w,0) is intimately related to the distinguished transition probability between vector
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states. By considering P4(w, ¢) in a rather general situation we are led to one of the
concepts of a "-algebraic transition probability between general positive linear forms.

By means of this concept we will be able to give the following characterization of
«-minimality of a paiir {w, 0} of positive linear forms on a unital C *-algebra A: { 0,0}
is «-minimal if, and only if, for any pair {v,z} of positive linear forms on A such
that Osv sw and Osyso the condition Py w,0 )= P4lv,u) always implies v = w and
i =0 to be true. As mentioned above, for such pairs concepts like (mutually) relative
representatives and relative phases can be developped and extended consistently with
the corresponding notions for (non-orthogonal) vector states. An essential part of this
paper is devoted to investigations of the properties and the geometry of the «-minimal
pairs of positive linear forms. Among other things we will show that for a «<-minimal
pair { w, 0} there exists a unique linear form g on A such that g(e)=P,( ,0)2 and
lg(y®x)2%2 s w(y®y)o(x®x), for all y, x ¢ A, are fulfilled. The structure of this linear
form reflects some aspects of the non-commutativity in the pair { w, o). The main
properties of g are investigated together with the basic properties of the algebraic
transition probability .

Within Sections 1 = 7, which constitute the first part of the paper, one can find the
proofs of all the facts previously indicated. Whereas in Sections 1 - 3 we will be con-
cerned with the general C*-algebraic context, from Section 4 on the underlying alge-
bras in the investigation will be vN-algebras and the linear forms considered will be
supposed to be positive normal linear forms. It is only for convenience that the vN-
algebras considered are supposed to act in standard form on some Hilbert space. This
will meet the main cases of applications we will have in mind. Especially, in Section
S a representation theorem for «-minimal pairs of normal positive linear forms on such
an algebra is proved which reads interms of the unique solution g. Also several other
characterizations of «-minimality are given in this context. The problems around the
definition of the relative representatives and relative phases will be considered in
Section 6. To simplify the notations, also in this section we shall mainly restrict our
considerations to vN-algebras and normal positive linear forms. In Section 7 we then
show how the results of Sections 4 - 6 can be extended from the case of vN-algebras
and normal positive linear forms to arbitrary unital C*-algebras and their positive
linear forms.

For convenience of the reader, some common notations and technical facts that
belong, more or less, to the mathematical folclore in the field of vN-algebras and
which we will make use of repeatedly throughout the investigations are explained and
derived and collected in the Appendix ( Section A). Some of these results and tools
(especially A.2 and A.7 ) are mainly due, respective closely related to some of the ideas
developped by H. Araki in [6].

The second part of the paper contains Sections 8 - 11. The results of the first part
mentioned will be used extensively for generalizing and analyzing some phénomena of
more algebraic - geometrical type in the normal state space of a vN-algebra. The
concepts of the global phase, the phase group and holonomy group of a normal state
of a vN-algebra will be introduced and discussed. The concept of the global phase is
the generalization of our above considerations relating the invariant 4 on (discrete )
paths of vector states on B(H). Whereas in Section 8 the discrete case is considered in
detail, Section 9 is devoted to the continuous case. The latter case is largely based on
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the results of the discrete case. The above mentioned groups both are isomorphic
respective anti-isomophic to the full group of certain equivalence classes of closed
_(discrete or continuous) paths in the normal state space arising from and ending in the
state in question. The global phases are, roughly speaking, the members of the phase
group. The paths considered in the continuous case have - among other things - the
following property : two states belonging to such a path form a «-minimal pair if they
are lying close enough to each other on this path. Hence, both the geometrical and
topological properties of these paths to a large extend follow from the geometry of
pairs of positive linear forms which form a «-minimal pair. The second part of the
paper is finished with Section 11 where first (essentially finite - dimensional ) examples
and effects of the theory presented are illustrated. Further examples and applications
(to AFD- algebras, mainly ) are under investigation and will be published elsewhere.

1. Generalities on pairs of positive linear forms

Following the line of investigations as indicated in Section O, in this section we are
going to introduce the mathematical concept of an algebraic transition probability. Let
A be a C*-algebra with unit e and topological dual space A*. Let @ and ¢ be positive
linear forms on A, i.e. w, o ¢ A" . Suppose { r, H} is some unital *- representation of A
on the Hilbert space H, with inner product< -, - >.

For a positive linear form r on A we define a subset S(x,t)CH by S(mx,1)=
{Pe H: t(x) =<{n{x)P, P>, Vx ¢ A}. The representation { r, H } is said to be w,0 -
admissible provided both sets S(x, w) and S( x, o) are non-void.

In {121 D. Bures introduced and investigated his ‘distance’ function d,( w, o) in the
case of normal states on a W *-algeba. The definition extends in an obvious manner to
unital C *-algebras and pairs of positive linear forms. Henceforth we shall refer to this
trivial extension. To give the definition, assume ¢, ¢ ¢ H to be vectors of a Hilbert space
H. Let f, and f, be the positive linear forms on the space B(H) of bounded linear
operators on H which are generated by ¢ and ¢, respectively, i.e. fi,(x) = {xp, ¢> and
fylx) =<x¢, ¢>, for any x ¢ B(LH). Then, the distance d(f, f ) between f, f is defined
as d(f, fy) = Il £, - fy lly, with Il - l, denoting the functional norm in B(H )". The Bures
distance d 4( w, o) between two forms w, o ¢ A%, is defined as the following infimum:

dalw, o) = inf {d(F,, f): p € S(x, w), P € S(x,0)}, (1.1)

where the infimum also extends on al'l w, o-~admissible { &, H}. It is easy to see that in
a Hilbert space H for any two vectors @, ¢ the following relation is valid :

IKe, 9212 =3 {(lp 12+ 11 ¢ 12)2 - d(F,.f) 2}
For given w, o € A% let us define the positive real P4( w, o) as follows:

Py(w, 0) = sup {|<¢, P>12: peS(m w), ¢ S(m,0), ¥ w,o-admissible (n,H)}.
Using (1.1) we see that d4( w,0) and P4( w, 0) are connected by the relation

Piwor=3{(lolh+lall)2-d,(wa0?}. (1.2)
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In case of states, i.e. positive linear forms normalized to one, the expression Py(w, o)
had been taken by A. Uhlmann in [241 ( cf. also [25] ) as a definition of a C"-algebraic
transition probability. We tacitely shall refer to this notion also in case that @ and o
are not normalized, necessarily. ]

Both P4 and d 4, are mathematically well-investigated functors and many properties
of them are known. Due to (1.2), between both functors and their properties there are
intimate correspondences. Especially, for the positive linear forms f_ and £ on the
C*-algebra A= B(H) one finds P4(f,, f,)=1< o, ¢>1% and du(fy, £y )=d(fg, fy), ie.
P, and d4 reduce to the transition probability between the vectors considered or the
functional distance between the pure states generated by these vectors, respectively.
For a survey on C "-algebraic transition probabilities and problems related to them the
reader is referred to [4] and the references there. Both the notions P and d have been
used in investigations of certain geometrical properties of algebraic state spaces. For
instance, in [6] one can find some results which later have been used extensively for
deriving crucial properties of the functor P{ cf. also our Theorem 4.4 and Remark 4.5).

The starting point of the investigations of this paper willbe a result proved in [2:
Theorem 1 and Corollary 1] in case of states w, 0 on a unital C *-algebra A. This result
persists to hold for non-normalized positive linear forms. For convenience we include
also a proof. The result reads as follows.

Lemma 1.1 : Let Q( w, o) C A" be defined by Qulw, 0) = { Fe A IF(y"x)2s
w(y®y) o(x"x), VX, yeA } and assume {7, H) is w, 0 -~admissible. We suppose @ ¢
S(r,w) and Ye S(m, o). Let he m{A)', be given by h{x) =< x¢, ¢ >, for all xe n{A)". Then,
Qal w,0) is non-void and the following assertions hold:

(1) ”h”x=PA( &),0)1/2;
(1) [f(e)l s Pylw,0)”2 forany fe Qulw0);

(1) f(e) =Py(w,0)"2 for some fe Qu(w,0).

Proof : What will be shown first is the existence of f e A®* which fulfils the
relations f(e) = Py(w,0)2 and | F(y*x)| s wly®y)"2a(x*x)1/2 for all x,y e A.Let £> 0.
Let {n,, H.} be w, o-admissible such that zp,_.‘ € S(n, w) and ¢, € S(m,, o) exist with
Palw,0)12 - (¢, @.> s £.This is always possible to arrange. Let us define f.(- )=
<), p.>. Then, f. e Qqlw,0). Since Q4( w, o) obviously is w*-compact by its very
definition, the net {f,}.,o has a w"-accumulation point f ¢ Qqlw, o), and f(e) =
Pylow, o )172 follows. Let { n, H} be any w, ¢ -admissible representation of A, and be ¢ ¢
S(m,w) and ¢ ¢ S(r,0). Assume now we have given g ¢ A™, such that, for any x,y € A,
lg(y*x )| s wly*y 12 o(x*x )72 is fulfilled. Working within the *-representation
{r,H}, we see that lg(y*x)|s [x(y)pllix{(x)¢ |, for any x, y ¢ A. Hence, the map r
givenby v: {m(y)p, mix)¢}— g(y®x) e C, for all x, yc Ais well defined as a bounded
by one sesquilinear form from a dense linear subspace of p'(¢)H x p’'(¢)H into €. We
extend the form 7y by continuity to a sesquilinear form, bounded by one, on the whole
p'(@)H x p'(¢)H which, for simplicity, will also be denoted by y. Note that for £ ¢ H
we define p'( ) as the orthoprojection of M' that projects onto [a{A)Z ). There is some
operator Ke B(H), with K=p'(p)K=Kp'(¢) and | Kl <1, such that y( £ 7n)=<KE 7>,
forany (£, n}e p’'(@)H x p'(¢)H. Especially, in chosing £=n{x)¢ and 5 = n(y)e for x, y
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€ A we see that y( £, 7) = gly*x) = {Kn(x)¢, n{y)p ). Since gllyz)*x)=glz*y"x) is
fulfilled for all x,y,z € A, and since r is a representation of A, the latter implies that
Cmly™)Kn(x)¢, ilz) > = <Kn(y®)m(x)¢, m(z)p> holds for x,y,z ¢ A. Hence, for any y ¢
A we get

p () nly®)Kp'(¢) = p'(@)Knly*)p'({).

Hence, we realize that n{y)K = Kx{y) for any y ¢ A. Taking together all these facts we
arrive at the existence of K¢ M', | K |l s 1, such thatg(x) =X Kn{x)¢, ¢ >, for all x €¢A.
From this |g(e)| =K K¢, #>| follows. By the known result of B.Russo and H.A.Dye
(143 we have {JeM" |lJ lls1}= convIKM") (uniform closure). Hence we have
lg(e)=1<K¢,p>| s sup {[Kug, p>|: uelU(M")). Since for any unitary u e U(M') and ¢ ¢
S(r, o) also ug ¢ S(r, o) holds, IKug, @>| s P4lw,0)1”2 follows. Thus |gle)l= K K¢, ¢
O s sup {IKug, pDl: u e UMM} s Pyl w,0)2 is seen, i.e. (ii) follows. Hence, if we
chose g = f, with the linear form f defined above, then the relation f(e) = Py(w, 0)1/2
implies sup {|< u¢, ¢ >|: u e LAM")} = P4(w, 0)'/2, But then, in defining h ¢ M, by h(- )=
{(- )¢, > and arguing by the theorem of B.Russo and H.A.Dye again, we can
conclude as follows : ‘

Nally=sup(IKJp edl: JeM I JlIs1)
=sup {[<ug, p>l: u e LAM") )} = Pl w, 0)1/2

Hence | A ll; = P4( @,0)'/2. This proves (i)l

In general, to a given pair { w, o} € A% x A", there exists more than one linear form
feQualw, 0) with fle) = Palw,0)172, Togive an example, remind the argumentation in
the case of A =B(H) and w = £, 0 = f, for vectors @, ¢ ¢ H with ¢ 1 ¢. In this case both
f(-)=<(-)¢, »> and the O-form belong to Q (w,0). There are, however, special cases
where uniqueness of fe Q4(w,0) with fle)=P4( w,0)!”2 can be proved. To indicate the
solution of this problem, let us suppose {w,0} ¢ A% x A% has the property that for
positive linear forms w’ and o', with &' sw, 0'so and Pyl w, 0 )= Pyl w', 0'), always w
= w’'and o = o' follows. Then, {w, o} will be referred to as a « -minimal pair , and the set
of all such pairs of positive linear forms will be denoted by I"'(A)* ( for a discussion see
Section 2 ). Note that on B(H) any pair of non-orthogonal pure normal states yields an
example of a «-minimal pair. As we shall prove subsequently in case of «-minimal pairs
uniqueness occurs.

2. «minimal pairs
In this section a partial order « on the set of ordered pairs of positive linear forms
on A will be introduced. Let {v,u} and {w, 0} be pairs of positive linear forms. Then,

by definition {v,u }«{w, o) if and only if v sw, <o and P,y p) =P (w,0).

Lemma 2.1: For given {w, 0} € A x A% there exists exactly one «-minimal pair {v, )
with{v,ul«{w, o}
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Proof : Let us define a set (w,0) as INw,0) = {(v,y)sA'LxA'L: (v,y}«(w,a)}. By
definition of « the assertion is valid if, and only if the existence of a «-least pair in
I'(w, o) can be established. This will be done. Let {x, H} be an w,c-admissible unital
“-representation of A, and assume ¢ € S(m, ) and ¢ € S(x, ). Let us define the vN-
algebra M as M =n{A)"(the bar, double bar, means the commutant, double commutant,
respectively). Suppose first {v, z} « {»,0}. Then, because of v sw, gso, by standard
constructions it is known that t,s e M’, can be found, with both [¢|l and |ls|l smaller
than one, such that v(x)=<{tr(x)p, >, pix)=<{smix)¢, ¢>, for all xeA. We define a
normal linear form hon M" by h(y) = <y, 9>, for any y e M". Let h =R, | hl=|h|((-)v)
be the polar decomposition of hA. By Lemma 1.1/(i) and known properties of the polar
decomposition we have

"lhl"x="h”1=PA(U.0)1/2- (2.1)

We note that ¢!/2p ¢ S(x, v) and s!/2¢ ¢ S(x, ). Hence, by the assumptions on the pair
{v,u} and (2.1) and Lemma 1.1/(i) we can apply Appendix 7 to these particular represen-
tatives of v, iz with the result that partial isometries v, and v, exist in M" such that

NEhlll = Pyle, 00172 = Py(v, )12 =< e32v* vy 52729, 9D = | It 20" v,y s17/2y),

Therefore, and since |h| is a positive linear form on M', by the Cauchy-Schwarz
.Inequality for positive linear forms and since t,s, vy, v, v all belong to the unit ball of
M’ we can conclude that

MAIIZ = [RI(eY 20y, s172y)2
SThICE) Lhl(v*st 2v vy v®va st 2v) s | hICE) A, s I AT IL2.

From this | AI(¢t)=|| A]|; has to be followed. Analogously | h|(v®sv) = ||| h|], can be
derived. Let s(| h|) denote the support of | h|. Applying Appendix 1 to the situation at
hand yields that ¢ =s(|h|)+m and v*sv =s(|A|)+m’, with m,m' ¢ s(|h])*M's(| A ])*
Note that v*v=s(| A|) implies m'= 0. Thus v*sv=s(| h|) has to hold. The latter means
that (e - s)172v =0, from which (e - s)vv® =0 is obtained. Since vv*=s(| h*]) we finally
see that

s(|h|)=ts(|vh|). s(lh®])=s s(|h*]). (2.2)

We remind that h* is defined by A*(x) =h(x*), for any x ¢ M", where Z means the
complex conjugate of the number z¢ C. Let us define ¢, ¢’ ¢ Hand w,, o, ¢ A% as follows:

e =s(lhl)p, ¢'=v "¢ and w,(x)=<n(x)p, @, g,{x)=<a(x)}¢,¢>, ¥V xeA. (2.3)
Using (2.2), for any x¢ A we see that
wo(‘x"‘x) =Lmx*x)p, o> = <s(| A ix*x)p, >
"= 2s(TRDEYV 2 (x"x) @, 9>
= {sUANDrx) e 20, s(1h]) nix) e 29>

s<m(x)e2 o, w(x)t1 29> =u(x*x),
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and analogously

Gl x"x) = <mx*x) ¢, > = <y x"x) v, ¢>

<sUIA* D) lx*x) g, ¢>

<sY2s(1h*) st 2n(x*x)¢, ¢

OB ) s272¢, s( R mlx) 1729

n

<alx)st2 ¢, m(x)st/2g> = p(x*x).

Hence w,s v and g,sy is fulfilled. Let us define now g e M, by glx)=<x¢’ 9", for all
xeM'. By Lemma 1.1, (2.3), and due to the definition of h we infer P4(w,,0,) /% =
g lly=Ita(s(TRDC-)v*)l sl Al = Polw, o) Y2 On the other hand, Py(w,,0,)*"2 =llgl 2
lgte) =K ¢, @D |=1Kv g, e>l=| Av*) =l hl(e) =l | hllli=Il hll,= Po(w,0) 1”2 Hence, by the
assumptions on {v, g}, in using these inequalities we get P4(w,,0,)=P4lw,0)=Palv, ).
Since also w,s vswand ¢,suso are true, we conclude to {(w,, g, }«{v,}«{w, 0}. By the
construction (2.3) both linear forms w, and ¢, do not refer to the particular {v,p}
chosen provided the latter belonged to I'(w, o). Hence, {w,,0, }«{v, i} for any {v,ule
Nwo)l

Remark 2.2: The proof yields an explicite way (cf.(2.3)) for constructing the
«-least pair in I'(w, 0). In fact, if {7, H} is any w,0 ~admissible representation of A, and
if we have ¢ S(, w) and ¢eS(x,0), then we have to determine the support projections
of the moduli | h| and | h*| of the linear forms h and h‘, respectively, with h defined on
n(A) by h(y) =<y, ¢ >, for any ye t( A)'. Then, because of ve 1( A)' and since v =s( A" D
holds, (2.3) shows that the «-minimal pair {wg, g5 } can be given also by

wo(x)=<s{IhDA(X) P, >, Folx)=<s{IH Dlx)Ip, §> , YxecA. (2.4)

Evidently, {w, 0} I8 «-minimal if and only if I'(w, o) contains only one pair, lL.e. w,= @
and 0, =0 have to be fulfilled. By (2.4) this is the case If and only if the inclusions
s(IhDH D> Tn(A)e) and s(|h*[)H > Tn(A)¢) are valid (by [G] we mean the closed
linear span of G CH).

3. A uniqueness result

In this section we are going to derive a basic result for all what follows (for a
preliminary form of the result cf. [S1]).

Theorem 3.1: Let A be a unital C *-algebra. For each pair {w,0} of positive linear
forms on A there exists exactly one linear form f ¢ A* such that

(1) fle)=P4lw,0)17?
(1) £ < p(y*y)72u(x*x)2,V x,y ¢ A, Vg v} with{gv)ciwo}.

Proof : In accordance with Lemma 2.t let {w,,0,} be the uniquely determined «-
minimal pair such that {w,, 0, }«{w, o}. What will be shown now is the existence and

uniqueness of feA® fulfilling condition (i) and | f(y*x)| s w,(y*y) ! 20,(x"*x) 172 for any
x,y ¢ A. Since {w,, 6, } is the «-least pair in [(w, o) (cf. the proof of Lemma 2.1 ), the

linear form f also has to satisfy condition (ii).
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Let {n, H} be w, o~admissible. Let M =n{A)". By Remark 2.2 we know thatw, and
o, are given by wo{x)=< s n(x)p, @> and g,(x) =< s(|A" I n(x), ¢>, for any xeA,
with ¢ €S( 7, w) and Y € S, 0), and hdefined on M by h(y)=<y¢, @> for all y e M'. Let
h=R|h| be the polar decomposition of he M',. Then, we define a linear form f on A by
Fix)={mx)v*¢, ¢, for xecA. Because of v*v =s(|hl)eM", vv*=s(|h*|)e M, and using
the Cauchy-Schwarz Inequality we conclude for any x,yeA as follows:

[Fy*x)]2 s Km(x) v, mly)p >l 2

IKm(x)v*¢, stihl) m(y)p>]2

IsUaDx (@12 lxix) vy li?
<s(lhDr(y*y)p, > <sUA* D (x*x) ¢, ¢>

wn

Wl y*y) o(x"x).

Moreover, applying Lema 1.1/ i) one obtains that f(e) =<v*¢, > =h(v*)=|hl(v*v)=
=thlCsURINY = ALl =1l Blly = P4( @, 0)22, Hence, there is at least one f obeying (i),(ii).

Assume now we have given g ¢ A* with g(e)=P,( »,0)1/2 and suppose |g(y"x)| <
w(¥*y)1720,(x"x)1/2 is fulfilled , for any x, y ¢ A. Working within the *-representation
{m, H}, and adopting the notations from above, we see that | g{y*x)s|lx(y)s(|hD @i
< |r{x)v*¢| for any x, y¢ A. Hence, the map y given by

v: {n(y)stlh) g, t(x)v*p} ™ g(y*x)e C., V x,yeA,

is well defined as a sesquilinear form, bounded by one, from a dense linear subspace of
s(|hl)YH x s(lh])H into €. Concerning the latter, note that s(|h|)H C [n(A)p] and
s(|h*|)HC [n(A)¢1] holds. From the first of these inclusions s(|h|)H=[x(A)s(|h|)p]
is obtained, whereas the latter inclusion, due to v*v =s(|Ahl) and vv*=s(|h"|), yields

s(UUBDH = v*s(B*)/vHCv*{r(A)¢] = [x(A)v*¢]

[x(A)s(lhv*¢d = sl Ix(A)v*¢] C s(lh])H.

Hence, s(|h|)H = [x(A)v™¢{] in this case, too. We extend the form y by continuity to
a bounded by one sesquilinear form y~ on whole of s(|h|)H x s(|h|)H. There is a
unique ke B(s(|h)H) with |kl s tand Yy~ (£, 7) =< k¢, 5>, for all vectors & nes(lhl)H.
Especially, in chosing §=n(x)v*¢and 5 =n(y)s(|hl)p for x,y ¢ A we see that

y™MER)=Y(En)=gly™x)=Xkn(x)v* n(y)s(lhDp> . (3.1)

Because of g((yz)*x)=g(z*y"x), for x,y,z €A, and since & is a representation of A,
(3.1) implies the relation

<rnly"kn(x)vy, n(z)sUhD) @) = kn(y®)nix)v*y, m(z)s(|lh) @D , V¥V x, v,z € A.
Therefore, and since s(|h|)H is invariant under the action of w(A), for any y ¢ A we get

s(ADr(y* )k sk =s(lhDk n(y™)s(|hl). (3.2)

We define a bounded linear operator K on H by K =s(|hl)k s(1hl). Due to s(|hl)eM"’
and (3.2) we realize that n(y)K =Kn(y) for any y ¢ A. Taking together all these facts
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we have arrived at the existence of Ke M", |K || s1, such that
s(lh)K=Ks(|h)=K, g(x)={Kn(x)v*),p>, forany xeA. (3.3)

By assumption g(e)=P4(w,0 )72 = ||hl, is fulfilled. In view to this and using the
special representation of g from (3.3) we see that

gle)=<Kv*¢, > =h(Kv®)=|hl(Kv™v)=|h|(K) =|l|hl i, =lIAll.

By (3.3) we have KeM", [| K lI<1, with s(|h|)K=Ks(lh|)= K. Hence, Appendix 1 can be
applied to this situation with the result that K =s(|h|). Hence, it follows that g(x)=
{r(x)v™y, o>, for any xe A, i.e. g = f, with the ffrom the beginning of the proof. Since
g has been chosen arbitrarily from the set of all linear forms obeying conditions (i)
and (i), the proof of the uniqueness statement is complete B

Remark 3.2: In the above proof the functional f obeying Theorem 3.1 is explicitely
given in terms of an arbitrary o, o-admissible “- representation of A. Of course, the
linear form f does not depend on any particular w, c~admissible - representation of A.
Hence, what we also ‘have proved is a fact which we should keep in mind and which
reads as follows: ’

Let both {n, H} and {x', H'} be unital ‘-represencatlons of A. Suppose

peS(n,w), 'cS(x’, w) and YeS(r,0), g'eS(7’,0).

Let v and v' be the partial isometries in the polar decompositions h=R,|h| and
h'=Ry,|h’'| of h and h’, respectively, where h and h’ are given on M' by hiy) =<y, ¢>
and h'(y)=<y¢' @ >, for all ye M’, respectively. Then, for any xc¢ A one has

(n‘(x)v‘dl,q’>=<n'(x)v'~w',w'>. (3.4)

The unique f determined by Theorem 3.1/(i),(ii) will be denoted by I( w,o ) and will be
referred to as the w, o~ skew form on A henceforth.

Suppose now A is a W™-algebra, and w,0 ¢ A,,, i.e. both w and o are assumed to be
normal positive linear forms on A. Due to Theorem 3.1/(ii) the w, o-skew form w, o)
is a normal linear form, too ( note that the latter remains true provided at least one of
the forms w, o is normal). Hence, there is the uniquely determined polar decomposition
{w,0)=R, | I{w,0)|. The partial isometry u( w,o)=u" will be referred to as the w,o-
skew phase and the normal positive linear form |I( w,0 )| will be called w,o-skew
modulus. In case of a C*-algebra, let { /], K } be the universal *-representation of A.
Then, A**=11(A)" is the universal envelopping vN-algebra of A, and for each g € A™
there is a unique g*"¢(4*"), such that g"*I7 =g . Since P4**( w*",6"%) =P, ( w,0) for
any two positive linear forms w, c on A, it is easily recognized that we have I(w,0)** =
H{w**, 0" and I{w,0)=1(w,0)""is fulfilled. We then have a polar decomposition
IHw,0)"™ =R, I{w™, 0™)| within (A%"),, and u™*=u(w**, 0*%). Therefore, also in the
C *-algebraic case with general positive linear forms one could be tempted to
associate both a positive linear form and a partial isometry to the pair {w,0} in a
unique. way by defining |[I(w,0 )|=|1(w,0 )| and u(w,0 )=u(w™,c"™). Whereas
|[I(w,0 )| is a positive linear form on A, the w,o-skew phase defined in this way
belongs to A™". In the case of a W™ algebra A and normal positive linear forms on
A there is a simple relation between these two settings u(w,0) and u(w®50"")
which are slighly differing from each other:
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ulw*™, o**) =MT(u(w o) s(lI{w**, c**)*=s([[{&**0c"") ) T(ulw,0)) .

Subsequently, we shall be dealing with the case of W*-algebras and pairs of normal
positive linear forms almost exclusively, and the terms skew modulus and skew phase
then refer to the original W *-algebraic definition.

4. Properties of C*-algebralc transition probability

Unless stated otherwise, throughout this section we suppose A=M is a vN-algebra
acting on some Hilbert space H, and the positive linear forms considered are normal
ones, exclusively. Furthermore, let us assume that M acts in standard form on H, with
a cyclic and separating vector 2 and associated to { M, (2 }natural positive cone Ppy.
"The unitary group of M will be denoted by U(M). For feM™ and ac M the notation @
is an abbreviation for the linear form f(a(-)a").

Lemma 4.1: Suppose w,0¢ M,.,.The skew form I{ v, o) has the following properties:
(1) Iw,0)e)=Pylw,o)”?

(1) Nw,0)=1(0,w)", ulwo)=ulo,w)*

(i) I(w,0)=I(g,v) and ulw,o)=uly,v) whenever{w,o}«{y, v}

(lv) Ko w)=w

(v) KoY, oY% =HIw oY, ulw",o")=u"ulw o)u forany uclU(M)

(vl) I(w,0)=0if, andonlyif wlo.

_ Proof : (i) is valid by definition of I{(w, o), and (iii) follows from Lemma 2.1 and
Theorem 3.1. Hence, in order to see the properties (ii),(iv),(v) we can suppose that
{w,0) is «-minimal. We also note that {w", og¥} is «-minimal for any unitary u of M if,
and only if, {w, 6} is «-minimal, and {w, w} is «-minimal in any case. But then, in using
known properties of the polar decomposition, (ii) and (iv),(v) follow at once from the
definition of the skew form and the proven uniqueness. To see (vi), let ¢, ¢ € P, be the
vector representatives of w and o in P. Let he M', be given by h(x)=<x¢, ¢>, and let
h=R_| h| be the polar decomposition of h. As we know from Remark 3.2, for y ¢ M we
find that I{w,0)(y) = <yv*¢, »>. Hence, I(w, o) =0 holds if, and only if 0=<{x*yv*¢, ¢>
= yv*¢J, xp >, for any x,y ¢ M. The latter is equivalent with p'(p)H Lv*p'(¢)H, where,
for £eH, p'(F)e M’ is the orthoprojection onto the subspace [ M{], and p(§)eM is the
orthoprojection onto the subspace [ M'¥1. Now, on the one hand , p'(¢)2s(|Ah*|) and
p'(p)2s(|h|) holds true. On the other hand, from v*v =s(|A|) and vv* =s(|h*|) we get
v*p'(¢)H =v*H =s(|h|)H. Hence, I(w,0)=0 if, and only if p'(p) L s(lh|), with p'(p)2
s(|hl). Therefore, I(w, o) = 0 is equivalent with s(|#|) =0. This occurs if, and only if h=0,
i.e. 0=<y¢, xp>=h(x"y), for all x,y e M'. Therefore, p(¢) L p(@) is a necessary and
sufficient condition for I{w, ¢) = 0. For the supports s(w) and s(¢) of w and o we have
s(w)=plp) and s(o)=p(¢). This proves (vi) il

Lemma 4.2: Let w,0 € M,,, and assume {w, },{o,} CM,, to be sequences such that
lim, w,=w and lim,, 0,=0 with respect to the norm topology on M,,. Then, we also
have lim, Py(w,,0,)=Pprlw,0).
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Proof : Let ¢,,, ¢,,¢ Ppand @, ¢ € P, respectively, be the uniquely determined vector
representatives in Pp, of w,, 0, @, 0 ¢ M..,. Since the correspondence between M., and
P, is a homeomorphism, our assumptions imply that ¢,,— ¢ and ¢,— ¢ in H. Hence,
for h,, heM ', defined by h,(-)=<(-)¢,, @,> and h(-)=<(- )¢, p> we see h,—h. The
latter implies | h,ll, — [ All,. By Lemma 1.1 /(i) the assertion follows il

Remark 4.3 : For the representatives @, ¥¢ P of two normal positive linear forms
w,0on Mitis well known that [|® - '}'"25"0)"0"15 NOo-¥Illl® + ¥ |l. This can be used to
give a more quantitative estimation of the convergence behaviour, cf. [4] ( cf. also
another derivation of this estimation in context of Lemma 6.1).The resultls

IPAgC@, ) 2= Ppgu, v) 2 sllold 2 lw-u /2 « Hulld 2o - vid/2 _

By Lemma 4.1/(i) and (iv) we know that PM(p.p)‘/2=p(e) = |lplly, for any peMg,.

Hence, as a special case of the preceding estimation we get

| PpgC@, 022 llolly] = ot/ 2 llw-ollt”2 and liIvily - Pagtu, v)*/2] s vt/ 2 v -plid”/2.

We can compose these estimates to see

1Ppg(w, 00 2= Ppgiu, v)M 3

1/2 )x/zl

s I Ppg(w,0) " = llalisl + lllolly= Bvllsl +llvilk - Ppglu, v

/ 1/2 1/2 1/2
s llolid”Z llw-olld” 2+ vl 2 v -u 2 1 llolly - Ivilgl,

which sometimes is also of use.

Let w, 0¢ M., and suppose ¢is a real, ¢ >0. We define a set M.(w,0) C M, by setting
M(w,0)= {xe M: x 20, invertible, w(x), o(x" ') s ¢ *.PM(w,a)‘/z}.

The following result is true.

Theorem 4.4 : For any £ >0 one has

Prlw,0) = inflwlx) olx™1): xe M (w,0)} (a.)

Pplw,0) = inflwlx) olx™Y): xe M, x invertible).

 Proof : In the case that one of the linear forms vanishes the assertion is obviously )
valid. Also, by the very definition of Pps(w,o), in case of w+0 and c#%0 one has
Pplw,0)=wle) ole) Ppglp,v), with the normalized to one positive linear forms
¢ =wle) 'w, v =ole) lo. From this [ole) wle) 112 M (4, v)=M.(w,0) can easily be
seen, with £'=[w(e)o(e)1?”2s . Hence it suffices to prove the assertion in case of
normal states w and o. We are going to do this. By Theorem 3.1/(i) we see for any
invertible xe M, that Py,(w,0) = I(w,0)(e)? =| I{w,0)(x!2x7172)|2 s w(x)a(x~!). This

implies
Paglw,0) s inf{w(x) olx™1): xeM,, x invertible ) (4.2)

s inflwlx) olx™): xe MAw,0)),

provided the sets M,(w,0) are non-void ( this will be shown below ). Let us define

wp=(1-Lw+Lo and o,=(1- £)o+Lw, forany neN.
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Then, {w,} and {o,) are sequences of normal states with equal supports and v, —w,
0, —o. Then, if we were able to derive (4.1) in case of normal states with equal
supports the validity of the assertion in the general case could be followed by means
of (4.2) and Lemma 4.2. In line with this, let us assume that w, o have equal supports
in M. Since in a vN-algebra in standard form both S(id, w) and S(id,¢) are non-void
(id stands for the identical representation of M), by Appendix 7 we can also find that
peS(id, w) and ¢e S(id, ) such that

Prlw, 002 =g, 0. . (4.3)

Let he M', be defined by h(-) = <(-)¢, @>. Then, ||kl = Pps(w, 0)72 due to Lemma 1.1/(i),
and ||lhlly = h(e) can be followed from (4.3). But then, applying a well-known character-
ization of the positivity of a linear form to the situation at hand yields that h has to be
positive. Hence, Appendix 2 can be applied with p(p)=p(¢) (we supposed w and o to
have equal supports). We see that there exists a densely defined, positive, selfadjoint
linear operator F, affiliated with M and invertible, such that Fp = ¢, F~!'¢ = ¢. Hence, by
(4.3) we see

Pprrlw, 001722 Fp, > and Ppglw, 0)/2= F1y, ¢>. (4.4)

Let F,=F+ 1e. Then, F, ¢ M, and F,"'s F~! on the domain of definition of F ~!. This
implies

olF,™) =< F, 4, ¢> s KF Y, ¢ = Pyle,0)t2 . (4.5)
Let { E(1)}C M be the resolution of the identity of F, and let e,=E(L0,n)). We define a

sequence {G,}of linear operators by setting G, = e,F,+ne,*. Then, G,™! =e,F;}
+n~le,', and both G,and G, ! belong to M.. Moreover, using (4.5) we see
o(G, ) sole, F, )+ n ™ s Pylw,0) /2407t | (4.6)

On the other hand, on the domain of definition of F we have G, < F,,. Thus, from (4.4)
we get

W(G,)s<Fp, > +n~t s Pyyw,0)2+n"t, (47

Note that both (4.6) and (4.7) show that, with §=n~!, Ms(w,0) is non-void, for any
neN. Combining (4.6) with (4.7) yields .

G, o GoY) s Ppglw, 0) +n~ 2Pyl w,0)/2+n71).

Hence, lim sup,, o{ G,) ol G;') s Ppg(w, o) is evident. In view to (4.2), and since each G,,
is a positive invertible element of M, we now conclude that

Prpslo,0) = inflalx) olx™1): xe M,, x invertible} = inf{w(x) o(x™1): xe M(w,0))

holds for any ¢ >0 under the assumption that w, o have the same supports. Finally, in
case that w,o have not the same supports, to given ¢ >0 we can approximate both
states by states w,, 0, with equal supports (cf. the construction from the beginning of
the proof) such that (by repeating the arguments which have led us to (4.6) and (4 )
for some invertible H, ¢ M, we have
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OnHy ) s Paglwp, 0,2 +n7Y, wp(H,) S Ppglo, 0,) Y2407,

By the construction of the approximating sequences and since all functionals involved
are positively defined, we also see that

o H, ™) 5 (1= 070 Paglwn, 0,) 2 + n7Y), wlHpp) s (1= 070 Ppglwp, 0,042 +n71).

For n— o , by Lemma 4.2 the expressions on the right-hand sides of the preceding
inequalities tend to Py (w,0)'/2. Hence, H, e M (w,0) for all neN sufficiently large.
Knowing this, and respecting that in the case of states with equal supports (4.1) has
been proved yet, we get the general case from (4.2) by continuity (cf. Lemma 4.2) as
explained at the beginning

The result just proved is of importance in a context of concepts and questions
referred to as noncommutative probability. We are going to describe and discuss some
of these immediate consequences of the theorem. First we remark that for an unital,
positive linear mapping 6 acting from an unital C *~algebra N into another one M we
have 8(a~1)268(a) ! for any invertible positive element a¢N. This is a well-known
result of M.-D. Choi [13]. Assume now the algebras M, N are standard vN-algebras
and w, o are normal positive linear forms on M and the mapping 6 to be a normal
map. Suppose £ >0. According to Theorem 4.4 there exists an invertible element ae
M, such that P\ (w6,00)+e2 w(6(a)) o(B(a™)). Using B(a~1)26(a)"! and arguing
by Theorem 4.4 once more again we infer that

P wB,00)+e 2u(B(a))alBla ) zwlB(a)) alB(a)™V)2 Pplwoc),.
i.e.we get P\(w8,00) +e2 Py (w,0). The latter has to hold for any £ >0. Hence
PNn(wB,06)2Ppg(w,0) (4.8)

has to be valid for any unital, normal positive linear map 6 acting from Ninto M (cf.
[41], [3]and the references quoted there ).

Another application of Theorem 4.4.reads as follows. Suppose firstboth w,o are
faithful positive linear forms on our vN-algebra M. Suppose ¢ >0. Because of Theorem
4.4 there exists aninvertible element ae M, such that Pp,(w,0)+¢ 2w(a) o(a™!). Now,
by continuity we may even assume a such that its spectrum is a finite set{2,,..., 1,}C
R\{0}, i.e a= ZJZ‘A]p] , for some decomposition { p;} of the unity e into mutually
orthogonal orthoprojections p;. We get

Pyplw,0)+e 2 le( P olp) + T, A wlppolpy).

Now, the function R¢) =t olp;) ol p;)+ t~1w(p, )o(p) takes for some ¢>O0 its infimum. A
simple calculation shows that £(¢,,¢) = 2 {w(py ol p) /2 Ll p)) ol p))}/2. Therefore

PM(w,o)*s 23, wlpalp)+Z,, A2 wlpylalpy) z(zlw( p/)”za(pj)‘/z)?

Hence, we see { Py (w,0) +¢ w2 2/ w( p])"/2 o(pj)Vz. On the other hand, in defining
b =ZI wl qj)'Vzd(q])qul for any decomposition {q;} of the unity e into mutually
orthogonal orthoprojections g;, we have w(b) =o(b")=Z] a1 qj)‘/zo(ql)‘/z. Since
be M,, Theorem 4.4 applies and shows.that .
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Prlw, 002 < {a(b) o(b~INV2 =ZI w(ql)Vza(q‘,)V2
holds for any orthogonal decomposition {g;} of the unity. Hence
Pplw,0)172 <inf z, w(q))2o(q))12,

where the infimum extends over allsuch systems (qj). By our discussion fron'i above,
toany ¢ >0 we find sucha system { p;} with {Pps(w,0) +£ }1/2 2 ZI w(p))’2a(p)1”2
Therefore, we finally get that

Prplw,0)2 =inf 3, w(q;) 20(g))1 /2. (4.9)

By a continuity argument ( cf. Lemma 4.2 and the analoguous remarks in the proof of
Theorem 4.4) we easily see that the assertion remains valid for arbitrary pairs of nor-
mal positive linear forms. The result is due to S. Gudder [15] (cf. also {161 and [17] for
the appropriate context). H. Araki and G.A. Raggio [ 7] proved that there exists a pro-
jection valued measure E belonging to M such that Py (w, o) is the quadratic mean

Prg(@,0)V2 = [dQMp,, £, to,E) (4.10)

of the induced measures p,, g(+)=w(E(-)) and p, g(-)=o(E(- ) on the o-algebra of
Borel sets of R. Obviously, (4.9) yields the approximation of Py (w, o )12 by quadratic
means in the sense of the right-hand side of (4.10) referring to simple projection
valued measures with values in M. Note that in case of faithful forms w,o the FE in
(4.10) exactly corresponds to the spectral resolution of the affiliated with M operator
F we have been using in the proof of Theorem 4.4 (cf.(4.4)). The representation (4.10)
can be obtained from (4.4) by applying essentially the same kind of arguments we have
been using in the derivation of (4.9).Therefore, both (4.10) and (4.9) are equivalent
with Theorem 4.4.

Remark 4.5 : Let A be a unital C‘—algebra, and w, o eA'L. Then, as has been yet
mentioned at the end of Section 2, PA"‘"(w‘-
understand that

,c“)=PA( w,0). It is also easy to

PaA*™ ™", 0" %) =Pl Ig.o""Ig).

with B=sA®%s, where s denotes the support projection of w**+ o®"" within A*™. B is
W‘—lsomorphlc to a vN-algebra in standard form, and the C .-algebralc transition
probabllity Pis invariant with respect to .-lsomorphlsms, lLe.lIf Bisa * - isomorphism
of B then PB(B)(V' u)=Pg(v8, uB), for all v, ueB(B)'. All these facts, together with an
standard application of Kaplansky 's Density Theorem, imply that the assertion of
Theorem 4.4 can be extended to hold on an arbitrary unital C‘-algebra A for any pair
of positive linear forms w, o on A. Especlally, this also implies that the assertion of
(4.8) remains true for any pairs of unital C'—algebras M and N, positive linear forms
w, o on M and an arbitrary unital positive linear map 6 : N— M. Note that by a similar
reasoning norm continuity of P4 on A:, x A',, for an arbitrary unital d'-algebra can be
followed from Lemma 4.2 .

Let us now come back to the case of a vN -algebra M instandard form. Let. I, C
M,.xM,, be the set of all « - minimal pairs of normal positive linear forms on M. We
consider I, equipped with the product norm topology .

22 Analysis, Bd. 11, Heft 3 (1992)
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Theorem 4.6 : The maps I: I 3{w, 0} Rw,0) e M, and |1|: I, Ltw, o) Kw,o)le My,
are norm continuous mappings from I, into M, and M., respectively.

Proof: Let {w,,,0,,}e I, for any n €N, and be {w, 0} «-minimal. Assume w,— w and
0,— 0 in norm. We have to show that I(w,, ¢, )— K, o) with respect to the ||- ,~norm.
From this, according to Appendix 8. also|l(w, 0,)l—|1(w,0)|canbe followed. Let
@ Y @, ¢ € Py be the vectors representing w,,, 0, w, 0 within Pp. With the same rea-
soning as in the proof of Lemma 4.2, p,— @, ¢,,— ¢ can be followed. Let h, h, e M', have
the same meaning as inthe proof of Lemma 4.2, and let v,v,e M’ be the partial iso-
metries of the polar decomposition of h, A, respectively. By Theorem 3.1 and Remark
3.2 we know that [(w,, 0,)(-) =<{(- Vv ¢, ¢,> and I{w,o)(- )=L(- )v*¢, ¢> on M. Our
assumptions imply h,, —h, from which by Appendix 8 also|h,|—|h| follows. Let
{vaysUAl): AeA) be a universal subnet of the sequence {v,s(lh|)}. Then, due to the
weak compactness of the unit ballof M’, we have w-lim; { v,(,s(|h)}"=w for some
weM’', withllw| s1. Hence, we have .

= lim <y s(tAD vp2)" dncay Pacay > =<y wi, 9>

for any yeM". The latter means that’ IhI R, h, with weM', |lwils1. Anapplication of
Appendix 6 yields now that. w s(lbl )= v. Thus, what we have shown s that

w-lim; v, ays(thl)=v

occurs for any universal subnet {v,(x)s(lh|):1eA} of the sequence {v,s(lhl)). From
this, and since the unit ball of M" is weakly compact, we then infer that even

w-lim, v,s(lhl)=v . . : (4.11)
has to hold. Because of v,v. " =s(|h;]) and vv* = s(|h*|) we see that .
Mve dn= v @lI2=1sUh D@2+ IR QU2 - <v v, g > = <vv 3 dp, 9. (4.12)

By the supposed «-minimality of {w,,0,,} and {w, 0}, and following Remark 2.2, we can
be assured of the validity of

IsUbsDgnli2=11g,l2,  UIsUa*Hgl2=l¢l2, and Is(lhDl2=l@ll2.

Since v*=s(lh|)v ", from (4.10) w-lim_ v, v* =vv* =s(|h*]) is obtained. Hence, taking
the limit for n — ® in (4.12) results in lim,llv,; ¢, - v* ([: 12 =0. We now consider the
‘following estimation:

H(wp, 0,)(x) - Hw,0)(x)]
= KXV gy e P> - < XY™, @l
< |<xv,:¢n,¢,,>;(xv,,"‘d:,,,¢>|+I<xv,;'¢,,,¢>>-<xv“‘¢,¢>|
< (Ilv’-?,.,ll gnll+ v,y g = vl el } Ixl,

for any xe M. The latter says that [[(w,,0,)-1(w,0)lisllg-@, Il g, I+ Ilvye,- v:ellel.
According to our preceding considerations I{w,, 0,,) has to tend to I(w, o) in norm @



Geometry of Pairs of Positive Linear Forms 31

S. Geometry of representatives of « - minimal pairs

The main result of this section will be a representation theorem for «-minimal pairs
of normal positive linear forms on a vN-algebra M acting standardly on a Hilbert
space H. A preliminary form of this result has been derived in [S1. In all what follows
the notations and conventions of Section 4 and the appendix (Section A) will be
adopted and tacitly used. For a positive linear form « the set S(id,w) of all vector
representatives of win H will be abbreviated as S(w).

Deflnition §.0: Let @, ¢ ¢ H. The vector ¢ is said to be p-associated (over M) if
there exists ue M such that

uu®=p(y), utu=plp), p'(p)=p(Y)=plud) (5.1)

up eMup , U eM.p. (5.2)

In the case that ¢ is p -associated the notation ¢ Il @ will be in use.

Theorem S.1: Let w and o be normal positive linear forms on M.
(1) (0,0} is «~ minimal if. and only if there exist vectors ¢ ¢ S(w) and ¢ € S(o)
such that ¢l p.
(11) Suppose vectors ¢ € S(w) and ¢ ¢ S(o) are given such that ¢l p, and let u be a
partial isometry obeying (5.1) and (5.2). Then, the skew form I(w,c) and the skew
phase u(w, o) are given by '

Hw,0)(-)=<(-)¢, > and ulw,o)=u". - (5.3)
(i) Assume @, ¢ ¢ S(w) and ¢, §' € S(o) are given. Suppose ¢ \p. Then, ¢' Il ¢* if
and only if there is we M’ with ¢ =w{', ¢ =we'and ww* =p(p), w"w=p'(¢).

(iv) Let {w, 0} be « - minimal, and suppose ¢ ¢ S(w) is given. There is a unique vector
¢eS(o) with il p.

Proof': Suppose first that {w, o) is «- minimal. According to Appendix 7 and Lemma
1.1/(i) there exist vectors @ € S(w) and ¢ ¢ S(0) with < ¢, > =Pp,(w, )72 = ||k ||, where
he M', is defined by h(-)=<(-)¢, 9>. Hence, we have h(e)=| h ll,. This implies h to be
positive on M. The latter means that s(h)=s(|lh|)=s(]h"|). Since {w, 6} is «-minimal,
Remark 2.2 (with w=id ) shows that s(h)2p'(¢) and s(h)2p'(¢) in this situation. On
the other hand, by the definition of h, we have s(h)sp'(p) and s(h)sp'(¢), obviously.
Thus, we have the equality

s(h)=p(@)=p(Y). (5.4)

We define fe M, by f(-)=<(-)¢, ¢>. Let F=R_| f| be the polar decomposition of f. Then
we have | f|(-)=<(-)u"¢, @>. According to (5.4) the conditions for an application of
Appendix 4 are given. The result is

pu™P)=p (), uu™=p(P), u*u=p(p)=s( Fl). (5.5)

The first relation of (5.5) and | f |2 0 make that Appendix 3 can be applied (with the

22*
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replacements M —M', p —p’ etc. in the formulation of Appendix 3) with the result
s(FD)=ple)=p(u*¢). (5.6)

The second relation of (5.5) gives that A(:) =< (- )¢, > =< (- Juu™d o> =< (- W up>.
Positivity of A then implies s(h)<p'(u”@). From this and the obvious fact p(u"p)s
p'(@) together with (5.4) and (5.5) we conclude that

s(h)=p(u*p)=ple)=p(P)=p(u*¢). , " (5.7)

On the other hand, starting from the third relation of (5.5) we arrive at another
representation of h, namely hA(-)=<(-)¢, > =< (- ) u™up> =< (- Jug, up>. Positivity of
himplies s(h)<pup)sp(p) and s(h)<p'(u¢)sp'(¢). Once more argueing with (5.4)
we see that in fact equality holds, i.e. s(h)=p(ug)=p'(p)=p(ud)=p'(¢§). Therefore,
(5.7) can be extended to the sequence of equalities

s(th)=ple)=p ) =plup)=plud)=pu"p)=pu"¢). (5.8)

By (5.5)we see that p(up)=p(¢) and p(ud)sp(y). Hence plug)sp(up), and since
h(-)=<()ug, up> is positive over M’ we can apply Appendix 2 to obtain that u¢e M, up,
i.e. the first part of (5.2) is seen. Since | f|(- )=<(-)u*¢, ¢> is a positive linear form
over M, and because of pl¢) =p'(u™¢), Appendix 2 applies (with the replacements M —
M’, p—p’etc. in the formulation of Appendix 2) and gives u*¢ ¢ M, ¢, i.e. the second
part of (5.2) is shown. In view to (5.5) and (5.8) ¢l  follows. Hence, the one direction
of (i) is shown. Note that from h(-) =<(-)¢, 9> =< (- Ju¢,up> 2 0Oover M' by Appendix 2
also follows that

ple)ye M,p  is equivalent with ugeM,up. ' (5.9)

To see the other direction of (i), assume ¢ ¢ S(w) and ¢ ¢ §(o) with ¢ llp are given.
Suppose u is a partial isometry of M such that (5.1) and (5.2) are satisfied. From (5.1)
we see that plup)=p(¢)2pug). By (5.2) positivity of he M, with h(-)=<(:)¢, > on
M’ follows. Due to (5.1) we also see that A(-) =< (- )ug, up>. Appendix 3 can be applied
to the vectors u¢, ug in this situation to see that s(h)=p(uy)sp(up). Since by the
second relation of (5.1) p'(up) =p'(p), we get that s(h)=piud)sp'(p). From this and
the third relation of (5.1) we conclude that

sth)=p(P)=p(p). (5.10)

According to Remark 2.2, and since, due to h2 0, s(h)=s({|h|)=s(|h"|) holds, the {®,0}
corresponding «-minimal pair {w,,d,} is given by w,(-}=(s(h)(-)p,@> and g,(-)=
{sth)(- )¢, ¢>. Relation (5.10) then shows that {w,, 0,}={w, 0}, l.e.{w, 0} is «~minimal,
.and the proof of (i) is complete.

To see (ii), we can continue the preceding considerations by defining f,ge M, by
F(-)=<()¢g o> and g(-)=<(-)u*¢, >, respectively. By (5.2) we can be assured of the
positivity of g=R u f. Since also f=R,gby (5.1), certainly || fl; =l g ll. An application of
Appndix 5 shows that g=|f|, and Appendix 6 yields us(|f|)=w, with f=R,|f | being
the polar decomposition of f. Now, due to (5.10) and uu®=p(¢) we have plu*¢)=p(¢)
=ple). Hence Appendix 4 applies with the result that s(| £|)=p(p). Therefore, in view
to the second relation of (5.1) we have to conclude that w=us(|f|)=up(p)=u. This,
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however, means that I(w, o) = fand u(w, o) =u”® for the pair {w, o}, which is «<-minimal by
(i). This completes the proof of (ii). .

To prove (iii), let us assume that @, ¢'c S(w) and ¢, ¢’c S(o) are given with ¢l p and
¢’'ll " Then, by (i) we know that {w, 0} is «- minimal. By standard arguments we can be
sure to find w € M’ such that p=wp’, ww"=p' (@), w*w=p'(¢’). By (ii) we infer that
Hw,0){y)=<{yd, 9>=<y¢d, @D, for any ye M. Hence, {{w*¢- ¢’ ), xp'> =0 for any xe M.
This implies p{e'Nw*¢ - ¢’ )=0. In view to ple’)w"=w", and since p(¢')=p(¢’) by
our assumptions on ¢, ¢*(cf. (5.1)), ¢" =w”¢ has to be followed. By the same reasoning
the assumptions on ¢, ¢ give p'(p)=p(¢), and w¢' =ww ¢ =p(p)P =p (Y)Y = ¢ is clear.

To go the other way around, assume ¢ ll ¢ and e S(w) and ¢ec S(o). Suppose ve M’ is
given such that v*v =p'(@) = p'(¢§). Note that p(¢)=p'(¢) is a consequence of (i). Let
us define vectors ¢'=vep and ¢'=vy. Then, ¢’eS(w) and ¢'eS(o). By the assumptions,
(5.1) holds, i.e. p'(p)=p(¢)=p(u¢), with ubeing the partial isometry figuring within
(5.1), (5.2). Hence, also vv*=p"(p') =p(¢') = p(ug’). Since also uu®=p(¢)=p(¢’), u*u=
p(p)=p(p’) holds, we have seenthat(S.1) remains valid with ¢’ " in place of ¢, p,
respectively. Let us consider the funtionals h,h' over M’ givenby A(- ) =< (- Jug,up>,
h{-)=<(-)ud’,up’>. By means of the definitions of ¢’ and ¢° we realize that h{-)=
h(v®(-)v). By assumptions (5.2) has tobe fulfilled, i.e. h= 0. Therefore, h'is positive,
too. Due to uu®=p()=p(¢’), u*u =pl(p)=p(p°) we get plup’)=p(¢’)2pluy’). Thus,
the conditions for an application of Appendix 2 are given. The result is

pluplug'=u¢’,and ud’'e M up’.
Let f, fe M, be givenas f(-)=<(-)u*¢,¢> and £(- ) =< (- )u*¢', ’>. By the definition of
@', ¢’ we realize that f=f holds. Due to the assumption ¢ Il ¢ and (5.2) f is positive, i.e.
also £ is positive over M. We apply Appendix 2 to the situation at hand and see that
plo ¢ e M o,
Since p(@’)=p(¢’), the relation p'(@’)u*¢y’ =u*y’ follows. Finally, where we have
arrived at is the following :

uu*=p(¢"), u®u=p(e), pe’)=p()=plud’), up'e M up', "P'e M, .

Hence, ¢’ ll @’ is seen, and the proof of (iii) is complete.

Suppose now {w, o} is a « ~ minimal pair, and peS(w). By (i) we know that there are
vectors ¢’eS(w) and ¢'cS(o) with ¢'ll@" There is a partial isometry we M* with ¢ =we’,
w*w =p'(p°), ww*=p(p). Since ¢’ Il ¢’ requires p(¢’) = p'(p?, we have ¢=w¢'e S(o). By
(iii) we conclude that ¢ llp. Assume there is another ¢"c $(o), with ¢” llp. By (ii) we
have, for any x ¢ M, I{w,0)(x) =< x¢, > =< x¢", >. Therefore < (Y - ¢"), yp> =0, for all
yeM, and p'(@)(¢-¢”) = O0has to be followed. Now, ¢lip and ¢ Ilp require p' () =p(p)
=p'(¢”). Thus, ¢ = ¢ has to hold, i.e. (iv) is true @

Remark 5.2 : The preceding theorem has some interesting consequences.

(1) Since {w,0) 18 «~minimal if and only if {0, w} Is « - minimal, by (i) we follow that
I is symmetric, i.e. ¢ e if, and only if @ Il ¢. Note that (ii) also shows that the partial
Isometry u in Definition 5.0 is uniquely determined. Due to Lemma 4.1/(il), the changes
®=— ¢ and ¢— @ within (5.1),(5.2) require the replacement u— u® In order to remain
valid.
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(2) Especially, (iv) shows the following. Let {(w, 0} be «-minimal and ¢e¢S(w) glven.
There exists ¢eS(o) such that PM(N;O)’/2=< &, @>. In fact, this is a consequence of
(ii),(iv) and Lemma 4.1/(i), and Is a sharpening of Appendix 7 for «-minimal pairs.
The uniquely determined ¢ €S(o ) with ¢ Hlg Is referred to as the @-relative
representative of o (cf. Section 0).

(3) By (i) and (iv) and (5.9) we realize that in the definition of ¢ Il the condition
(5.2) can be replaced with the requirements p(@)¢ e M, e, u" ¢ e Mip.

(4) Let (w, o) be a «~-minimal pair of normal positive linear forms over M. Suppose
peS(w), and be ¢ the (as we now know unique) vector of S$(o) with ¢ Il . Then we have
the estimation ||¢ - w[lzs llw-olly. In fact, for the uniquely determined representing vec-
tors @,¥e Py of w,o in the natural positive cone P of {M, ) (cf. the suppositions of
Section4)we have 0 =< ¥, &> =<Ppsr(w, 0 1*/2 whereas In (2) we remarked that Pprglow, )2
=< ¢, ¢>. Hence,

e - @liZ= g2+ lpl2-2<d, o> s 1% 13+ 1012-2< ¥, 0> = |l¥ - OII2

The result now follows from the well-known inequality ||¥ - o||2s lw-olly for the
representing vectors @, ¥e P yet mentioned in Remark 4.3.

Up to now we tried to give characterizations of «-minimal pairs of positive linear
forms. Whereas Theorem 3.1 gives an abstract characterization in form of a uniqueness
result, in case of normal linear forms over the vN-algebra M by Theorem 5.1 a
characterization is given which is of different kind. Itreads interms of therelative
geometry of the vector representatives ( of the normallinear forms in question) with
respect to the action of M on the underlying Hilbert space H. However, there is yet
another interesting question tobe worth tobe considered incase of a general pair
{w, o) of positive linear forms whichis not «-minimal: What can be said relating the
structure of those parts of w and o that prevent the pair {w,0} from being «-minimal ?
We are going to give an answer for pairs of normal positive linear forms in the vN-
algebra case. To this sake, let us suppose that {w, o} is a pair of normal positive linear
forms on our vN-algebra M. We want to characterize first the geometrical relations
between the pair {w, 0} and some pair {w’, o'} such that {w’, 0’ }« {w,o}. By definition of
«, both @, =w - w"and ¢, =0 - 0" are normal positive linear forms onour vN-algebra M.
From Theorem 4.4 and obvious properties of the infimum we infer that

Ppglw,0) 2 Ppgla', o) + Paglw',0,) + Paglw, ') + Pagle,, o,) : (5.11)

By definition of « also Pps(w,0)=Pprrlw,0’) is fulfilled. Hence, from the inequality
(S.11) together with the non-negativity of P,; we have to follow that Pp (w0, )=
Prglw,,0°) = Pys(w,,0,) =0. Now, for two given positive linear forms v, g and representing
vectors @, ¢ of them, according to Lemma 1.1/(i), we know that for a form h defined
over M'by h(-) =<(-)¢, @>, Il A lly= Ppy(v,2)*/2 has to hold. Hence, in case of Pprelv,p) =
0 we get h =0, and vice versa. The latter is equivalent to | A|= 0. We cannow conclude
as at the end of the proof of Lemma 4.1/(vi) and see that Py (v,u) =0 is equivalent
with v L p. In application to our situation with Py (w’0,)=Pprslw,,0') = Ppglw,,0,)=0
we thus get that w'l g, w, 10", w 1o, Since w=w"+w, and o =0’ +0, hold, we can also
follow that w 1 g,, 0 1 w,. Especially, the latter holds of course in case that w’'= w, and
0'=0,, with the {w, o} corresponding «-minimal pair {w,, g, }. Let us suppose now that
{w, 0} is a pair of normal positive linear forms, and let {«w,, 0, } be another pair such that
w2w, and 020, and w L 0,, 0 L &, . Let {w,, 0, } be the {w, 0} corresponding «-minimal
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pair. Assume ¢ ¢ S{w) and ¢ € S(o) are chosen in such a way that <¢, ®>=Pplw, o)/,

According to Appendix 7 this choice of representatives is always possible. Let us define
heM', as k- )=<(- )¢, @>. By Lemma 1.1/(i) we see that h(e)=|hll, = Pys(w,0)'/2
Hence, h has to be a positive linear form on M". Let ¢, t'e M', be given such that [l¢ [<1,
lell<1 and @ =tp € S(w,), ¢ =ty € S(o,) are fulfilled. The existence of ¢, ¢’ with the
properties indicated follows by standard conclusions from our assumptions w 2 w, and
o 20, On the other hand, from the assumptions @ lo, and ¢ L, the conditions
ple) L p(¢) and p(¢’) L p(@) can be derived. Hence, both the linear forms f, g defined
over M' by F(-)=({-)¢", > and g(-)=C(- )¢, ¢’ > have to vanish. Let s(t)and s(t’) be
the supports of tand ¢', respectively. For n ¢ N we define ¢,=¢t+n le and ¢, = ¢"+ nle.
Then {tt,,”!} and {t', "¢’} are increasingly directed systems of positive operators of M’
such that last upper bound tt, ! =s(¢) and last upper bound ¢’ "¢’ =s(¢’). Thus, since
h is positive and normal and since f and g are the zero-form on M’, we get '

h(s(e)) = lim,, h(ee,,™) = lim, < et ¢, 9>
=lim, <t ' 0> = lim,< ¢, ¢y, te> = lim, gl t,; 1) =0,

and analogously, h(s(¢')) = lim, f(¢;*) = 0. This means that both the relations s(¢) s
s(h)* and s(t’) < s{(h)* have to hold. Since the norms of ¢t and t'are smaller than one,
the relations t2 < s(h)* and ¢’ 2 < s(h)* can be followed. According to the latter, and
due toRemark 2.2 once more again, we infer that in our situation for any x ¢ M

w,(x"x) = {xtp, xtp> = {t2x@,xp> s {s(h) xp, xp>
= W x"x)- < s(h)xp, xpd = (w-w, Hx"x).
This together with an analoguous argumentation in case of ¢, leads us to
WS W-WSW, 0,S0-0,S0 . (5.12)

Hence, w 2w -w,2w, and ¢ 20 - 0,2 6,. In view to Theoem 4.4 we may conclude that
Pplw,0)2 Ppyglw - w,0 -0,) 2 Ppslawg,0,). Now, by definition of {w,, ¢,} we know that
Pps(w,0) = Ppglw,, 0,). Hence also Prg(w, 0) = Ppglw-w,,0-0,) = Ppglw,, 0,). This tells us
that {w,,0,} « {w-w,,0-0,} « {w, 0} provided that w2w, and 020, and w L 0, 0 Lw,.
On the other hand, by our considerations following (5.11) we know that for any pair
{w),0') with {w,0'}«{w,0} we have that w, =w - w'and g, =0 - 6’ obey the relations & 1 o,
and ¢ 1 w,. With regard to (5.12) we can now summarize all the derived facts into the
following

Theorem 5.3 : Let M be a vN -algebra. Suppose {w, 0} and {w', ¢’} are pairs of normal.
positive linear forms over M, and be {w,, 0,} the {w,0 } corresponding « - minimal pair.
Let functionals.w, and o, be defined as w,=w - w" and o,= 0 - o'. Then, the following as-
sertions are valid:

(1) (00" }«{w,0} if, and only if, w2w,20,020,20 and wlo,, ol w,.

(2) w, is the smallest positive linear form v with vsw® such that w-v 1o and o, is
the smallest positive linear form yu with u <o such thato-p 1L w.

(3) w-w, Is the largest positive linear form v with v sw such that v 1 o and o- ao is
the largest positive linear form y with y s o such that y 1 o.
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We remark that, for given two positive linear forms and o, the existence of
largest positive linear forms v and ¢ with v sw and g so such that v Lo and y lo,
respectively, has been proved first by H. Araki {61. He refers to this result, which is
equivalent with Theorem 5.3 (3) essentially, as an extension of the non-commutative
Radon- Nikodym theorem of S. Sakai (cf. [19]). We also note that the general
supposition of this section saying that M should be acting in standard form over H is
of no relevance for the validity of Theorem 5.3 ( in this point we anticipate the
reasoning in Section 7) and thus we have decided to give the general formulation at
once.

6. Perturbations of «-minimal pairs. Examples

In this section some important special cases of «-minimal pairs of normal positive
linear forms will be given. The suppositions and notations of the preceding section will
be adopted and tacitely used, i.e. we are working in a vN-algebra M acting standardly
on a Hilbert space H. Then, the identical representation {id, H} is w,c-admissible for
any pair of normal positive linear forms {w, o). Especially, Remark 2.2 applies with
rm=id and says that such a pair {w,0} is «-minimal if, and only if s(lhD2 p'(p),
sUA*Dz2p(¢), where pe S(w), e S(o) and he M, is given by h(- ) =< ()¢, ¢>. Assume
h=R,| h| is the polar decomposition of h. Then, |A|(- )=<(- )v*¢, @> and |[H*|(-)
=< ()¢, veD, from which s(1h|)sp(p) and s(|A*])<p'($) is evident. Hence, {w, o) is
«-minimal if, and only if s(|hl) = p (@), s(1 h™]) = p(¢), for a pair (and so for any pair)
_of vectors g e S(w),¢e S(o), with he M, given by h(-)=<(-)¢, @>.

We want to apply this criterion in a very specific situation. Suppose, s{w)ss(o)
for a pair {w, 0} of normal positive linear forms. Then p{¢) s p(¢) for any two vectors
peS(w),PeS(o) By Appendix 7 and Lemma 1.1 /(i) there exist vectors ¢ ¢ S(w), ¢ € S(0o)
such that < ¢, > = Pp,(w,0) 2= | hl,, where his defined on M' by h(-)=<(-)¢, ¢>. Due
to h(e) =1 hlly, h has to be positive. Thus, Appendix 3 applies with the result that s(h)
=s(|h) =s(| A*]) = p' (@) < p"(¢). Moreover, Appendix 3 tells us that p(p)=p(¢) implies
sCh)=s( A =s(|h*D=p'(p)=p'(¢). With regard to the above criterion we can take for
established the first parts of the following assertions.

Lemma 6.1: Let {w, 0} be a pair of normal positive linear forms. Suppose {w,, d,} is
the «- minimal pair such that{w,, 0,} « {w, o). Suppose the supports s(w)and s(o) of w
and o fulfil s{w)ss(o) (resp.s(w)zs(0)).Then, w=w,(resp. 0 =4,), and s(w)=s(0)
implies {w, 0} to be «- minimal. Suppose {w,c} is « ~-minimal and s{w)eM NM'. Then,
s(o)ss(w) and s(o)~s(w).

For the last assertion of Lemma 6.1 we note that for a « - minimal pair {w, 0} accord-
ing to Definition 5.0 (cf.(S.1)) and Theorem 5.1/(i), s{w) ~s(o) has to hold. The skew
phase of the pair is a partial isometry of M accomplishing the transformation from the
initial projection s(w) into the final projection s(o). Since the inital projection is a
central projection the final projection has to be majorized by this central projection,
i.e. s(0)ss(w) has to be fulfilled. We remark, however, that all these results could be
seen also as an immediate consequence of Theoem 5.3. As an application we can now
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include a quite short proof of the estimation in Remark 4.3. Let w, 0,4, v e M,,. We have
to prove that

| Paglw,0) 2= Paglu, v)V72| s ol 2 w-p 2+ lu 172 10-v [,1/2

First of all note that due to Lemma 4.2 it is sufficient to derive this estimation for
normal positive linear forms with equal supports. In fact, we might define sequences
{wi b (o} {ugt and (v }, with

ATRENA) +7"-(a +p+v),op=0o *%(w tptv), g =p *%(aﬂa +v), vk=v+%(o +u +w).

Then wy — w, o — 0, up — ¢ and v — v in norm, and the above estimation can be
obtained as the limit of the estimations

172 " 1/2 1/2

IPM(wk, dk)llz— Ppglpge, Vk)i/zl < (% fly Wy~ [ly + Hix ”11/2 Il Opc— Vi Ity

provided these can be shown to hold for normal positive linear forms with equal
supports ( wy 0,4y and v have equal supports). In line with this, suppose w,0,u,veM,,
all have the the same support. According to a special case of Lemma 6.1 each of the
pairs (@, ¢}, {g, @}, {g,v},{c,v},... is «~minimal. Assume that | Pys(w, 0172 Ppg(y,0)172 |
= Ppglw,0)12 - Pp(u,0)1”2 e.g. Suppose ¢ € S(0) is given. According to Theorem S.1
/(iv) and Remark 5.2/(2) we may choose p as the ¢ -relative representative of w, and §
can be chosen as the p -relative representative of y. Then, according to Remark 5.2/(2)
and (4) we have '

)1/2_ )1/2

Papslo, 0 Ppglp, 0
=@, >~ Pag(p, 002 s Cp, > = IKE PO s K@, > - < E D]
IKe-£¢>Islglllo-Ell s ol 2 w-pll,*/2,

where we used that Py (p,0)1722|<E, ¢ |. Therefore, we have arrived at

"

|Ppglw, 00172 - Ppg(pr, 00172 s o 112 | -p I, 22,
Analogously we can show that
|Paglpt, 00172 = Ppy(u, vV 2 s [ 22 o - v |, 172,
Hence, we can follow that
|Ppgl@, 001 2= Ppglu, v)1723
S |Ppg(@,0)12- Prg(p, 00V 2| +|Ppg(p, 0012 - Prglp, v)H72
s Nol 2 w-plh 2+ g i/20 o-v 1,12,

Therefore, by our discussion from above Remark 4.3 can be taken for proven.
The representation Theorem S.1 gives also some idea for an important class of
« - minimal pairs. ST

Example 6.2 : (1) Let w be a normal positive linear form on M. Let 0 = w® with a2 0,
aeM. Then, I{w,0) =R, w, and ¢ = ¢,, where {w,, 0,} denotes the « ~-minimal pair which is
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majorized by {w, o). For a e M, with invertible a the pair {w, 0} is «-minimal. Assume
{w,0} is «-minimal. In this case, for given peS(w) the vector ¢ =ap is the uniquely
determined vector ¢ eS(g) with ¢llg. )

(2) In case M possesses tracial normal positive linear forms, for a tracial r e M.,
and for we M, , the pair {«, t} is « ~minimal if, and only if, s(w)=s(7).

Proof : We start with (2). Note first that for a tracial r we have s(t)e M N M. By
the last part of Lema 6.1 s(w)ss(r) and s(w)~s(t) provi&ed {w, } has been supposed
to be «-minimal. The vN-algebra N = Ms(t) acting on s(r)H is of finite type since t |y
yields a faithful normal tracial positive linear form on N. Since s(w)~ s(tr) also with
respect to N and N is finite, s(w)=s(r) follows. The other direction follows from the
last part of Lemma 6.1 which then closes the proof of (2).

To prove (1), we will follow step by step the line of the proof of Theorem S5.1.
Suppose @ € S(w). Then ¢ =ap e S(o). For h defined on M' by h(-)=<{(-)¢, > we have
hy"y)=llyal”2p(|220, for any y e M". Hence, his positive, with s(h)=p'(al”2p). Owing
to p(¢)=p'lap)sp(al’2p)sp(p) we see p(¢)ss(h)splp), and because plgrzs(h)
obviously holds, p(¢)=s(h) s p'(p) follows. From this o =g, is evident. Byi our criterion
from the beginning of this section, {w, 0} is «-minimalif, and only if p()=s(h)=p'(p).
Since, for aninvertible a e M,, p'(ap) = p'(¢) holds, the conditions of our criterion of
minimallity are fulfilled, i.e. (t;), o) is « - minimal in that case. Note that v =s(h)=p'(ap)
is the partial isometry of the polar decomposition of h. According to the argumentation
in the proof of Theorem 3.1 in our special situation

How,0)(-)=<(Iv"ap, ¢>=<{()ap, o> = (R w)(-)

has to hold. Finally, suppose {w, ¢} is «- minimal, and pe S(w) is given, and ¢ =ap. Then,
as we know from above pl¢)=s(h)=p'(p). For ye M' we have o (y*y) = [y {12 = | yapl|2
=layp 12sllall? lyell2=llall2w'(y*y), with w',0'cM', defined by w(-)=<(-)p, o> and
a'(-)=<(- )¢, ¢> on M’, respectively. We also note that s(c') =s(w’)=p'(@)=p'($) by the
assumptions on @ and ¢. By the Radon-Nikodym-Theorem of S. Sakai {191 (cf. also [201])
there exists a unique t e M, with support supp(t) = s{o’) = s(w’), such that o'(: )=
'(¢(-)e). Thus [l y¢ll2 = lyte |2, for any y e M', from which condition the existence of
a partial isometry u ¢ M follows, with u*¢ = tp and uu®=p(¢)=s(0o), u*u=p(tp). Now,
pltp)sp(p), and since p(u*P)=p'(tp)=s(0')=s(w)=p(¢)=p'(¢p) and the linear form
f()=<()p,u"¢Y>=<{(-)p, tp> on Mis positive, Appendix 3 applies (with M —M’, p—
p’) and shows that s(f)=p(@)=p(te). Since t 20, there exists u ¢ M, with

Uty =tpeMi.p, uu®=p(¢)=s(o), u®u =p(tp)=pl(p)=s(w). (6.1)
Now, u¢ = uap = uau®up due to u*u=p(p), i.e. we also have

upe M up . (6.2)

Finally, h defined on M’ by h(-)=<(-)ug,up>=<{(-)ap, p> is positive on M". Since, on
the one hand p(u¢)2s(h), and p(ug)=puap)splap)=p(Y)=s(h)=p'(p) by our
assumptions, we conclude that p*(u¢) = p'(¢) = p'(p). This together with (6.1) and (6.2)
shows that ¢ ll ¢ (see the definition of Il in Definition 5.0). By our assumptions and
Theorem 5.1/(iv) the uniqueness of ¢ is clear il '
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Suppose now, we M, and ae M, are given. Assume as above 0 =w®. As we have seen
in Example 6.2 I{w,0)=R, w, and o =g,, where {w,,0,} denotes the «-minimal pair
which is majorized by {(w,o}. We are going to find an interpretation of the skew phase
u(w, o) in this case. Let pe S(w). Then, ¢ =ap ¢ S(0) =S(0,). By Remark 2.2 we have ¢° =
s(|h)peS(w,), with hdefined on M’ by h(- ) =< (- )¢, >. As we explained above, h20,
and s(| A1) =s(h)=p'(¢). Similarly as in the preceeding proof, by the Radon-Nikodym-
Theorem of S. Sakai there exists a unique te M ', with support supp(t) =p'(¢), such that
ly¢ll2=llytell2, for y e M*, from which relation once more again the existence of a
partial isometry u ¢ M follows, with u®¢=tp and uu®=p(¢)=s(o)=s(g,), u"u =p(tp)s
ple)=s(w). Now, s(w,)=pls(lh)@)=p(p(Y)p)=p(tp), where we used that supp(t) =
p'(¢). From this we also get that tp=tp(¢)p=ts(h)p=te" But then, the last part of the
proof of Examples 6.2 (with @', a,, o, in place of @, w, o) together with the equation u™¢
=tp =ty says that ¢ |l @', necessarily. In view to Theorem S.1/(ii) u(w,,d,) =u" has to be
followed. Since I{w, 0) = I{w,, 6,), u®=u(w, o) is seen. Hence, what we have proved is the
following

Lemma 6.3 : Suppose we M, .and ac M, are given. Assume 0 = w®. Let peS(w), and let
te M', be the uniquely determined S.Sakai's Radon-Nikodym operator which obeys
{yap,ap> =<{ytp, tp>, for all y ¢ M'. Then, the equations )

w*w =s(0), wap =tp

have as the unique solution in M the skew phase w =u(w, o).

Let us assume now that {w, 0} is « - minimal. Suppose ¢ € S(w). By Theorm 5.1 there
exists ¢ ¢ S(o) with ¢ llp. By (5.2) and (5.9) we have s(w)¢ e M,p . Let {a,})C M, be a
sequence of positive elements such that a,,¢ — s(w)¢. We define

b, =slw)a, s(w) *%s(w)*ns(w)* and ¢ =¢ *%s(w)*tﬁ, for any neN.

Then ¢, — @. In setting ¢,=b,p,=s(w)a, ¢+ % @ + slw)*¢ we see that ¢,— ¢. Hence,
for w,(-)=<()p,, ¢,> and o,(-)=<(-)¢,, ¢,> we realize that w,;—w and g,—0 in
norm. Since o, = w,(b,(-)1b,) and b_20is in M and is invertible, Example 6.2 says that
{wp, 0,) is «-minimal for any n € N. Thus we have arrived at the following

Theorem 6.4 : The set {(w. 0}: weM,,, there is ae¢M,, invertible, with ¢ =a)"} is a
dense subset of the set I, of all «- minimal pairs in M,,x M,,.

As another application of Theorm 5.1. we find the following
Proposition 6.5: I(w, 0) is a hermitian form if and only if I(w, o) is positive.

Proof : Assume I(w, o) is a hermitian form. Then, by Lemma 4.1/(ii) I{w,0)=1(0, w).
By Lemma 4.1/(iii) we can suppose that {w, 0} is «-minimal. Let ¢ ¢ S(w) and ¢ ¢ S(o)
be chosen such that ¢ Il . By our assumptions we get < (- )¢, @>=<(-)p, ¢>. The latter
also means that I(w,0) = I(g,w) =< (*)s(w)¢, ¢> =<(-)p, s(w)¢> (we note s(w)=pl(e)).
By (5.2) and (5.9) we have s(w)¢ eM.p. By Appendix 2, a positive, selfadjoint linear
operator F, which is affiliated with M, exists and fulfils s(w)¢= Fp. Let F=f° AE(dA)
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be the spectral representation of F. We define E = E([0,»)), E,=E([O,n)), and F,=
FE,, for any n ¢ N. Then, all the operators defined bélong to M, and st-lim, E,, = EFand
Es(w)¢ =Fp = s(w)¢. By assumptions, yp, Fp> =< yFp, p> for all ye M. Especially, for
y €E,ME, we get {yp, F,p>={yF,p,9>. Since yF,, F,y ¢eE,ME,, by the same
reasons we are obtaining that (,VF,,2 @, @>=KyF,0, Fp> = FoyF,o, 0>={ Fyp, F,p> =
{yp, F2p>, for any ye E,ME,. Concluding further in this way shows that < yg, F,,k @>=
{yFko, 0>, for any k ¢N and y e E,ME,,. Our conclusion is that < yp, Bp> =< yBp, >
for any B taken from the C "-algebra that is generated by e and F,. Especially, for
B=F}’2 we getinthis way that < yF, ¢, ¢>=<yBBp, >=<{yBp, Bp>, for any y ¢ E,ME,,
Hence, for z ¢ M we see that

Nw,o(E,z*zE,) =< E,z"zE, Bp, Bp> = zE,Bp 122 0.

The inequality I(w, 0){E,z*zE,) 20 has to hold for any n¢N and any zeM. Since I{w, o)
belongs to M, and st-lim, E,,2*2E, = Ez*zE, I{w,0)(Ez"zE)20 has to hold for any
zeM. Because of Es(w)¢=s(w)gand <(-)s{w)g,¢>=<{(-)p,s{w)¢> we can conclude
as follows:

Hw,o0z2"2) 2 <z"zs(w),p> =<z"zEs(w), ¢> =< z"zEp, s(w) >
= <z*zE<p,Es(w)¢> =<{ Ez*zEp,s(w)¢> = {Ez*zEs(w)¢§, ¢>
= Hw, o ){Ez"2E) 2 0,

for any ze M. This proves positivity of the skew form provided hermiticity has been
supposed. The other direction is trivial B

Ramark 6.6 Not.e that Example 6.2, among other things yields that Pps(w,0) =
I(w,a)(e)z- < ap, o>> = w(a)2 in the case that o =w® for some acM,. This is a well-
known fact, cf. (2], {24]. By standard conclusions the result persists to hold true also
in the case of a unital C"- algebra A and we A", , acA .

Let us suppose now we have given two vectors ¢’ ¢’c H such that ¢'ll ¢" Then, itis
quite interesting to analyze under what kind of perturbations §¢’, 8¢’ ¢ H of the vectors
¢, p'e H the relation |l behaves stable, i.e. ¢ |l ¢ persists to hold with ¢=¢'+8¢ and p=¢’
+8¢'. Our Example 6.2 yields a special case of this problem. In fact, if we define ¢’
= @'= @, dp’'= 0, then Example 6.2 tells us that ¢ Il p persists for any perturbation of ¢ of
the form 8§¢'= bp, with be M, spec(b) C(-1, ). Note that in the proof of Example 6.2
we have been following step by step the line of argumentation proposed by the proof
of Theorem 5.1 . This made sense because we were also aiming at an interpretation of
the skew phase in the context considered there (cf. Lemma 6.3). In applications like
the mentioned question on the behavior of Il under perturbations, however, in most
cases we have in mind we will not care about the behavior of the skew phases. In line
with this, it is of interest for us to have to our dispose a simple criterion in order to
decide whether or not for two given individual vectors ¢, ¢ ¢ H the relation ¢ llp takes
place. Such a criterion, which has its motivation in the above problem and proves quite
useful in such a context, reads as follows.

Proposition 6.7: Suppose ¢, ¢ ¢ H are given. Let he M, be defmed by h(-)=<(- )¢, @>.
The following assertions are mutually equivalent:
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(@) his positive on M' and p'(p)=p'(¢)=s(h).
(b) ple)g e M,pand p(p) =p'(¢)=s(h).
(c) foro e M, with eS(0), ¢ is the unique vector within $(c) such that Y ile.

Proof : The equivalence between (a) and (b) is part of the assertion of Appendix
2. Suppose (a) holds, and let w, 0 ¢ M, be such that p e S(w), ¢ € S(o). We have p'(p)=
pl¢g)=s{|h)=s(| h*"|)=s(h). With regard to Remark 2.2 we then realize that {w,0} is «
- minimal. Moreover, (a) together with Lemma 1.1/(i) implies that ¢ € S(w)and ¢ ¢ S(o)
are vectors obeying < ¢, > =hle)=|l h Il = Ppglw, 0)'/2. Thus, ¢ and ¢ are representing
vectors for the components of a «-minimal pair {w,o} fulfilling assumptions as in
accordance with those we have met in the first part of the proof of Theorem 5.1. In
conclusion of this part of the proof we deduced that ¢ Il . Hence also ¢ Il # in our case
at hand. The remaining assertion of (c) follows from Theorem 5.1 /(iv). Suppose now
that ¢ llg. By Theorem S5.1/(iv) ¢ is the unique vector in S(c) with ¢ llp. By Theorem 5.1
/(i) {w, 0} is «~minimal. In view of (5.2) and (5.9) then (b) follows 8

Remark 6.8 : (1) The preceding result could be taken as an invitation for a compre-
hensive redefinition of Il which reads as follows: for ¢, e H let ¢ llp in case that h(-)=
()¢, 9> is positive on M’ and p(e)=p(¢)=s(h).

(2) A pair of normal positive linear forms {w,0 } is «-minimal if, and only if for some
PeS(w), ¢ e S(ag) such that h¢,¢(~ )=< ()¢, > Is positive on M", ¢ = ¢ is the unique ¢’e
S(o) such that hv"p- 2 O and, at the same time, ¢’ = @ is the unique ¢’ ¢ S(w) such that
h:p',(p z 0.

In order to see this, suppose the pair {w, 0} Is given and, according to Appendix 7, @
€ S(w) and ¢ €S(o ) have been chosen such that <, o> =h(e) = hily = PM(w.a)‘/z, with the
linear form h(-)=<(-)¢, > on M'. As we know h z 0. Then, either Proposition 6.7/(a) is
fulfilled, and then the pair is «-minimal in the sense introduced in Section 1, or (a)
does not hold. Since h is positive, in the latter case necessarily p (@) > s(h) or p\¢) >
s(h) have to occur. Put this case and suppose p{(¢) > s(h). Let us define

H(B8)=s(h)Y +expi®@{p(Y) - s(h)})y¢, for O e R.

Then, ¢{B8)ec S(o), for any 6 ¢ R. Moreover we have h9(~) =< ()Y, p>=h((-)s(h)) +
h((){p(g) —s(h))) exp iO, for any G ¢ R. Since h((:)s(h))=hand h((-}{p'(¢) - s(h)))=0

are fulfilled, we get h~ = h for any 6 ¢ R. Since by assumption of this case we have
{p(¢) -~ s(h)} ¢ * O we see that ¢’ = ¢ is definitely not the unique ¢ ¢ S(o) such that
h‘p'q_,~ (-) = <( ) ®> is positive. Every choice of 6 ¢ [0, 2xr) yields another ¢’ = ({8)¢

S(o) with hq),d;' = h® =-h2o0. Analogous arguments work in case that p'(@)>s(h)
occurs. In this case the conclusion is that ¢’ =@ is not the unique @' such t,hgt, h¢,~'4‘ z 0.
Hence, If {w,0} is not «-minimal in the sense of Sectlion 1, the positivity requiremnt
for,hw"p does not fix uniquely the relative position in H of the representatives ¢ and ¢
to each other . On the other hand, let us suppose now there exist ¢' + ¢, with ¢, ¢ ¢
S(o), such that both hq,"p 2 O0and hq,"p- z O are satisfled. As we know from Lemma 1.1 we
have

Il hg,g h=lhg gl = Ppglew, o)/,

Let w ¢ M' be the partial isometry with w®w =p'(¢) and ¢’ = w¢ . We then have h‘?»‘V
=Ry hg ¢ =hg g ((-)W). Since both hy, 4, and hg, 4 are positive and llwll s 1 holds, we can
apply a result of [20: 1.24.1 ] saying that in our situation at hand h¢,4:‘ s hg y has to be
followed. Since both functionals are positive and of the same norm, necessarily hq:,‘p’
=h¢,'¢ has to hold. But then, by the uniqueness of the polar decomposition we may
conclude that w s( hq,'¢)=s(hq,'4,) holds. Assuming p'(¢)=s( h¢‘4,) we have to follow
that w = p'(¢), i.e. ¢’ = . This Is in contradiction to our suppositions. Hence p'(¢) >
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s( hp,‘p) has to be true. But then, according to Theorem 5.1 /(i) and Proposition 6.7/(a),
(c), {w, o} can not be « - minimal in the sense of the definitlon given In Section 1.
An analogous conclusion has to be drawn in case of ¢’ +¢p, ¢’ ¢ S(w), with h‘P'.Q'l z 0.
Hence, what we have proved now is that {w, d} is « —minimal if and only if for some ¢ ¢
S(w), ¢ € S(o) such that hq,,4,(-)=< ()¢, > is positive on M’, ¢’ = ¢ is the unique ¢ e
S(o) s}uch that hq,"p' 2 O and, at the same time, ¢’ = @ 1s the unique ¢’ ¢ S(w) such that
hq",(]l 2 0. .

(3) Suppose {w,0) is «-minimal, and @ €¢S(w), ¢ ¢S(g) have been chosen such that
< ¢,w>=PM(w.a)1/2. Then, we have ¢ Il . With other words, Iin case we know that w
and ¢ form a ‘« - minimal pair, for any given @ ¢ S(w) there exists exactly one ¢’ ¢ S(g)
such that (clz',«p)=PM(w,o)‘/2. This unique element ¢’ = ¢ of S(o) is the @-relative
representative of o .

In fact, this follows from (2) since ¢’ = ¢ is unlquel); determined by the conditions
¢’ ¢ S(o) and h¢'¢- 2z 0. According to Lemma 1.1/(1) h¢,’4,' 20 is equivalent with < ¢’ >
=hg g (€)= llhg g ls = Ppg(w, o)/ 2 The rest follows with view to Remark 5.2/(2).

Note that by (2) the usage of the term «-minimality of a pair {w, 0} as it was men-
tioned in the introduction ( cf. Section 0) is now verified. This says that the character-
ization of « - minimality we have been using in the introduction amounts to be equival-
ent with the definition given at the end of Section 1 . The difficulties with Proposiion
6.7 or the seemingly sound redefinition of Il in Remark 6.8/(1) arise from the fact that
for arbitrarily given vectors ¢, ¢ € H it is not easy to verify whether h is positive or, if
this is the case, whether p'(@)=p'(¢)=s(h) occurs. But the criterion (and therefore
also Remark 6.8/(2) and (3)) becomes easily applicable in the context of perturbations
of an existing relation ¢l .

Bxample 6.9: Let ¢, pc H\{0} be vectors such that ¢ Il p. For @,f ¢ R,let p(a,B)e H
be defined as p(a,B8)=a ¢ +Bp. Then, p(a, )i @p(a’,B’), for any a,B8,a’,8’ R, .

Proof : Suppose a, 8, a’, 8" ¢R, are chosen according to our assumptions. Let us look
on the linear functionals h' h, w', o' defined on M’ by h'(-)=<(- )p(a,B), p(a’,B ),
() =), ed, 0'(- )= (), >, o'(-)=<(-)¢, ¢, respectively. Then,

h'zaa’'c’'+ BB’ w +laf'+Ba’) h,
where we used that h*=h 2 0, due to ¢ Il p and Poposition 6.7. Since aa’, 88, (af’ + fa’)
¢eR, and h, o', 0'e M',, we deduce h'2 0. By our assumptions and Proposition 6.7, p'(p) =
p'(¢)=s(h) holds, and since‘s(w')=p'(<p) and s(o')=p'(¢), we have s(w')=s(c’)=s(h).
Thus s( b')=s(h) has to be valid. Due to p(@)=p(¢)=s(h)=s(h’) once more again,
and by the construction of the vectors ¢(a, ) and @(a’,3’), we see that s( h')p(a,B)=
pla,B) and s(h)p(a’,B’)=p(a’,B'). Hence s(h)2p(p(a,B)) and s(h)2p'le(a’,B’)).
Since in our case s( h')=s(|h'|)=s{|h'®]), and because s(| h'|) s p'(p(a,B)) and s(| h"*|)
s p'(p(a’,B°)) follow as usually from the construction of h’, we finally can summarize
that s(h')=ple(a,B)) =ple(a’,f’)), with i being positive. Finally, an application of
our Proposition 6.7 now yields ¢(a,8)llp(a’,8°) B

Another quite useful application of our criterion is in the following situation.

Example 6.10: Let ¢, ¢ H be vectors such that ¢l ¢.
(1) Suppose a € M is invertible. Then, a ¢ lla®p .
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(2) Suppose u € M is a partial isometry such that u*u 2p(¢) or u"u 2p(p) holds.
Then, u¢ Il up. '
(3) Suppose be M'. Then, by |l be.

Proof: Let ¢'=a"l¢ and ¢’ = a"p. Then, since a ¢ M is invertible, p(¢’) =p'(¢) and
P'(@’)=p(p) have to hold. Let hand h’'be defined on M' by h(-)=<(-)¢, 9> and h'(- )=
<()¢, @° >, respectively. Then, for any xe M', h'(x)=<axa~ ¢,9 > ={x¢,p D=hix), i.e.
h’=h. From y |l ¢ it follows by Proposition 6.7 that h 20 and s(h)=p'(¢)=p'(¢). Hence
s(h’)= p'(p')=p'(¢’) has to be fulfilled. By Proposition 6.7 ¢’ ll ' follows. The second
part is obtained by an analogous argumentation. To see (3), let ¢'= by, ¢’ = bp and let
‘h and h'be defined as in the proof of (1). Let g be the orthoprojection onto the range
of bs(h), i.e. q is the left sdpport of bs(h). Since s(h)=p'(p) =p(¢) holds, we have
p(¢)=p'(bd) = p'(bs(h)y)=q =p'(bs(h)p)=p'(bp)=p(J’'). By the meaning of q and
since h'(- ) = h(b"(- )b) holds, we see h' 20 and h'(q)=h(b"qb)=h( b*b)=h'(e), i.e.
s(h')sq. On the other hand, for z =q - s(h’) we have 0=h{z)=h(s(h)b°zbs(h)).
Hence, we have s(h)Uzbs(h)=0. The latter implies zbs(h) =0. From this and from the
meaning of q we infer that bs(h)=s(h’)bs(h). Hence, s(h’)2q. Taking together these
facts gives p'(¢') =p(¢' )=s(h’)=q. An application of Proposition 6.7 now yields the
result B

Remark 6.11: The assertion of Example 6.10/(1) remains valid If in the assumptions
a is supposed to be a densely defined, closed, invertible operator on H which is affili-
ated with M, and ¢eD(a '), @eD(a%). In fact, under these assumtions a 'x 2 xa !
for any xeM'. Hence, a 'x¢ =xa ¢, and thus hix)=<xa t¢,a@>=<a xy ap>=
<x,@>=h(x) for any xe M'. Now, In the polar decomposition a=ulal of a we have uc
U(M) and |al is a selfadjoint, invertible and positive operator affillated with M. Thus,
also the conclusion that p'(a ¢ )=p'(¢) and p'(a”p) =p'(@) hold remains valid. Also it
is easy to see that the assertion of Example 6.10/(3) remains true for a densely defined,
closed operator b on H which is affililated with M'and ¢ and ¢ with @, ¢ e D(b).

Let us suppose now that {w,0) is «<-minimal, and assume peS(w)and ¢eS(o) are
given. Let h be defined on M' by Ah(-)=<(-)¢,@>, and let h=R, | h| be the polar
decomposition of h. Then v ¢ M is a partial isometry with v*v =s(|A|), vv*=s(|A*]).
We define ¢'=v*¢. By Remark 2.2, (2.3) and by our assumptions we have s(|h|)p = ¢
and ¢'¢ S(o). Hence, PgIss(lhl) and p(p)ss(|h]). Because |h I(-)=<(- )"\ @D is
positive, on the other hand, p'(¢')2s(|hl) and p'(@)2s(|k|) have to be valid. Let be
defined h'(-)=<{(-)¢, »> on M'. Then h’'=| h| is positive on M" and p(¢')=s(h')=p'(p)
is fulfilled. An application of Proposition 6.7 then yields the following

Proposition 6.12: Let {w, 0} be «- minimal, and assume pe¢S(w)and PeS(c). Let h
be defined on M* by h(-)=<(-)¢,¢>, and let h=R | h| be the polar decomposzt}on of
h. Then, v* ¢ |l p holds.

Note that this result has been proved implicitely already in course of the proof of
Theoem 5.1 (cf. also Remark 5.2/(2)). We shall refer to the partial isometry §(p, ¢)=v
as the relative phase between the representatives ¢ ¢S(w)and ¢ €S(o ). According to
the definition, we find that the ¢ -relative représentative ¢’ of o (cf. the definition of
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this term in Remark 5.2/(2)) is obtained from ¢ by means of the formula ¢'=5(g, ¢)¢.
This shows how the algebraic scheme we discussed in Section O can be accomplished in
the case of a ( standard form) vN-algebra.

Let w,w’ e M' be partial isometries with w*w =p'(@) and w'*w’ = p'(¢), respectively.
We define ®'= wp and ¢'= w'{. Because of w*w =p'(p) the operator w is the uniquely
determined partial isometry r in M’ with r®r =p'(p) and ¢'=re. Hence, by Theorem 5.1/
(iii) from v*¢Y llp we obtain wv*¢Q ll@'. Since ¢ =w’'*¢" holds, we get wv"w™* ¢’ ll@".
Because of w™w'=p(¢), w w™=p(¢'), vw*=p'(¢), v*v=p(p) and w"w =p'(p), ww" =
p(@’), wv*w'™ is a partial isometry of M’ with initial projection p'(¢") and final
projection p'(¢’). Since wv*w™¢’ €S(o), by Theorem 5.1/(iv) and Proposition 6.7 we
have that ge M', defined by g(-) =< (- )wv*w'™ ", @' is positive and s(g)=p'(p’). Let h'e
M, be given by h'(-)=<(-)¢',@'>. Let A’=R,-| h’| be the polar decomposition of h" Then,
by Proposition 6.12 we have v'*¢’ll@’. From Theorem 5.1 /(iv) we follow that vy =
wv*w™ ' Hence g =|h'|, i.e. v""v' =s(|h'|)=s(g)=p'(@’). On the other hand, since
{w, o) is «-minimal, by the criterion from the beginning of this section we also know
that s(| A'*|) =v'v'* = p'(¢"). Therefore, both the partial isometries v"* and wv*w'™ have
the same initial projection p'(¢’) and fulfil v'* ¢’ =wv*w™¢’. From this v"*=wv*w"™ has
to be followed. Summarizing we get the following

Lemma 6.13: Let {w, 0} be «- minimal, and assume ¢, ¢’ ¢ S{w)and ¢, ¢ € S(o ). Let
w,w'e M' be partial isometries with w*w =p'(@), w*w’' =p'(J) and ¢'=we, ¢'=w'.
The relative phases between @, ¢ and @', ', respectively, transform into each other by
the law

S(p, ') = S(wp, w) =ws(p, PI)w'™, (6.3)

We want to comment once more on the relative geometry of « - minimal pairs. From
Definiton 5.0 and Theorem $.1/(i) we know that for a «~minimal pair {w, 0} the relation
s{w)~s(o) holds. We will give an example showing that the relations s(o)<s(w)
(i.e. s(o) ss(w) and s(o) +s(w)) and s(w) ~ s(0) can occure for a « - minimal pair. This
then proves that even in case of s(0) s s(w) (cf. the corresponding parts of the asser-
tion of Lemma 6.1 ) equality s(o) =s(w) is not necessary in order to assure that {w, o}
be « - minimal ( but compare this to the special situation described in Example 6.2/(2)).
On the other hand, by Theorem 5.3 one can easily provide examples of pairs {w, o} with
s(o)<s(w)and s(w)~ s(o) fulfilled, which are not «-minimal (note that this requires
M to be an infinite vN-algebra). In fact, suppose H to be separable, and M to be infi-
nite. Then, there are orthoprojections p, q such that g < p and g~p,and o, peM,, with
s(o)=q,s(u)=p - q. We define w = o + ¢ . By Theorem 5.3/(1) we have {0,0} « {w,0},
with w # 0. Hence, {w, 0} is not «-minimal.

Example 6.14 : Assume M = B(H), with separable, infinite dimensional H, and be
{wy )} a maximal family of mutually orthogonal, pure normal states on M. Let p be a
minimal projection in M such that w;(p)#+0, for any k. Let {g} be an arbitrarily
chosen sequence of strictly positive reals converging to zero. With 8 = Y reitw(p),
let us define Ay = £;8 ~ w(p). Then, w= T 2, A w is a faithful normal state. More-
over, {w,0} is « -minimal for any normal state o with s(og)=p*.
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Proof: Let o be a normal state with s(o)=p* Let y be the uniquely determined
pure normal state with s(y)=p. Since s(w)=e, we have s(o)ss(w). According to
Lemma 6.1 we have o =0, provided {w,,d,) is the «-minimal pair which is uniquely
associated with {w,0}. Let w,=w - w,. By Theorem 5.3/(3) we have w, L 0. Hence, s(w,)
is zero (and then w = w,) or s(w,) =p. In the latter case we had w,=Au for some positive
A, and w,=w - Ap. Let p; be the support of wy. Then, we have w,(py )=l py) -Apu(p =
Ag-Ap(ppgp). Since p, p; are minimal projections, we have pp,p=t(pp;p)p and
PrPPx=t{ pyppi)pi. where tis the canonical trace on M. Therefore, ulpd=ulpprp)=
t(ppp)=tippp) = wp(prpp) =wi(p). Hence w,(pp)=Ap-Awp(p)=2p-2A2; B8 e 1=
Al = 2B £;71). Since g, — 0 and w, has to be positive, A;(1 - A8 £,71) 20 has to be valid
for any k. The latter implies A =0. This is in contradiction with the suppositions of the
case in question. Hence, only the case s(w,) =0 is possible, i.e. v =w, 8§

As mentioned in the introduction, the structure of the skew form I(w, o) reflects some
aspects of the non-commutativity in the pair {w, o}. According to Definition 5.0 and Theorem
5.1 this is evident at least in case of a «- minimal pair. In this case one has the feeling that the
skew phase u(w, o) provides a quantity which estimates how far from mutually “commuting "
the components ‘of {w,0} are. We have to exphin first what commutativity among positive
linear forms should be. We will say that the positive linear form w commutes with another
positive linear form o if I(w, o) is symmetric, i.e. w, 0)=1{0, w). In terms of the geometry of
the representatives we have the following

Theorem 6.15 : Suppose {w, 0} is a « - minimal pair of positive normal linear forms on M.
w commutes with o if, and only if, for any ¢ ¢ S(w) the set

S(ONMeNM,p (6.4)

is non - vaid,

Proof: Assume the set of (6.4) is non- void. Let e S(o) with ¢e¢ M,p M ', p. Then,
P(¢P)sp'le) and p(¢)sp(p) follows. We define A(-) =<(-)¢, ¢> on M *. Because YeM.p
holds, by means of Appendix 2 we see that A 2 0. This together with p(¢) sp(p) yields s(h)
=p'(e) < p'(¢) (cf. Appendix 3). From p'(¢) s p'(p) then follows s(h) = p'(@) = p'(¢). Ap-
plying Proposition 6.7/(a) in this situation shows that ¢ lip. From Theorem 5.1/(ii) we see
that on M we have I(w,0) =< ()¢, > . Because of ¢ ¢ M, p and according to Appendix 2
(in application to M ') we see that I(w,0) 20, hence I(w,o) is hermitian. From Lemma 4.1/(ii)
we then conclude to I(w, o) =I(0, w), i.e. @ commutes with 0. Suppose w commutes with g.
From Lemma 4.1 /(ii) we then conclude that I(w, o) is hermitian. Moreover, by Proposition
6.5 even I(w,0)20 canbe followed. Let ¢ ¢ S(w) be given. Since {w, 0} is «~ minimal,
according to Theorem 5.1/(iv) there is a unique ¢ ¢ S(0) such that ¢l ¢. Hence, by Theorem
$.1/(ii) we have I(w,0) =< (-)¢, #>. Note also that [(w,o) 2 0 implies that u(w, o) has to be
an orthoprojection: u(w, o) = p. By Definition 5.0, (5.1), from ¢ Il  we then have to follow
that p = p(¢) = p(@) holds. By Definition 5.0, (5.2), ¢ e M, pand ¢ ¢ M—Ja follows B

Note also that as a consequence of the proof we have that O{S(a) NMeN M, <p} =1 for
any peS(w) in case of a commuting «- minimal pair {w, o).
We are going to give an example illustrating the notion of commutativity .

23 Analysis, Bd. 11, Heft 3 (1992)
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Bxample 6.16: Let r €. M,, be tracial. Suppose a, b EM,. with s(a)=s(b), and ket w,0
€ M., be defined as - ) =t(a(-)) and o(- ) = £ (b(-)), respectively. Then, w commutes with o
if andonly if (ab-ba)s(7)=0.

Proof: Since s(r)eM [\ M’ holds, without loss of generality we may contend with sup-
posing that s(r)2s(a)=s(b) is fulfiled. Then, slw)=slo)=s(a)=s(b)=p is vaid. By
Lemma 6.1 we know that {w, o} is a «-minimal pair. For £ >0 let us define a.=a +ep and
w(-)=t(a.(-)). One easily sees that

0= wSe , with c, defined by c,=a; Y2(at2bal2)/2 a; V2,
where the inverse a,_ ! is taken with respect to pMp. By Example 6.2 we have
Hag o)) = o lel- D= at2(a¥2ba¥ 22 a7 V2(.)).
Since {w,, 0 } is «- minimal (cf. Lema 6.1), Theorem 4.6 can be applied with the result that

Kw,0)(a(-))

im, Kw,,o)a(-)

Iim, t(a2(a2bal 2% a,V2(-))

W aV2(al/2p a2 V/2,1/2(.)),

Hence, I{w, 0)(a(-)) is a positive linear form.

Suppose now that » commutes with o. Then, following Lemma 4.1/(ii) and Proposition
6.5, I{wy o) has to be positive. The positivity of the form I w,o)(a(-)) then implies that we
have I(w, 0)({ - )a) = H(w, o)(a(-)). Hence also I(&, o) a(-))=Hw,0)(a2(-)a'’?). Note that,
due to u(w,0)=p=s(w)=slo)=s(a)=s(b) ( cf. Definition 5.0 and Theorem 5.1), and
since I{w, o) and t are normal, we have for any x e M

Hw,o0)(x)

Hw, o) s(a)xs(a))

im, Kw,0)(aY2a; Y2xa; Y2aV2)

fim t(a; V2 q1/2( /23 o 1/2) vzavza‘— vzx)

n

t((a¥2bpal/2) V2y),

where we used that 0s a/%a; V2 < s(a) and st-lim, a‘/za; 2 = s(a) holds. Therefore we
obtain

Hw,0)(-) =t((a¥2bal’?) V2(.)). A (6.5)

As mentioned above I(w, 0)(a(- ))=Hw, o)((- )a). Now, according to (6.5) this imples that
alaV2pal/2)VV2 = (g2 a/2) V23 Hence, alsoa{a2ba'?) = (a’2bal/?)a is true.
Thus, we arrived at the relation al/2(ab -ba)a'/2= 0. Since 0=a; “2aV2(ab - ba)aV % V2
holds, in taking the Emit ¢ — O and respecting st-lm, aV23; V2= 5(a)=st-lim, a_ V2,172
we finally get a b-ba = 0. On the other hand, if we suppose that ab - ba =0 holds, for c, we
find ¢, = b/2a; V2. From this then Hw,, 0)(-) = w.(c(- ) =t bY2312(-)) follows. Hence,
in taking the kmit and argueing by Theorem 4.6 we see I(w,0)(- )= t( bV2a Y2(- ). Since
bY2a Y2 > 0 and tis tracial I(,0) 2 0 has tobe fulfiled. But then I(w,0) = I(0,), ie. @
commutes with o i
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7. Some auxiliary results

In this section we shall show how we have to deal with the general C*-algebraic case.
Suppose A is a unital C*-algebra, and w,0 ¢ A®. Let {r, H,,2)} be the (w +0)- GNS-
representation of A. Then, {x, Hn} is w, o-admissible. Let p be the orthoprojection of
n{A)"* with pHpn = [n{A)'2], and define M = pn{A)"p, H=[x{A) '(2). Then, Mis a vN-
algebra with a cyclic and separating vector on the Hilbert space H. Let ¢ ¢ S(x,w) and
¢eS(, 0), and suppose w,, o, to be defined over M by

012, 95, 0,(-)=C (), D,

respectively. By Lemma 1.1/(i) and in using Appendix 7 we find partial isometries v,w ¢
M’ =m(A)p such that v*v=p(p)pand w*"w =p(¢)p and

Prl @y, 0,072 = wip, v > = sup {I(z¢,¢)|: zeM' |z sl}.

Now, obviously we have vp ¢ S(w,) and w¢ € S(o,.) fulfilled. In applying Lemma 1.1 /(i)
and Appendix 7 once more again we realize that we are allowed to suppose that v, w'e
r{A) exist with v'"*v'=p'(vp) and w™w'=p(w¢) and

Palw,0)? = Cww, vived = sup {I(zwcp, v l: zem(A) ", |z || sl}
2 Kw,vpd| = <wip, vpd = Pple,, 02,

i.e. Po(w,0)1722 Py (w,,6,)172 holds. On the other hand, m = v*v'*w'w e M(A)p =M,
with ||lm| <1, i.e.

Palw,0)2 =<wwd, vivp) = <md, 9> s Ppgloy, PRI
by Lemma 1.1/(i). Therefore we conclude that equality has to occur:
PA(&),U) =PM(U”,0"). (7.1)

We might continue our conclusion in this way (making use of Remarks 2.2, 3.2, 4.5 and
(7.1)) to see in addition that

Hw,y o) prl-)p = Iw,o0), (7.2)
{w, 0} is «- minimal over A if. and only if {w,, 0.} is « -minimal over M. (7.3)

Hence, many of the results of the Sections 4 - 6 which have been derived in the special
case of a vN-algebra with cyclic and separating vector persist to be valid (with
obvious modifications) in the general case of a unital C*-algebra and arbitrary pairs
of positive linear forms and «-minimal pairs of them, respectively. We omit detailed
formulations of these results which are heavily based on (7.1) -(7.3).

APPENDIXES

In this section we collect and prove some auxiliary technical facts and results we have
need for throughout this paper. Suppose f is a positive normal linear form over
some vN-algebra on H. Then, the support of fis named by s(f). Suppose now M is a

23+
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vN-algebra over some Hilbert space H. Let M' denote the commutant of M. For a
vector ¢ ¢ H, by p(¢) and p’(¢) the orthoprojections onto the closed linear subspaces

TM gl ={xg:xeM), LMyl = (xg: xe M)

of H will be meant, respectively. Remind that p(¢)=s(f) and p(¢)=s(g), with fe M.,
and ge M., given by f(x)=<{x¢, >, for any xe¢M, and g(y)=<{y¢,¢>, for any ye M".
Suppose now fis a linear form on a vN-algebra M over H, and ac¢ M. Let R, f be the
linear form R, F(-)=f((-)a) over M. In case that f belongs to M, we have the polar
decomposition theorem for f. We remind that by this theorem two assertions are
established. Firstly, there are a partial isometry ue M and a positive normal linear form
g over M such that f =R, g and, secondly, both u and g2 0 are uniquely determined by
the condition u®u =s(g). In the latter situation g =|f | is called modulus of f, and
£l =1} £11l, holds. The decomposition f=R,| f| is referred to as the polar decomposi-
tion of f. Note that in this case also uu®=s(|f*}) is valid, where the adjoint f* of fis
defined by f*(x)=f(x*)for all x ¢M (in this case the bar indicates the complex
conjugation of a complex number). For further details and generalities on vN-and Cc*-
algebras we shall make use of throughout we want to refer to [20], {231 (cf. also (111).

Appendix 1: Let M be a vN-algebra over H. Suppose fe M., and assume f(x)=| [l
holds for some x eM, x|l s1. Then, x=s(f)+m for somemes(f)*Ms(f)*.

Proof: Let y = s(f)xs(f). By our assumptions f(y)=f(x)=|Flly=f(e)=f(y*) = f(x*)
for the positive linear form f, where e means the identity operator over H. Hence, we
have the following estimates :

N2 = 1 Flex) 2 Fx"x) IFl, 12 =1Fey)iZs Fly=y) I Fli

IFIL2 =1 Flex™)2s Fixx®UFl, UFI2=1Fley™) 12 Flyy™IIFl.

Since both x and y are in the unit ball of M, we follow that f(s(f)x*xs(f))=|If |y =
Fls(FAIxx*s(F))and fly*y)= I fll, = F(yy ™ hold, from which we conclude that

s(FIx*xs(F)=y*y =s(f)=yy* = s(FIxx*s(f).

According to the definition of y the latter also shows that s(f)x*s(f ) xs(f)=0=
s(f)xs(f) x*s(f). Hence s( f)* xs(f)=0 =s(f)xs(f)*, which also means that
xs(F)=s(Ff)xs(f)=s(Ff)x=y Let x =a +ib, with selfadjoint operators a,b ("i "
means the imaginary unit of the complex numbers C). Since both x and x¥* commute
with s( f), and since we have a = -12-(x+,\"') and b= ;—l(x- x"), both a and b commute with
s(F), too. Hence s( £) =5 s(F)(x"x +xx™) =s(F)(a2+b?) =(as(F)2+(bs(Ff))? where
we used that x"x + xx*=2(a2+b?2) holds. The elements as( f) and bs( f) are hermitian
with f(as(f))= ;—(f(x) +f(x") =|Iflly=F(e)=F(a). Since a is in the unit ball, we get
the estimation f(e)2=f(a)2<f(a2) f(e)sf(e)?,i.e. Fla?)=f((as(f))?)=F(e) follows.
Since (as( f))2 is positive, we have (as( f))2=s(f), and s(f)=(as(f N2+(bs(f)2
then implies bs( f)=0. Thus, the partial isometry y has the form y =xs(f)=as(f).
Especially, and according to the above mentioned, the latter means that y is hermitian
with y*y =y2=s(f) and f(y)=F(as(f))=Fle)=F(s(f)). But then, s(f)-y 20 and



Geometry of Pairs of Positive Linear Forms 329

f(s(f)-y)=0 have to be fulfilled. Since fis positive and s( f)-yes(fI)Ms(f) we get
s(f)=y. This means s( f)=xs(f)=s( f)x. We finally get the desired decomposition of
xas x=xs{F)+xs(f) =s(F)+m, withm=xs(F) =s(fPxes(F)Ms(f) 1

Appendix 2: Let M be a vN-algebra over the Hilbert space H. Let {§, ¢ be vectors
taken from H. Suppose a functional h is defined over M' by h(- )=<(: )p,¢>. The
following conditions are mutually equivalent: ’

(1) h is a positive linear form.

(i1) there exists a densely defined, positive, selfadjoint linear operator F which is
affiliated with M and such that p(@)¢ = Fe.

(i) p(plpeM,p.

Moreover, in case that p(p) ’=p( ¢) the Fin (ii) can be chosen to be invertible.

Proof: We are going to show the net.of implications (ii)— (iii)— (1)—(ii).
Assume we have given Fas described in (ii). Suppose F =f°°°/\e(d,1), where {e(1)} C M
is the F corresponding resolution of the identity. We define Fn=fonle(d1),'l'hen, F,eM,
and p(@)¢=Fp =lim, F,p, i.e. (iii) follows. Suppose (iii) to be valid. Let {a,}C M, be a
sequence of non- negative elements of M such that p(¢)¢ =lim,a,p. For any y eM’
our conclusion is

hiy*y) =<yp,yd> = plolyp, yp> =< plo)yp, y> = yp,yp(p)>
=lim, <yp,ya,e> = lim,{ya," %p,ya 29> = lim,ll ya,' 20122 0.

Hence (i) is seen to be true. Suppose (i) to hold, i.e. h is a positive normal linear form
over the vN-algebra M'. By definition of h we see h(p{p))=h(pi¢))=h(s(h))=h(e)
= || A ll,. Hence p'(@)2s(h) and p'(¢)2 s(h). Let the orthoprojection z be defined as z =
p'(¢)-s(h). Then, for any x,y ¢ M'we have

h(zx"y)=h(s(hXzx"y ))=0=<yp, xz¢>.

From this we have to conclude that [M'z¢1C p(p)H. This says that p(z¢)sp(p). We
define a linear subspace D of H by D =ILM'p1@®p(p)H. Since p(p) projects onto
{M'p] we see that D is dense in H. Assume ¢ p(p)*H and x ¢ M'. Then, x¢ +§ =0 if,
and only if, xp =0 and § =0. Note that x¢ =0 is equivalent with xp'(9)=0. Due to
p(p)zs(h) also xs(h)=0 has to be valid. According to this we see that p(p)x¢ =
ple)xp(P)g=ple)xs(h)p+p(p)xzd=pl(plxz¢.Since xz¢ e p(p)*H, p(p)x¢=0can
be followed. To summarize, what we have shown is that xp = 0 always implies p(p)x¢
= 0. This proves that F, given by

Fo:D>yp +5=9 v F,9=plplyp+5 eH

for any y e M" and any 5 e p(®)*Hyields a well-defined linear operator acting from the
dense domain D into H. Let ue U(M’) be an element of the unitary group of M. Then,
uD CD, and for 9=yp +5with y e M and § ¢ p(p)*H we see that

Fou3 = Fy(uyp +p(@)ud) = p(pluyp +p(@)us = ul(plelyp +8)=uF,3.

Hence F, C u®F,u, for any ue U(M'). Moreover, if 3 =yp +8 with ye M' and Sep(p)*H, we
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_see that
< F;,S,«S) =<plelydg +§, yp+8> =<plply,yp >+<4,8>
= <yd, plolyed+118112 =<y, yp(@lp>+ 118112 =hiy*y)+II51I220,

due to the supposed positivity of A. To summarize, we have proved that F, is positive,
and thus also symmetric, on the dense domain D, with F,=u"F,u|p, for any ue U(M’).
Two conclusions can be drawn from these facts. Firstly, the Friedrich’'s extension F
of F, exists as a densely defined (say on the domain of definition Dg), positive,
selfadjoint linear operator over H. Secondly, due to the uniqueness of this extension,
from F, =u™F, u|p, for any u ¢ U(M’), in fact F=u"Fu has to be followed on D, for any
ue U(M") (and thus also uDg C Dg has to hold, i.e. Dg is invariant under the action of
the unitaries of M'). This means that Fis affiliated with M. Moreover, by the definition
of F,we get p(@)¢y =F,¢p =Fp. This completes the proof of (i). In order to see the
validity of the last assertion we remark that p(¢)=p(¢) implies that

range(F) = F(Dg) D Fy(D) = p(p){M'¢1® p(p)*H = [M'¢1Dp(y)*H.

Since H = IM'¢1@®p(¢)* H, range(F) is dense within H. But then, by standard con-
clusions, one can be assured that F ~! exists. Since the properties of being positive,
selfadjoint and affiliated with M are hereditary ones, the assertion follows

Appendix 3 : Let M be a vN-algebra over a Hilbert space H. Assume ¢,¢ ¢H are
vectors with p(@) < p(¢). Suppose a linear form h on M’ is given as h(-)=<(-)¢§,9>. In
the case that h is positive we find s(h)=p'(@)sp'(¢), and p'(p)=p'(¢) follows in the
case of p(p)=p(¢).

Proof: Since h is positive on M', Appendix 2 applies and gives p(¢)ee W The
assumption p(p) sp(¢) implies p(¢)p =@. Thus, p ¢ M, has to be valid. Hence, as:
consequence of this we conclude that p'(¢)s<p’(¢). Since, by definition of h, s(h)s
p'(¢)and s(h)sp'(p), s(h)sp(@)sp(¢) follows. In defining z = p'(p) - s(h) one easily
sees that 0 = h(zx) = {x¢,zp>, for all x e M" The conclusionis that zp € p(¢)*H C
p{®)*H. On the other hand, since z ¢ M "we have zp ep(@)H. This implies zp= 0. Since
z<p'(p) within M', zp = Oyields z = 0. This proves p'(¢) =s(h), and s(h)=p'(p)sp(¢)
is seen. Note that, as a consequence of the assumption h 2 0, h is hermitian. Therefore
also h{(-)=<(-)¢,>=<(")p,¢>. Hence, in case of p(@)=p(¢), by interchanging the
roles of ¢ and ¢ we have to conclude as above that, in addition to the yet proven s(h)=
plo)sp(y), also s(h)=p(¢)sp'(p) happens to be true. Thus, s(h)=p(¢)=p(p)
holds in case of h20and p(p)=p(¢Y) B

Appendix 4 : Let M be a vN-algebra over the Hilbert space H, and suppose @, ¢ e H
with p(p)=p'(¢). Let F=R,| F| be the polar decomposition of the linear form f over M
given by f(-)=<(- )¢, @>. Then, p(u*P)=p(P), uu®=s(|f*|)=p(¢), and t*u=s(|f|)=
pl@) are fulfilled.

Proof: We have F*(-)=<(-)p,¢>. Let F*=R | f*| be the polar decomposition of ™.
Then, | F*|(-)=< (- )v*p,¢>, and s(| F*|)<p(¢) is clear. Due to | F (- )=<()u™¢, @D,



Geometry of Pairs of Positive Linear Forms 331

and since uu®*=s(| F*|), we see that
x> = FIx)=R,| FIx)=<xuuP,p>=Lxs(| F* ), @,

for any x e M. The latter means that <s(|f"|)*¢,yp> =0 for any y ¢ M. Hence, we have
s(|F*)*¢ e ple)tH. On the other hand we have

pP)IsCLE*) ¢ =stIf*)* plP)p =s(I1F )¢, ie. sUIF*])¢e plp)H

Taking together these facts yields s(|f*|)*¢ =0, and we get ¢ =s(|f*|)¢. This shows
two facts to hold. Firstly, we must have that s{|f*|)2p(¢), and, in view to the above
mentioned, s(|f*|)=p(¢) has to be valid. Secondly, ¢ =s(|f *|)¢ =uu™¢ implies that
p(¢)sptu*yd). Since p(u*¢P)sp'(¢) holds by triviality, p(¢)=p(u*¢) has tobe valid.
Together with our assumptions we finally see that p'(9)=p(¢$)=p'(u*¢). Let us look
now on the normal positive linear form | f [(- )=<{- )u*¢, ¢> over the commutant N’
of the vN-algebra N =M'over the Hilbert space H. The equation p'(¢)=p'(u*¢) with
respect to M reads now with respect to N as p(@) =p(u*§). Thus, Appendix 3 can be
applied with respect to the vN-algebra N. The result is that, with respectto N, s(| f|) =
ple)=plu*P). With respect tothe vN-algebra M the latter reads as s(|f |)=p(p)=
p(u*¢). This proves our assertion §

Appendix S : Let M be a vN-algebra over the Hilbert space H. Assume g¢ M,, and
bemeM, [|m |l < 1. Suppose R,,*g is positive. Then we have |g|2R,*g, and | g|=R*g
occurs if and only if llgly=IR*g .-

Proof: Let g =R, | g| be the polar decomposition of g, and define f by f =R, ,*g.
Then f =R,_,»,l gl. f being positive especially means that f is hermitian, hence we can
apply a technical fact (cf. [20: 1.24.1]) to the situation given by f =R, »,| g|. The result
says that f<|lnf*u |l | g|. Since both m and u are in the unit ball of M, fs|g/| follows.
Supposing that f and g have the same norm gives f(e)=|gl(e), due to llg li=1llg! l;.
Hence, fs|g| implies f=|g|. The other direction is trivial B

Appendix 6 : Let M be a vN-algebra over the Hilbert space H. Assume geM,, and
let g=R,|lg|be the polar decomposition of g. Suppose R,,*g =|g| for some meM,
lmlls1. Then we have ms(lg|)=u.

Proof: We define f=|g| and x =m"u. fis positive with f =R, f. Since [|x|l s1 and
I £ll,=F(e)=F(x), Appendix 1 applies to this and proves that xs( f)=s( f)xs(f)=s(F).
Because of u*u =s( f) we may conclude as follows:

x=m*u=m*us(f)=s(F)=s(f)=s( f)m"u.

Hence u*=s( F)u®=s( F)m"s(|g"|), where we used that uu®=s(|g*|). This means that
s(f)=u*u=s(fFIm*s(1g"| )ms(F)ss(FimM"'ms(f)ss(f),i.e.

s(F)m*s(1g®)ms(f)=s(F)n*ms(F).

Hence s{|g*|)*ms( f)=0. This implies u=s(|g*|)ms(f)=ms(f)=ms(igl|) A
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Appendix 7 : Let M be a vN -algebra over the Hilbert space H. For given vectors ¢, ¢
¢H let B be defined as B =sup {|I<K¢,p>|: KeM', | K llst }. There are vectors @', y’¢eH
such that { xp, > = x¢', ¢' >, < x¢h, ¢> =< x¢", ¢' >, for all xe M, and B=X ¢’ ¢'>.

Proof: We define a normal linear form h over M’ by setting h(x)=<{x¢, p>, xeM"
Then, =1 h ll,. Suppose h=R,,| h| is the polar decomposition of h. Because of | h|=R*h
and A lly=lll A, we see that B=< u™¢, p>. We are going to construct partial isometries
v,we M such that

viveple), w*wapi(¢) and <u®¢, oD =< v*wy, @>.

Then, ¢ =vp and ¢ =w¢ can be taken to meet our demands. Let z be the central
projection of M such that M'zis finite, and M'z* is properly infinite. To be non-trivial,
let us assume O <z<e. Since s(|hl)=u"uand s(| h*|) = uu®, with ue M’, we have s(| h|)
~s(| A*) in the vN-algebra M" Hence zs(|h|)~zs(|h%|) within the finite vN-algebra
M'z. This implies zs(|A|)* ~zs(|h%|)* in M'z, too. Now, let m be a partial isometry
of M' with m*m =zs(|h|)*, mm®=2zs(|h*|)*. Then v3=uz +m is unitary in M’z, and
since s(| h})m® =0, we are allowed to conclude that

v o> = hivy) =lhltvau) =t hI(sCLh) vaus(|h|))
lAl(sO A (zu*+m®us(|Al))
= lhl(s(lh)zdus(| A1) =|hl(2) = <zu™¢, 9.

Thus, what we have proved is the relation <v3'¢, > =< z<*¢, >. Since M'z* is properly
infinite, we can find mutually orthogonal orthoprojections p; and p, in M'z* such that
P1~p2~z*and py + p, =z*. We find partial isometries vy,vo¢ M'z* with

vi"vy =(ple)-stlhINzt, vy spy, va va=p'(P)z?t, vava' sps,
where we used thatp'(@)2s(|h|). Let us define v =v; + vou +v3 and w =v, + z. According
to the definitions of vy, v5,v3, and since v{*v, = 0= v3'v, holds, one easily infers that

viv = vty r Ut vavaut tvg vy = (ple)-s(thI Nzt +u™uzt +2

(p(@)-s(lhINz* +s(|h)z* +z = p(plzt+z

and w*w =v3v, +z =p'(¢)z * +z are fulfilled. Hence, v and w are partial isometries of
M’ such that v"v 2 p(@) and w"w 2 p'(¢). Moreover, since also p'(¢)2s(|A"|) holds,
we get that vV*w=u"vyvy + v3=u"p(¢)z* +v3 =uz* + v3. Hence

<V'wi, > =< Uz g, > +<v3d, o> =< uz g, > +<u"z¢ @D =< u™P, 9O,

due to the previously derived relation <v3¢, ¢>=<u"z¢y, ¢>. This closes the proof in
case of M’ with non-trivial finite and properly infinite parts existing. Note that the
proof has been organized in such a way that makes evident how to deal with the
remaining "pure” cases of a finite or properly infinite M'. Hence, we can take our
assertion as verified B

Appendix 8 : Let { f,,} be a sequence of normal linear forms over a vN-algebra M
such that f,,— f in norm. Then also | f,,| — | f| in norm.

For a proof the reader is referred to [23:111.4.10),e.g. B
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