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Some aspects in the geometry of pairs of positive linear forms on unital C 4_ algebras 
are considered. Especially, the geometrical relations among the vector representatives 
of the forms of such a pair within a representation, where both forms can be realized 
as vectors simultaneously, are studied and discussed in detail. The results obtained in 
this part extend early results of H. Araki and are intimately related to such functors 
like the Bures distance and the algebraic transition probability considered by A. Uhlmann 
and others. The results will be used to discuss and to investigate sonic extensions of 
geometrical concepts, which have been found to be of interest recently in Mathematical 
Physics in context of the problems of the so-called geometrical phase. 
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0. Introduction 

Let H be a complex Hilbert space, with scalar product <,>. In all what follows we 
suppose that < .,.> : H  H3 ( f, i)(-4 < , i> behaves linearily with respect to eand anti-
linearily with respect to i. The C'-algebra of all bounded linear operators on H will be 
denoted by B(H). Let ca be a vector state onB(H), i.e. w is a positive linear form on 
B(H), normalized to one, such that there exists a unit vector f e H with (x) <x4, e> 
for all x€ B(H). The set of all vectors f which obey the latter will be denoted by S(w). 
Note that, for any given e E S(w), we have S(w) = (A4: AeC, I.)ji}. 

In quantum mechanics vector states are the basic objects for the mathematical 
description of physical states (roughly speaking, in elementary quantum mechanics it 
is supposed that physical states are in one-to-one correspondence to the vector states 
on B(H) for an appropriately chosen H). In this context S(w) is referred to as the unit 
ray of the vector state , and each eeS), which is a representing vector or a 
representative for c, corresponds to a state vector or wave function of the quantum 
mechanical system in question. Suppose now, w and c are vector states. For given 
vectors e€S(w) and 'i ES(a) the number P(,c) =1< e,v>1 2 depends only on the pair 
(,d). Also this number plays a distinguished role in context of quantum mechanics. 
It is the quantum mechanical transition probability between the vector states cu and c. 
From the mathematical point of view, the importance of the transition probability, if 
seen as.a functional on the pairs of vector states or unit rays, is mainly due to a famous 
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theorem of E. P. Wigner on symmetry operations. Wigner's theorem asserts that any 
symmetry, i.e. a map V acting from the set of all vector states onto itself which 
preserves the transition probability: P( r ((j), F(c)) = P( , c) for any pair {w, c} of vec-
tor states, can be implemented by some unitary or anti-unitary operator u on H. This 
means that we can associate with f' some unitary or anti-unitary operator u, with uf € 

S(Y(w)) for any e€ S() and each vector state &. This appears to be one of the basic 
mathematical results on the foundations of axiomatic (algebraic)quantum theory (cf. 
the lectures of R. Jost [18], or (ll] e.g.). 

Let us now consider a pair of vector states (w, c } and state vectors fi7 being 
representatives of them, f E S() and )7 E 5(c). Assume the given vector states are not 
mutually orthogonal, i.e. P(, c) * 0. Then, <i> = eP(,c)' 2 for some uniquely 
determined complex number Sty, ) = e_ ia of modulus one. We call S(,,') the relative 
phase between the representatives and f, whereas f ' = S(, € S(ø) is referred to as 
the 7 -relative representative of the vector state (. Obviously, for the given pair of 
vector states {w,c)the 17- relative representative of the vector state w is the unique 
state vector 0 of the unit ray S() such that < ç(> >0. For some given number n €N, 
let y = I c, w, ... t 	I be a sequence of vector states such that * Wj+ j and wj is not 
orthogonal with	for j = 0,1.... . n, and	= w0 . We call such a sequence loop of 
vector states (at Assume q' E S(a 0 ) is fixed. Then, we construct another state 
vector p(y)ES( 0 ) by the following recursive rule. For 1 = 0 we define Pj = P. For] ^tl 
we define c'j as the p11 -relative representative of wj . Finally we put q(y)q + . In 
practice, however, each of the vector states ø, w1 9 ... , ø, is given by some particular 
state vector	taken from the unit ray S((j). We take F =	= q. Then, having in

mind the above characterization of the relative representative, we easily see that 

have p(y) 8( e0,e )8( 1,	q.

Although the factors 8( , E5_ 1 ) heavily depend on the choice of the sequence (..... 
of representatives fj £ S(	the product of these factors 8( fo , f,,) S( e, Es,) does not 
depend on this choice. In fact, we have S(,, eJ_1 ) = <, 5> 1< fj,	for any j.

Since < e., > <, fo > is invariant under the replacement E —4 Zj e1 , for any Zj £ C of 
modulus IzI = 1, this fact also applies to A(y) A(w0. ... ... ) S( , . Note 
that A(y) is a complex number of modulus one. We shall refer to this number as the 
global phase of the loop y. For n 2 the global phase can be non-trivial, i.e. there are 
loops ywith n a 2 such that My) 1. We remark that the complex unitary invariant 4(y) 
has been considered and discussed (at least in case of a = 2) by V. Bargmann within his 
treatise on Wigner's theorem in [8]. We also note that A has been used there in order 
to decide between both the possibilities of the unitary or anti-unitary implementability 
of a given symmetry Y. In fact, following Wigner's theorem, for a symmetry Y' there 
are only two principal possibilities. Either A((y))A(y) for any loop y (in using the 
notations from above, -t' = M y) is the loop of the vector states !I'((j)), or we find that 
A('F(y))A(y) for any loop y. In the first case t'can be unitarily implemented, in the 
second case only an anti - unitary implementation is possible. In case of dim H ;1 2, due 
to the eustence of loops y with Im 4(y) * 0, both cases occur and describe an intrinsic 
property of the symmetry Y. 

Besides this interesting meaning of A( y ) we discussed in context of the problem of 
the implementability of symmetries there is yet another aspect under which the global 
phase of a loop y can be considered. A loop y, as we defined this term, can also be
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considered as a caricature of a closed curve in the set of all vector states (with the 
restriction that neighbouring states are mutually non-orthogonal). We can imagine 
a variable w, with values in the set of all vector states, which we will force to drive 
successively through the states of the curve y, starting with a state and finally 
ending up with the same state w. Now, let us consider as a local law of transportation 
(or law of conditional choice) for representatives e(w) € S(w) of vector states from one 
vector state w to some next neighbouring (non-orthogonal) state w' the following 
rule: if q =(w) € S(w) is given, then e(c)*)€S(w') is defined to* be the c-relative repre-
sentative of 6f. Note that in our above discussions around A(y) the sequence of vectors 
q) was constructed from the starting vector

' 
4p by repeatedly applying this rule. Let 

now f (w,,) = c be chosen in 5(w0 ). Due to the fat that (y) is nontrivial in many cases 
of loops, i.e. (y)* I or even Im iI(y) tO, transporting e(w) according to the given law 
around the loop y globally will cause an effect of anholonomy. In other words this 
means the phenomenon that if our driving parameter w has rounded the closed curve y 
and w= w is reached again we will in general have that e(w) = p(r) =A(y)q *'. 

For a survey around problems of anholonomy, especially in quantum theory, we 
refer the reader to M. Berry in [10]. Morever, concepts like relative phase and global 
phase in more or less specific situations in physics are sometimes referred to as 
Pancharatnam phase, Aharonov-Anandan phase or Berry phase (cf. [22], [1) and [9]; for 
the mathematician [21] provides a nice short introduction to the phenomenon and gives 
indications of its physical relevance). 

The aim of this paper will be to provide and to investigate some extensions of 
geometrical concepts like relative phase, relative representative and global phase from 
the context of considering vector states on B(H) into the more general context of 
unital C -algebras and their states, or even more generally, to positive linear forms. 
This change into some wider algebraic context mathematically corresponds to a change 
in the physical concepts from a pure quantum mechanics frame into that of quantum 
statistical mechanics. Recently such generalizations have been proposed by A. Uhlmann 
in [26], [30], and have been considered in the set of density operators (cf. [27]- 1291). 

The generalizations we are aiming at will now be indicated. For this sake, let us 
suppose (w, ) to be a pair of positive linear forms on a given unital C *- algebra A. 
Assume (r. H) Is a unital - representation of A on a Hilbert space H such that vectors 
c, çl'€Hexist with w() = <n( ), c'> and a(- = <n )ç&, i'>, i.e. p is a vector represen-
tative (w.r.t. ir) of w, and çliis a vector representative (w.r.t. ir) of c. Such representa-
tions always exist. Moreover, one can show that with respect to ( r. H) the represen-
tatives q and 0 of wand c can always be chosen In such a way that the linear form 
defined by h( ) = ((•), q> on the vN - aigebra ir(A)' (the commutant of ir(A)) is 
positive. This is a remarkable fact on its own. 

But even more than this can happen. It can happen that (P '= is the unique vector 
representing u within I ir, H) such that h 1 . a 0 and, at the same time, p' = q' is also the 
unique representative of w within ( Yr, H) such that h., , a 0. As the analysis shows, if 
this case occurs for a pair I p,	of representatives for (&), a I within (ir, H) such that 

Z 0, then the same fact also happens to be true for any other pair (p S, ) of repre-
sentatives for 1(j, c) within (ir, H ) such that h.. a 0. With other words, this case 
occurs if the positivity requirement for fixes the relative position in H of two 
representatives c and 0 to each other uniquely for the given pair ( w, a). Note also that 
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in this case one finds that to each representative of w within { ,r, H} one can find.a 
representative 27 of ci such that h 2t 0, and vice versa. Moreover, one can prove that, if 
this occurs for a pair of positive linear forms ( ii, ci), this fact is independent of the 
special choice of the representation (it, H) provided both linear forms can be represen-
ted w.r.t. (it, H) simultaneously by vectors. Hence, the occurence of this fact reflects 
an intrinsic geometrical property a pair of positive linear forms can possess. A pair of 
positive linear forms (,c) with the previously described property fulfilled will be 
referred to as a cc-minimal pair. 

For the vector representatives qP and , of the forms &i and ci of a c(-minimal pair 
w, ci) in a representation (it, H ) the notion of relative representatives can now be in-

troduced as follows. The representative c will be referred to as the ci -relative repre-
sentative of ci (with respect to it) if çh' is the unique vector representing ci w.r.t. it 

such that h,. a 0. In this situation we will write rp lI p. By definition, Il ir is symmetric, 
i.e. if 0 is the ci -relative representative of ci (with respect to it), then also p is the - 
relative representative of w (with respect to iv). Note that, by definition of the term 
cc-minimal pair, to each representative q' of w w.r.t. (it, H) there is exactly one repre-
sentative rp of ciw.r.t. (it, H) such that gIIqi. In this situation, let us assume çLc' is an-
other representative of ci w.r.t. (it, H). Then, we find a uniquely determined partial 
isometry v € M A ) such that 0 = vJ.c' and p = vv* is the smallest orthoprojection in M AY 
such that pçLc' cc ', The partial isometry v* = S Gp, //) will be referred to as relative 
phase between the representatives p of w and ' of ci w.r.t. (iv, H). It is evident that 
both the notions of the relative representative and the isometry 8, in a natural way 
extend the notions of the relative representative and relative phase from the special 
context of considering pairs of non-orthogonal vector states on B(H) w.r.t. the trivial 
representation (Id, H) (note that B( H)' = C  in this case) into a C '- algebraic context 
of considering pairs of cc-minimal positive linear forms of some unital C -algebra A 
w.r.t. a representation (it, H), where both forms can be realized as vectors simulta-
neously. 

As mentioned above, for an arbitrary pair I , ci) of positive linear forms on a unital 
C algebra A and given representation (it, H) such that both forms can be realized as 
vectors simultaneously, we have the remarkable fact to hold that representatives q' 
and ip of and ci can always be chosen in such a way that the functional on 7r( A)' 
is positive, but possibly the relative position among the representing vectors is not. 
uniquely determined by this condition of positivity. Assume h.' . ^ 0, where ci' and gic' 
are representatives of the same pair of linear forms w.r.t. another representation 
(it, H'). Then one observes that h,p(e) h.,p . (e), i.e. the value taken by the form 

on the unity e is independent of the special representation iv chosen provided 
is positive. The real	w, ci) = h,( e )2, which exists for any pair ( (j, ci) of positive

F.

 linear forms, characterizes some aspects of the relative geometry of the components of 
the pair (w, ci). This number	(j, ci) can also be calculated without any reference to 
some particular representation. One can prove e.g. w, ci) = inf w(x)ci(x 1 ), with the 
infimum extending on all invertible, positive elements x of A. Note that in the special 
case of some pair of vector states (w, ci) on B(H), and granting the above mentioned 
observation to be true, B(H)	= 1< ci, >1 2 had to be valid for any other two vector 

representatives (ci, ) of the pair of vector states in question. Therefore, in this case 

w, ci) is intimately related to the distinguished transition probability between vector
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states. By considering	c) in a rather general situation we are led to one of the 

concepts of a -algebraic transition probability between general positive linear forms. 

By means of this concept we will be able to give the following characterization of 
e-minimality of a pair { j, 0) of positive linear forms on a unital C *_algebra A: (c), c 
is cc-minimal if, and only if, for any pair { v, p1 of positive linear forms on A such 
that O:s i, w and 0 p!5c the condition )= PA( v,p) always implies v w and 
p c to be true. As mentioned above, for such pairs concepts like (mutually) relative 
representatives and relative phases can be developped and extended consistently with 
the corresponding notions for (non-orthogonal) vector states. An essential part of this 
paper is devoted to investigations of the properties and the geometry of the e-minimal 
pairs of positive linear forms. Among other things we will show that for a cc-minimal 
pair ( a, ci) there exists a unique linear form g on A such that g(e) =	c)1'2 and 

yy)c(xx), for all y,x€ A, are fulfilled. The structure of this linear 
form reflects some aspects of the non- commutativity in the pair { , c). The main 
properties of g are investigated together with the basic properties of the algebraic 
transition probability. 

Within Sections 1 7, which constitute the first part of the paper, one can find the 
proofs of all the facts previously indicated. Whereas in Sections 1 - 3 we will be con-
cerned with the general C*_algebraic context, from Section 4 on the underlying alge-
bras in the investigation will be vN-algebras and the linear forms considered will be 
supposed to be positive normal linear forms. It is only for convenience that the vN-
algebras considered are supposed to act in standard form on some Hubert space. This 
will meet the main cases of applications we will have in mind. Especially, in Section 
S a representation theorem for <c-minimal pairs of normal positive linear forms on such 
an algebra is proved which reads in terms of the unique solution g. Also several other 
characterizations of cc-minimality are given in this context. The problems around the 
definition of the relative representatives and relative phases will be considered in 
Section 6. To simplify the notations, also in this section we shall mainly restrict our 
considerations to vN-algebras and normal positive linear forms. In Section 7 we then 
show how the results of Sections 4 - 6 can be extended from the case of vN-algebras 
and normal positive linear forms to arbitrary unital C'-algebras and their positive 
linear forms. 

For convenience of the reader, some common notations and technical facts that 
belong, more or less, to the mathematical folclore in the field of vN-algebras and 
which we will make use of repeatedly throughout the investigations are explained and 
derived and collected In the Appendix ( Section A). Some of these results and tools 
(especially A.2 and A.7) are mainly due, respective closely related to some of the ideas 
developped by H. Araki in [6]. 

The second part of the paper contains Sections 8 - 11. The results of the first part 
mentioned will be used extensively for generalizing and analyzing some phenomena of 
more algebraic -geometrical type in the normal state space of a vN- algebra. The 
concepts of the global phase, the phase group and holonomy group of a normal state 
of a vN-algebra will be introduced and discussed. The concept of the global phase is 
the generalization of our above considerations relating the invariant ii on (discrete ) 
paths of vector states on B(H). Whereas in Section 8 the discrete case is considered in 
detail, Section 9 is devoted to the continuous case. The latter case is largely based on
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the results of the discrete case. The above mentioned groups both are isomorphic 
respective anti-isomophic to the full group of certain equivalence classes of closed 
(discrete or continuous) paths in the normal state space arising from and ending in the 
state in question. The global phases are, roughly speaking, the members of the phase 
group. The paths considered in the continuous case have - among other things - the 
following property : two states belonging to such a path form a <<-minimal pair if they 
are lying close enough to each other on this path. Hence, both the geometrical and 
topological properties of these paths to a large extend follow from the geometry of 
pairs of positive linear forms which form a <<-minimal pair. The second part of the 
paper is finished with Section 11 where first (essentially finite- dimensional ) examples 
and effects of the theory presented are illustrated. Further examples and applications 
(to AFD- algebras, mainly) are under investigation and will be published elsewhere. 

1. Generalities on pairs of positive linear forms 

Following the line of investigations as indicated in Section 0, in this section we are 
going to introduce the mathematical concept of an algebraic transition probability. Let 
A be a C'-algebra with unit e and topological dual space A. Let and a be positive 
linear forms on A, i.e. u, a € A. Suppose ( yr, H) is some unital - representation of A 
on the Hilbert space H, with inner product <.,.> 

For a positive linear form r on A we define a subset S( ,r, r ) C H by S( 7r, r ) = 
€ H: r(x) = <ir(x)ø, >, Vx e A). The representation I ,r,H } is said to be u,a - 

admissible provided both sets S( r, w) and S( ir, a) are non-void. 
In [12] D.Bures introduced and investigated his 'distance' function dA( (j,a) in the 

case of normal states on a W*_algeba. The definition extends in an obvious manner to 
unital C-algebras and pairs of positive linear forms. Henceforth we shall refer to this 
trivial extension. To give the definition, assume 4P, 0 £ H to be vectors of a Hilbert space 
H. Let fq, and fo be the positive linear forms on the space B( H) of bounded linear 
operators on H which are generated by qP and 0, respectively, i.e. fq,(x) = <xc', q'> and 
f<<(x) = <xl, gI'>, for any x E B(H). Then, the distance d(f,, fq,) between f,, fp is defined 
as d(f9,, f) = II f9, - f<, , IL, with II Ii denoting the functional norm in B(H )*.The Bures 
distance dA( 0, a) between two forms o,a€A'. is defined as the following infimum: 

dA(o,a)	inffd(fç,,f<p): qeS(,r,o), çII E S(ir,a)},	 (1.1) 

where the infimum also extends on all o, a-admissible (,r,H). It is easy to see that in 
a Hilbert space H for any two vectors c' the following relation is valid 

I<c',s>I2={(IIc'II2+IIII2)2_d(fç,f<p)2} 

For given w, 0  A, 	us define the positive real	u, a) as follows: 

o, a) = sup {i< q', 4P>1 2 : c' € S(ir,w), £ S(.ir,a), V w,a-admissible Or, 11)). 

Using (1.1) we see that dA( (j, a) and	(j, a) are connected by the relation 

PA( o ), {(1 I 0 11i + 0d11j) iA ( 0, a) } .	 (1.2)
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In case of states, i.e. positive linear forms normalized to one, the expression PA(&, c) 
had been taken by A. Uhlmann in [24) ( cf. also [25] ) as a definition, of a C'-algebraic 
transition probability. We tacitely shall refer to this notion also in case that w and a 
are not normalized, necessarily. 

Both PA and dA are mathematically well-investigated functors and many properties 
of them are known. Due to (1.2), between both functors and their properties there are 
intimate correspondences. Especially, for the positive linear forms fç and f111 on the 
C_algebraA = B(H) one finds PA(f,,ft11)I< c',cb>1 2 and dA(f9,, fg) = d(fq,, 170 ), i.e. 
A and dA reduce to the transition probability between the vectors considered or the 

functional distance between the pure states generated by these vectors, respectively. 
For a survey on C-algebralc transition probabilities and problems related to them the 
reader is referred to [4) and the references there. Both the notions P and d have been 
used in investigations of certain geometrical properties of algebraic state spaces. For 
instance, in [6] one can find some results which later have been used extensively for 
deriving crucial properties of the functor P( cf. also our Theorem 4.4 and Remark 4.5). 

The starting point of the investigations of this paper willbe a result proved in [2: 
Theorem I and Corollary 1] in case of states w, a on a unital C- algebra A. This result 
persists to hold for non-normalized positive linear forms. For convenience we include 
also a proof. The result reads as follows. 

Lemma 1.1:Let QA( w,c)CA be defined by QA( W,
c){f€A*: If (y+x)I2 

w(yy) c( xx), V x, Y E A } and assume ( 7r, H) is ti, a -admissible. We suppose 4P € 

S(r,) and çL€S(ir,c). Let heMAY. be given byh(x)=<xcl,q>, for all xe MAY. Then, 
QA ( W, a) is non-void and the following assertions hold: 

(I)	11  IIt PA( a,c)"2; 

(U) I f(e)I PA((j,c) 1'2 for any FE QA( ,a); 

	

(111) f(e)	PA(a,c) 1 "2 for some fE QA( w,c). 

Proof : What will be shown first is the existence of F € A which fulfils the 
relations f(e) = c01'2 and If(y*x)I :5 )112 a( xx)"2, for all x,y € A. Let e> 0. 
Let (IrE, HE ) be w, a-admissible such that P. E S( 7r, w) and çt' E S( 717, a ) exist with 

a )1/2 - <ç(, 919 > :5 r. This is always possible to arrange. Let us define f9( ) = 

<ir(- )çLs,lp>. Then, F9 € QA( w, c ) . Since QA( w,c) obviously is w-compact by its very 
definition, the net {9}E>O has a w*_accumulatlon point F € QA( w, a), and f(e) = 
pA ( W, 6)12 follows. Let ( ,r, H) be any w, c-admissible representation of A, and be q' 
S( ir, w) and 0 £ S( ;r, a). Assume now we have given g € A, such that, for any x,y € A, 
Ig(yx )I :g w(yy )1'2 c(xx )1/2 is fulfilled. Working within the -representation 
Or, H), we see that Ig(yx )I5 III(y)91IIIIir(x)II, for any x, YEA. Hence, the map y 
given by y: {ir(y)q', ,r(x)(P)'-4g(yx) cc, for all x,yeAis well defined as a bounded 
by one sesquilinear form from a dense linear subspace of p'(q)H x p'(çb)H into C. We 
extend the form y by continuity to a sesquilinear form, bounded by one, on the whole 
p(q)H x p)H which, for simplicity, will also be denoted by y. Note that for f € H 
we define p( C) as the orthoprojection of M' that projects onto [ir(A)C).There is some 
operator Kc B(H), with Kp(ç1)K Kpi 1) and IIKII :9 1, such that y( f, 71 ) <K(, 27>, 
for any (C, )7 )Ep(q.)Hx p( ( .#)H. Especially, in chosing e= ir(x)çl and = 7r(y)q' for x,y
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E A we see that y( )) g(yx) = <X,r(x)<i, iry)q'>. Since g((yz)'x)=g(zyx) Is 
fulfilled for all x,y,z eA, and since iris a representation of A, the latter implies that 
<ir(y)Kir(x)ç', 7r(z)q'> = <Kir(y)ir(x), ir(z)ç> holds for x,y,z e A. Hence, for any ye 
A we get 

p(c,)ir(y*)Kp(q)_ p(ç)Kir(y)p'(çb). 

Hence, we realize that ,r(y)K = Kir(y) for any ye A. Taking together all these facts we 
arrive at the existence of K e M', 11  II s 1, such thatg(x) < K,r(x), V >, for all x EA. 
From this lg(e)l = l<K,q'>I follows. By the known result of B. Russo and H.A.Dye 
[14) we have {JeM': Of 11s1} = conv1J(M)(uniform closure). Hence we have 
1g(e)1 = l<K4,çi>l :5 sup (1< uçt', cp>I: ueU(M')). Since for any unitary u € U(M') and (Pe 
S(,r, ci) also u/.s £ Mir, ci) holds, 1< uç(i, c>l 

:5 PA(,ci)	follows. Thus Ig(e)l = 1< Kç[', c' 
>1 :5 sup (1< uçL, c>I: u e U(M'))	)1/'2 is seen, i.e. (ii) follows. Hence, if we 
chose g = 1, with the linear form f defined above, then the relation 1(e) =	

)1/2


implies sup {I< ucj', q' >j: u e LAM*)) = PA(c<), 0)1'2. But then, in defining he M' by h( ) 
<( )&, p> and arguing by the theorem of B.Russo and H.A.Dye again, we can 
conclude as follows: 

11  IL = sup ( l<j<, q'>I:f eM', IIJD :51) 

= supf 1< uj.s, c'>l: ueU(M'll=PA((j,ci)1'2 

Hence II h ll =	
1/2• This proves (i)I 

In general, to a given pair ( c, ci) e A' x A there exists more than one linear form 
fE QA( c,ci) with 1(e) = PA(W,C )1/2 To give an example, remind the argumentation in 
the case of A = B( H) and w = I9 ci = fo for vectors ç', çl E H with ç' I çD. In this case both 
f( . ) = < ( . )ç[,, ip > and the 0-form belong to QA(,ci). There are, however, special cases 
where uniqueness of F  QA( (j, ci) with f( e) = A

(
 0

) 1.12 can be proved. To indicate the 
solution of this problem, let us suppose (0,0) e A*+ x A. has the property that for 
positive linear forms w' and ci', with cf !^ u, ci' !^ ci and ) = PA( w' ci'), always w 
= cf and ci = a* follows. Then, (w, ci) will be referred to as a <c-minimal pair, and the set 
of all such pairs of positive linear forms will be denoted by T(A )* ( for a discussion see 
Section 2). Note that on B(H) any pair of non-orthogonal pure normal states yields an 
example of a a - minimal pair. As we shall prove subsequently in case of =- minimal pairs 
uniqueness occurs. 

2. -Tnlnlnial pairs 

In this section a partial order cc on the set of ordered pairs of positive linear forms 
on A will be introduced. Let (v,e) and (w,ci) be pairs of positive linear forms.Then, 
by definition (v,1L)cc(w,ci)if and only ifv0,(Isci and P(v,p)=P((J,a). 

Lemma 2.1: For given (w,ci) eA.,. x A',. there exists exactly one cc-minimal pair (u, y) 
with (v,,,)c(w,c).
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Proof: Let us define a set F(a,a) as r(,c)= {(v,p)€A.xA'.: (v,p}e{,c)}. By 
definition of c< the assertion is valid if, and only if the existence of a (-least pair in 

can be established. This will be done. Let {ir,H} be an ,c-admissible unital 
*-representation of A, and assume p €S(ir,w) and 0 €S(ir,). Let us define the i'N-
algebra Mas M = ,r(A)"( the bar, double bar, means the commutant, double commutant, 
respectively). Suppose first (v, p) a (,c). Then, because of v s w, p sc, by standard 
constructions it is known that t,s €M can be found, with both litli and ilsil smaller 
than one, such that Ax) =<tir(x)p,p>, p(x)=<sir(x)çL,çL'>, for all xeA. We define a 
normal linear form hon M' by h(y) = <y, p>, for any y €W. Let h Rihkih i(( )v) 
be the polar decomposition of h. By Lemma 1.1/(i) and known properties of the polar 
decomposition we have 

111hillj = 1Ih11j = PA((j,c) 1/2 .	 (2.1) 

We note that tl2ç, € S( ,r, v) and s 1 "2 ç1 € SO r, Hence, by the assumptions on the pair 
(v, p) and (2.1) and Lemma 1.110) we can apply Appendix 7 to these particular represen-
tatives of v, p with the result that partial isometries v1 and v2 exist in M' such that 

Therefore, and since I h I is a positive linear form on M', by the Cauchy-Schwarz 
Inequality for positive linear forms and since t, s, v1 , v2 , vaIl belong to the unit ball of 
M' we can conclude that 

III hl I11 2 = ihI(tl'Zvi*v2sl2v)2 

-^ I hI(t) Ihi(v*sj'2vvi v*y s 1" 2 ) :^ ihl(t) ilihI iii :5 iiihl 112. 

From this I h 1(t) = ill hi ll has to be followed. Analogously I h i( v*sv) = Ill hi 11± can be 
derived. Let s(I hi) denote the support of I hi. Applying Appendix I to the situation at 
hand yields that t = s(Ih I) m and vsv = s(l h i)+ m', with in, m' € s(I hi)Ms(i h I). 
Note that vv=s(IhI) implies m' 0. Thus vsv=s(IhI) has to hold. The latter means 
that (e - s) 12 v=0, from which (e-s)vv=0 is obtained. Since vvs(ih*I) we finally 
see that 

s( ihI)ts(ihi), s(Ih1 )s s( Ih*I).	 (2.2) 

We remind that ha is defined by h*(x) h(x), for any x € M where I means the 
complex conjugate of the number z€C. Let us define 'P'E Hand	as follows: 

p' = s(lhi) p , O '= v çli and c0(x)=<7r(x)p9P'>, 00(x)<ir(x)çi,'>, V x€A.	(2.3)


Using (2.2), for any x€A we see that 

w0(x*x) = <r(xx)q,',p'> <s(ihI),r(xx)p,q>


= <tl/Zs(lhI)t1'Z,r(x*xp,p> 

<s(IhI),r(x)tl2p,s(IhI),r(x)th/2p) 
.^ < yr(X) t 1,12 p, r(x)t 1 "2 9p > = v(xx),
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and analogously 

o0(xx) = <ir(xx)'"> = <v,r(xx)v*cb,p> 

= 

= < s1'2s(Ih"I )s2,r(x*x)',p> 

<s( 1h1 )7r(x)s'2.', 5(1 hl),r(x)s2> 

^ <,r(x)s'2', r(x)s2>p(x*x). 

Hence o0 i5vand cu sp is fulfilled. Let us define now g€M, by g(x)=<xgv,p'>, for all 
x€M'. By Lemma 1.1, (2.3), and due to the definition of h we infer PAW 0, 00 )1"2 = 

1 1 g IL = II h( s (I h I ) ( ) v ) II II h IL =	w, ) 1/2• On the other hand,	c) 1/2 = II g Iii a

Ig(e)I=I<>I=I<v/,q>kIh(v)h=hhI(e)1hIhIIL = IIh Ill  PAW ,C) 1'2. Hence, by the 
assumptions on (v, p), in using these inequalities we get	o' do) = PA((J, 0) = 
Since also (j. :5 t,!; w and c !^ p :g c are true, we conclude to (we, 0o < P) = (0, c}. By the 
construction (2.3) both linear forms 00 and c0 do not refer to the particular (v,p) 
chosen provided the latter belonged to f'(w,). Hence, (w,c )c<{v,p} for any (v,p )€ 
r(o, c)I 

Remark 2.21 The proof yields an explicite way (cf.(2.3)) for constructing the 
.-least pair In F(i,c). In fact, If (ir,H) is any w,c -admissible representation of A, and 
if we have e S( yr. ) and e S( Jr. o), then we have to determine the support projections 
of the moduli lb I and I h1 of the linear forms h and h e', respectively, with h defined on 
,r(A) by h(y) = <yçi,p>, for any ye ir(A) .Then, because of y e 7r(A) and since vv a(I h*l) 
holds, (2.3) shows that the -minimal pair	o } can be given also by 

.i0(x)=<s(Ihl) 7r(x)q',q'>,	o0(x)=<s(lhl)(x)q,4> , VxeA.	 (2.4) 

Evidently, {,c) is —minimal if and only if r(,ci) contains only one pair, i.e. 
and cc have to be fulfilled. By (2.4) this is the case if and only if the inclusions 

I hI )H D C,r(A )') and s( I h'0 14 Z (,r(A )çb) are valid (by (G] we mean the closed 
linear span of G CH). 

3. A uniqueness result 

In this section we are going to derive a basic result for all what follows (for a 
preliminary form of the result cf. [5]). 

Theorem 3.1: Let A be a unital C -algebra. For each pair (0,0) of positive linear 
form'orms on A there exists exactly one linear form f  A such that 

(I) f(e)PA(o,c)112 

(II)  

Proof : In accordance with Lemma 2.1 let (w,o} be the uniquely determined 
minimal pair such that W, o. }<dw,c}. What will be shown now is the existence and 
uniqueness of fEA* fulfilling condition (I) and I f(y5x)I 6)0(y"y) /2 C0(x*x) 1/2 for any 
x,y€ A. Since {o,C} is the =-least pair in r(w,c) (cf. the proof of Lemma 2.1 ), the 
linear form I also has to satisfy condition (ii).
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Let (,r, H) be u, C - admissible. Let M = M A Y ' . By Remark 2.2 we know that W, and 
a. are given by w0(x) = <s(IhI)7r(x) q ',0 and d0(x)=<s(IhI)r(x)4,0>, for any x€A, 

with p€S(ir,u) and ç1€S(r,c), and hdefinedon Mbyh(y)<yçt,q,> for allyeM'. Let 
hRv lhl be the polar decomposition of h€M'.. Then, we define a linear form f on A by 
f(x)=0r(x)vç1,q'>,forxeA.Becauseof vvs(IhI)eM', vv*s(Ih*I)eM , and using 
the Cauchy-Schwarz Inequality we conclude for any X,YEA as follows: 

f(y'x)12 :^ I<1r(x)v1p,7r(y)q>I2 

= I<,rx)v* , s(IhI) ir(y)'>I2 

^ IIs(Ih)ir(y)' 112 II7r(x)v'II2 
= 

= w0(yy)o0(xx). 

Moreover, applying Lema 1.11(i) one obtains that f(e) =<v*,q'>=h(v_)=IhI(v*v) 
= IhI( s(IhI)) = HI M Iii = ii h IL =	(j,0 )1/2. Hence, there is at least one fobeying (i )( ii). 

Assume now we have given g eA with g(e)=P( (j,c )12 and suppose Ig(yx)I 
is fulfilled, for any x,y€A. Working within the *_representation 

(,r,H), and adopting the notations from above, we see that g(y*x)k IIlr(y)s(ihI)q?II 
x Iir(x)vgldI for any x,yeA. Hence, the map ygivenby 

y: (.ir(y)s(ihI) p,ir(x)vcb) '-4 g(yx)C , Vx,YEA, 

is well defined as a sesquilinear form, bounded by one, from a dense linear subspace of 
s(IhI)H x s(IhI)H into C. Concerning the latter, note that s(Ihi)HC [,r(A)F1 and 
s(1h1)HC [ir(A)) holds. From the first of these inclusions s(IhI)H=[,r(A)s(IhI)q'] 
is obtained, whereas the latter inclusion, due to vv s(ihI) and vvs(ihi), yields 

s(ihl)H = vs(Ih*I)vH C v[,r(A)i'] = [,r(A)v*gl,J 

= [,r(A)s(IhI)v'] = s(ihI) L,r(A)v*ct,) C s(IhI)H. 

Hence, s(lhI)H [ir(A)vg'] in this case, too. We extend the form yby continuity to 
a bounded by one sesquilinear form y" on whole of s(Ihl)H x s(lhl)H. There is a 
unique k€B(s(IhI)H) with Ilk 11 :^ land y^ (f, 71 )= <k 37>, for all vectors	es(IhI)H. 
Especially, in chosing	r(x)vcL' and ,j =ir(y)s(IhI)p for x.y € A we see that 

y( e ?7)=y( e'7 )=g(y*x)=<k;yr(x) v çb ir(y)s(Ihi)q'> .	 (3.1) 

Because of g((yz)x) =g(z*yx), for x,y,z LA, and since ir is a representation of A, 
(3.1) implies the relation 

<,r(y)kn(x)v*ct.', ,r(z)s(Ihi)q,><k,r(y*),r(x)v*,, r(z)s(ihI)q'> , V x,y,z €A. 

Therefore, and since s(Ihi)His invariant under the action of ir(A), for any yEA we get 

s(Ihi),r(y*)ks(ihI)=s(ihI)k,r(y*)s(ihi) .	 (3.2) 

We define abounded linear operator Kon Hby Ks(IhI)ks(IhI). Due to s(IhI)eM 
and (3.2) we realize that ,r(y)K =Kir(y) for any Y EA. Taking together all these facts
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we have arrived at the existence of K€ M', IlK 11 :5 1, such that 

s(lhI)KKs(lhI)K, g(x)=<K,r(x)vçti,c>, forany xeA.	 (3.3) 

By assumption g(e) PA( w,c )1/2 = 1 1 hll± is fulfilled. In view to this and using the 
special representation of g from (3.3) we see that 

g(e)=<Kv*,q>=h(Kv)IhI(Kvv)=IhI(K)rIIIhI 11111h1l1. 

By (3.3) we have KEM', 11  Ikl,with s(IhI)KKs(IhI)K. Hence, Appendix 1 can be 
applied to this situation with the result that K s(IhI). Hence, it follows that g(x) 
<ir(x)v, q'> , for any x€ A, i.e. g = f, with the F from the beginning of the proof. Since 
g has been chosen arbitrarily from the set of all linear forms obeying conditions (i) 
and (ii), the proof of the uniqueness statement is complete U 

Remark 3.2: In the above proof the functional f obeying Theorem 3.1 is explicitely 
given in terms of an arbitrary , c-admissible representation of A. Of course, the 
linear form f does not depend on any particular w, c-admissible representation of A. 
Hence, what we also 'have proved is a fact which we should keep in mind and which 
reads as follows: 

Let both (,r,H} and {,r',H') be unital 5 representations of A. Suppose 

q'ES(lr,c.)), q'rS(ir',,) and	 cS(ir,c), çb'€S(,r',c). 

Let v and v' be the partial isometrics in the polar decompositions hRIhI and 
h' = R . Ih'I of h and h', respectively, where hand h' are given on M' by My) <yr/,rp> 
and h '(y) = < yr,V. q'>, for all ye M', respectively. Then, for any xcA one has 

<,r(x)v*cfi,c, >''<ir'(x)v'c',ç">.	 (3.4) 

The unique f determined by Theorem 3.1(l),00 will be denoted by I( c.,, c) and will be 
referred to as the w, c-skew form on A henceforth. 

Suppose now A is a Ws--algebra, and w, c € A, i.e. both w and d are assumed to be 
normal positive linear forms on A. Due to Theorem 3.110) the a-skew form I(, c) 
is a normal linear form, too (note that the latter remains true provided at least one of 
the forms (j, a is normal). Hence, there is the uniquely determined polar decomposition 
I( w, a) = RI I( w, aM. The partial isometry u( &), a ) u will be referred to as the &, a-
skew phase and the normal positive linear form II( (j,a ) I will be called w,a-skew 
modulus. In case of a algebra, let {17,K } be the universal -representation of A. 
Then, A**Th(A) is the universal envelopping vN-algebra of A, and for each g €A 
there is a unique gE(A*)5 such that g11 g . Since W",C")=PA( W, a) for 
any two positive linear forms c, con A, it is easily recognized that we have J( 1j, a )** = 
J( w, a") and I( (j, a )= I( (j, a )**J7 is fulfilled. We then have a polar decomposition 
J( w, a)" = R. I I( a)I within (A 55 ).,, and u 5 = u( w", Therefore, also in the 
C -algebraic case with general pdsitive linear forms one could be tempted to 
associate both a positive linear form and a partial isometry to the pair ( o,a} in a 
unique, way by defining II( w, a ) I = I J( o) c ) Ill and u( (j, a ) = u(f, au). Whereas 
II(o,a ) I is a positive linear form on A, the w,a-skew phase defined in this way 
belongs to A55 . In the case of a W"- algebra A and normal positive linear forms on 
A there is a simple relation between these two settings u( 0,0) and u( o5a55) 
which are slighly differing from each other:
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u(	, c**) = 17( u( (j, Cl)) s(II(	a")1)s( II( W_*C1*)I)17( u( (j, c)) 

Subsequently, we shall be dealing with the case of W'- algebrasand pairs of normal 
positive linear forms almost exclusively, and the terms skew modulus and skew phase 
then refer to the original W-algebraic definition. 

4. Properties of C-algebralc transition probability 

Unless stated otherwise, throughout this section we suppose A = M is a vN- algebra 
acting on some Hubert space H, and the positive linear forms considered are normal 
ones, exclusively. Furthermore, let us assume that Macts in standard form on H, with 
a cyclic and separating vector 1? and associated to { M, 1') } natural positive cone Pr,. 
The unitary group of Mwiil be denoted by U(M). For 1EM and a E M the notation f 

is an abbreviation for the linear form f(a( 

Lemma 4.1: Suppose 0,0 E M, The skew form I( o, c) has the following properties: 

(I) I(o,ri)(e)=PA((j,c)112 

(U) I(w,)=I(c,o), u(o,c)=u(d,w)* 

(Ill) 1(w,o) = 1(p,v)and u((J,c)u(p,v) whenever (o,o}={p,v} 
(lv) I(w,w)w 
(y) J( 0 u 0U) = I(u,c)", u( (j u , c<c) = u*u(o, c)u for any u € U(M) 
(vi) 1(o,c)<0 If, and onlyif olo. 

Proof: (I) is valid by definition of M), a), and (iii) follows from Lemma 2.1 and 
Theorem 3.1. Hence, in order to see the properties (ii),(iv),(v) we can suppose that 
((j, a) is <c - minimal. We also note that (0U,0U) is <c-minimal for any unitary u of M if, 
and only if, (w, a) is - minimal, and (w, o) is - minimal in any case. But then, in using 
known properties of the polar decomposition, (ii) and (iv), (v) follow at once from the 
definition of the skew form and the proven uniqueness. To see (vi), let q, g( E Pn be the 
vector representatives of o and a in P0. Let heM be given by h(x) <xçb, g'>, and let 
h= R, I h I be the polar decomposition of h. As we know from Remark 3.2, for y €M we 
find that I(w,a)(y) <yv'4s,q'>. Hence, 1(o,) =0 holds If, and only if 0=<x*yv*,Ø 

<yvcLxq'>, for any X,YEM. The latter is equivalent with p(q')H! v*p(c1)H, where, 
for f eH,p'()€M is the orthoprojection onto the subspace [Me], and p()€Mis the 
orthoprojection onto the subspace [M'C]. Now, on the one hand, p(()as(1h1) and 
p'(')s(IhI) holds true. On the other hand, from v' v s(IhI) and vvs(Ih*p) we get 
v*p(cL,)H=v*H=s(IhI)H . Hence, J((j,a)=0 if, and only if p'(p)±s(IhI), with p IT) ^ 
s(IhI). Therefore, 1(o, a) = 0 is equivalent with s(IhI ) = 0. This occurs if, and only if h=0, 
i.e. 0=<y4,xq'>h(xy), for all x,y €M'. Therefore, p(çts)l p(q') is a necessary and 
sufficient condition for I((j, a) = 0. For the supports s( w)  and s (a) of o and Cl we have 
s(o) cp(q.) and s(c) cp( (P) . This proves (vi)l 

Lemma 4.2: Let w, a € M + , and assume (w,, ), (a,,) C M N... to be sequences such that 
urn,, u,, o and urn,, a,,a with respect to the norm topology on M,,,.. Then, we also 
have iLmflPM(o,,,cJfl)PM((J,c).
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Proof: Let p,, On £ PD and ç, çLi £ P, respectively, be the uniquely determined vector 
representatives in P0 of ø,, c,, (j, C1 EM.,. Since the correspondence between M, and 
P0 is a homeomorphism, our assumptions imply that ç —  ip and çb,3-4 in H. Hence, 
for h,hEM ',,defined by. h( . ) = <(), q'> and h()<( )(P,v> we see h —+h. The 
latter implies 11 h,,11, —p Jj hjj,. By Lemma 1.11(1) the assertion follows I 

Remark 4.3 For the representatives 0, We P0 of two normal positive linear forms 
eon A4 It Is well known that 110 - ¶1I 2 s 11w - elli s 114D-W 1 111 0 + i' II. This can be used to 

give a more quantitative estimation of the convergence behaviour, cf. (4] ( cf. also 
another derivation of this estimation in context of Lemma 6.1 ).The result is 

0) 1/2  -
	V) 1/2 1 sIIcII i 2 lw -ii 111' /2	11  Ill' /2 lie - vIl'2. 

By Lemma 4.1/0) and (iv) we know that PM (p,p) 1'2 rp(e) = Il p Ili. for any pEM,. 

Hence, as a special case of the preceding estimation we get 

PM( w, 2 - lellil	I, I l
l 
1/2 IIwc II 1	an d d IIIV Ill PM (p, v)1/21	ilI j	lIv-i.zIlj i/2	1/2 

We can compose these estimates to see 

IPM(w,o)-PM(p,v)I 

f. I	 11c'Ikl + 1110111 - Ilvil i l + I 1'111 - 1'M"' v)i/2I 

S. 110111,	 -	i	1 1- 1111/2 lI1/2 Iv -	II2 + 1110 II - II viii, 

which sometimes is also of use. 

Let w, cu E Me ..., and suppose s is a real, E >0. We define a set M(c., cu) C M, by setting 

ME (w,cu) = {xEM:x^tO, invertible, w(x),c(x'):^E+PM(w,c)"2}. 

The following result is true. 

Theorem 4.4: For any s >0 one has 

PM( w, ci) = inf{w(x)cu(x): xEME(o,d))	 (4.1) 
PM((j, c ) = inf(w(x)c(x'): x€M, xlnvertible}. 

Proof: In the case that one of the linear forms vanishes the assertion is obviously 
valid. Also, by the very definition of P(1, c), in case of w*O and c*O one has 
PM(w,o)=U(e)O(e)PM(p,v), with the normalized to one positive linear forms 
P = w(e) u, y o(e) cu. From this [c(e) w( e) J 1/2 M(p, v) = M . (w, ci) can easily be 
seen, with '=1u(e)c(e)I 1/2 E . Hence it suffices to provethe assertion in case of 
normal states w and ci. We are going to do this. By Theorem 3.110) we see for any 
invertible XEM, that PM (&,ci)I(U,ci)(e) 2 =II( U,ci )(x12x I'2 )I 2 c(x)ci(x). This 
implies 

PM (w,c) :5 inf(w(x)c(x):x€M,xinvertible)	
(42) 

, inf{&(x)c(x): xEM(U,c)}, 

provided the sets M(c.,ci) are non-void ( this will be shown below). Let us define 

w(1-)c+-jc and an =(1-	)ci+c, for any nEN.



Geometry of Pairs of Positive Linear Forms 307 

Then, (u} and (ca ) are sequences of normal states with equal supports and 'n	w, 
- o. Then, if we were able to derive (4.1) in case of normal states with equal 

supports the validity of the assertion in the general case could be followed by means 
of (4.2) and Lemma 4.2. In line with this, let us assume that w,c have equal supports 
in M. Since in a vN- algebra in standard form both S(id,(j) and S(id,c) are non-void 
(id stands for the identical representation of M), by Appendix 7 we can also find that 
q€S(id,w) and cIES(id,c) such that 

PM(w,c)"2<rJl,q>.	 (4.3) 

Let h€M',,, be defined by h(- ) = <(),p>. Then, 11h111 = PM (w,c) 12 due to Lemma 1.110), 
and 11h11 1 =h(e) can be followed from (4.3). But then, applying a well-known character-
ization of the positivity of a linear form to the situation at hand yields that h has to be 
positive. Hence, Appendix 2 can be applied with p()p() (we supposed wand a to 
have equal supports). We see that there exists a densely defined, positive, selfadjoint 
linear operator F, affiliated with M and invertible, such that Fp = ', F 1 c1 = q'. Hence, by 
(4.3) we see 

P(w,0)1'2=<Fç,p> and P(w,a)1'2=<F10,0>.	 (4.4) 

Let F,, = F + 1 e. Then, ], - ' e M and F' ^5 F' on the domain of definition of F '. This 
implies

(45) 

Let {E(A)}c Mbe the resolution of the identity of F, and let en = E( 10, n)). We define a 
sequence {G }of linear operators by setting G = eF+ne. Then, G 1 = eF' 
+ n' en' ,and both G. and G 1 belong to M. Moreover, using (4.5) we see 

a(G) 15 a(eF1)+n' :g P((j, )I2 
+n_ i .	 (4.6) 

On the other hand, on the domain of definition of F we have G:g F. Thus, from (4.4) 
we get 

w(Gfl ):5<F92,>+n'sPM (w,c) 1'2 +n 1.	 (4.7) 

Note that both (4.6) and (4.7) show that, with n 1 , M8 (w,c) is non-void, for any 
n €N. Combining (4.6) with (4.7) yields 

w(G) o( G 1 ) :5 PM(w, a) + n t [ 2PM( w,0) 1 '2 + 

Hence, lim sup,, w(Gfl)c(G,'):5PM(w,c) is evident. In view to (4.2), and since each G,, 
is a positive invertible element of M, we now èonclude that 

PM(w,a) = inf(w(x)c(x'): xEM., xinvertible} inf(w(x)c(x 1 ): xe M(w,c)) 

holds for any e >0 under the assumption that w, a have the same supports. Finally, in 
case that w,a have not the same supports, to given s >0 we can approximate both 
states by states w,,, an with equal supports (cf. the construction from the beginning of 
the proof) such that (by repeating the arguments which have led us to (4.6) and (4.7)) 
for some invertible H,,EMwe have
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6)fl(Hfl):5PM(()fl,0n)1/2+fl1 

By the construction of the approximating sequences and since all functionals involved 
are positively defined, we also see that 

c(H 1 ) ^(1_n_1)(pM(fl,cfl)1'2 +_i), o(HflY(l_n_i)(PM(wfl,cfl)1/'2 +_i). 

For n -3 a , by Lemma 4.2 the expressions on the right-hand sides of the preceding 
inequalities tend to PM(c,0112. Hence, HflEME(ø,c) for all neN sufficiently large. 
Knowing this, and respecting that in the case of states with equal supports (4.1) has 
been proved yet, we get the general case from (4.2) by continuity (cf. Lemma 4.2) as 
explained at the beginning I 

The result just proved is of importance in a context of concepts and questions 
referred to as noncommutative probability. We are going to describe and discuss some 
of these immediate consequences of the theorem. First we remark that for an unital, 
positive linear mapping 0 acting from an unital C -algebra N into another one M we 
have 0(a 1 )2t0(a)' for any invertible positive element aeN. This is a welt-known 
result of M.-D. Choi (13]. Assume now the algebras M, N are standard vN-atgebras 
and w, c are normal positive linear forms on M and the mapping 0 to be a normal 
map. Suppose e >0. According to Theorem 4.4 there exists an invertible element a € 

M+ such that PN((j0,c0)+Ea ø(0(a))d(0(a1)). Using 0(a 1 )2t0(a)' and arguing 
by Theorem 4.4 once more again we infer that 

(0(a))c(0(a1)).-t(O(a))c(0(a)1)2:PM(c),. 

i.e.we get PN(wO,00)+E	a). The latter has to hold for any e >0. Hence 

PN(c0,c0)aPM((j,a)
	

(4.8) 

has to be valid for any units!, normal positive linear map 0 acting from N into M (cf. 
[4], (3]and the references quoted there). 

Another application of Theorem 4.4. reads as follows. Suppose first both (J, a are 
faithful positive linear forms on our vN- algebra M. Suppose E >0. Because of Theorem 
4.4 there exists an invertible element a€M such that PM (,a) + s a(Aa) a(a 1 ). Now, 
by continuity we may even assume a such that its spectrum is a finite set (A 1 ,..., A n ) C 
RA{ 0 }, i.e. a = 1Ap1 , for some decomposition (pi ) of the unity e into mutually 
orthogonal ortho projections Pj. We get 

PM(wc)+E Jw(PJ)a(Pj)+EJ*kAJA1c(PJ)c(Pk). 

Now, the function At) t(p)a(p)+t 1 cJ(p)c1(p) takes for some t>0 its infimum. A 
simple calculation shows that f( t f ) = 2 1pk °pk }1/2 ( €Ap )(p1))12 . Therefore 

2: 
J Pj ) Pj)3J*kAjAk'tPJPk) 2t(jpj1/20pj1/2)2. 

Hence, we see (PM((j,a)+E )1J2 Z E	pj)12O(pj)1/2. On the other hand, in defining


b Z ø(q1 )-1"2 c(q) 1'2 q1 for any decomposition {qj } of the unity e intomutually 
orthogonal orthoprojections qj, we have w( b) = c( b1) 

=	
( q, )h1'2 o( gj ) 1J2• Since 

be M, Theorem 4.4 applies and shows.that
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holds for any orthogonal decomposition ( qj ) of the unity. Hence 

PM(u,c)"2 

where the infimum extends over all such systems (q J ). By our discussion from above, 
to any e >0 we find such a system ( Pj } with PM( , c) + 6 )1/2 ;t

J ( Pj )12 C(pj )i/2 
Therefore, we finally get that 

PM( w,c) 1'2 inf Z, w(qj ) 1"2 c(qj ) 12 . ( 4.9) 

By a continuity argument ( cf. Lemma 4.2 and the analoguous remarks in the proof of 
Theorem 4.4) we easily see that the assertion remains valid for arbitrary pairs of nor-
mal positive linear forms. The result is due to S. Gudder [IS] (cf. also [16] and [17] for 
the appropriate context). H. Araki and G.A. Raggio[7] proved that there exists a pro-
jection valued measure E belonging to Msuch that PM(w,c) is the quadratic mean 

6)12 =fdQM(pE, Pc,E )	 ( 4.10) 

of the induced measures )ci(E( )) and CE )=c(E( . )) on the d-algebra of 
Borel sets of R. Obviously, (4.9) yields the approximation of PM(&,C )1/2 by quadratic 
means in the sense of the right-hand side of (4.10) referring to simple projection 
valued measures with values in M. Note that in case of faithful forms , c the E in 
(4.10) exactly corresponds to the spectral resolution of the affiliated with M operator 
Fwe have been using in the proof of Theorem 4.4 (cf.( 4.4)). The representation (4.10) 
can be obtained from (4.4) by applying essentially the same kind of arguments we have 
been using in the derivation of (4.9).Therefore, both (4.10) and (4.9) are equivalent 
with Theorem 4.4. 

Remark 4.5 t Let A be a unital Calgebra,andw,o cA".. Then, as has been yet 
mentioned at the end of Section 2, ° ) = 1'A( (j, c). It is also easy to 
understand that 

with B= sA s, where a denotes the support projection of	• a within A. B Is 
W to a vN- algebra in standard form, and the C talgebraic transition 
probability P is Invariant with respect to - isomorphisms. i.e. If $ is a * - Isomorphism 
of Bthen P$(8)(v, i)PB(v$, p $), for all v, se$(B) 5 . All these facts, together with an 
standard application of Kaplansky s Density Theorem, imply that the assertion of 
Theorem 4.4 can be extended to hold on an arbitrary unital C'-algebra A for any pair 
of positive linear forms co, c on A. Especially, this also Implies that the assertion of 
(4.8) remains true for any pairs of unital C-aigebras M and N, positive linear forms 

o on M and an arbitrary unital positive linear map 9 N * M. Note that by a similar 
reasoning norm continuity of PA on A'. x A', for an arbitrary unital d'-algebra can be 
followed from Lemma 4.2. 

Let us now come back to the case of a vN -algebra M in standard form. LetI'_ c 
be the setofalla- minimalpairs of normal positive linear forms on M. We 

consider F equipped with the product norm topology. 

22 Analysis, Bd. 11, Heft 3 (1992)
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Theorem 4.6: The maps I: r 3, (,a) —E J(,c)eM. and IJI: F.(, CF) —'II(u, CF) lE M.. 
are norm continuous mappings from 1. into M and M. + , respectively. 

Proof: Let	}ef', for any n EN, and be (w, c " - minimal. Assume ø -4 w and 
c,—'in norm. We have to show that respect to the 11 hi-norm. 
From this, according to Appendix 8. also lI(u, c)I-4 hI(c, o)I can be followed. Let 
'pu , 0, p. çl ' € P,0 be the vectors representing , d, 7 , w, within P0 . With the same rea-
soning as in the proof of Lemma 4.2, q'- 4 p, çii,-4 cu can be followed. Let h, h £ M have 
the same meaning as in the proof of Lemma 4.2, and let v, v, eM be the partial iso-
metries of the polar decomposition of h, h, respectively. By Theorem 3.1 and Remark 
3.2 we knowthat J(,c)()=<( )v,1',p> and J(w,d)( )=<( )vçu,p> onM. Our 
assumptions imply h, —4 h, from which by Appendix 8 alsolhl —E lhl follows. Let 
(vfl(A) S(IhI): AeA} be a universal subnetof the sequence (vs(Ihl)). Then, due to the 
weak compactness of the unit ball of M', we have w-lim A I v ) s(hhl )} = w for some 
WE M', with 11w Ih; 1. Hence, we have 

Ihh(y) = IhI(ys(Ihh) )I = limA Ihfl()) I(ys(Ihh)) 

= lim,<ys(ihI)vfl() #fl() , Pn(A) > = <yWçb, q'> 

for anyy€M'. The latter means that !hh=Rwh, with WE M', hiwlkl. An application of 
Appendix 6 yields now that ws(ihi)=v. Thus, what we have shown is that 

w-lim A vfl()) s(ihI)= v 

occurs for any universal subnet I Vfl(. ) 5 (hi): A EA) of the sequence I v,s (hi)). From 
this, and since the unit ball of M is weakly compact, we then infer that even 

w-lim vs(Ihl) v	 .	.	 (4.11)


has to hold. Because of vv* = s(ih,1) and v v = s(ih*I) we see that

(4.12) 

By the supposed <(-minimality of {(J,, c) and {,c}, and following Remark 2.2, we can 
be assured of the validity of 

Ils(lhn*I)On 	hIs(hhi)dI 2 =hIcuchI 2 , and ihs(hhI)phh2hipih2 

Since v*=s(ihh)v*, from (4.10) w_lim n vnv vv* s(ih *I) is obtained. Hence, taking 
the limit for n-4 coin (4.12) results in 0.We now consider the 
following estimation: 

II(c,o)(x)-J(w,d)(x)I 

=.I<xv,:.cu,,p>_<xv*cuyp>I 

:5 

.5 

for any xeM.The latter says that ihI(, c)-l(c, d)i11^ hI p - p II IIIi+hIv,,1 - v*hIIhphi. 

According to our preceding considerations I(w,c) has to tend to I(w,cj)ln norm U
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S. Geometry of representatives of a - mini mal pairs 

The main result of this section will be a representation theorem for u-minimal pairs 
of normal positive linear forms on a vN- algebra M acting standardly on a Hubert 
space H. A preliminary form of this result has been derived in (5). In all what follows 
the notations and conventions of Section 4 and the appendix (Section A) will be 
adopted and tacitly used. For a positive linear form w the set S(id,w) of all vector 
representatives of win H will be abbreviated as S(u). 

Definition 5.0: Let g', çL< € H. The vector q.< is said to be <p-associated (over M) if 
there exists u E  such that 

uup(cL'), uu=p(p), p(<p)=p'(çLt)p'(uçb)	 (5.1) 

uçL'€Mucp , ucbeMq'.	 (5.2)


In the case that 0 is <p -associated the notation ç(ì II <p will be in use. 

Theorem 5.1: Let w and a be normal positive linear forms on M. 
(I) ((j, a) is <c - minimal if and only if there exist vectors <p € S( w) and i € MCI) 

such that tp 11 9:). 
(U) Suppose vectors <p e S( w) and çt' € S( a) are given such that çt' II <p, and let u be a 

partial isometry obeying (5.1) and (5.2). Then, the skew form 1((J, 0) and the skew 
phase u(w,c) are given by 

I(w,a)(.)=<(.)çL<,p> and u(w,a)=u.	 (5.3) 

(III) Assume <p. q" € 5(w) and 0, (P ' E 5(a) are given. Suppose ci.' 11 P. Then, ' II q" if 
and only if there is WE M' with	wçb, <p w<p'and ww*,p(q,) , w*wp(ç1). 

(Iv) Let (0,0) be u - minimal, and suppose <p e S( w) is given. There is a unique vector 
çh€S(a) withII<p. 

Proof: Suppose first that ((j,0) is <(-minimal. According to Appendix 7 and Lemma 
1.11(1) there exist vectors <p E S(w) and 4 € S(a) with <, <p > = PM((j, a)112 = IIh 1k, where 
h € M is defined by h( ) = <( )q.', q'>. Hence, we have h(e) = II h 1 1,. This implies h to be 
positive on M. The latter means that s(h)=s(IhI)=s(Ih*I). Since (0,0) is <<-minimal, 
Remark 2.2 (with ,r=id) shows that s(h)^p'(<p) and s(h)^p'((P) in this situation. On 
the other hand, by the definition of h, we have s(h)p(q) and s(h):5p'(), obviously. 
Thus, we have the equality 

s(h)=p(<p)=p(çi.$).	 (5.4) 

We define f€ M. by f(• ) = < (. )<, q, >. Let f= R) Fl be the polar decomposition of F. Then 
we have If I( )=<( )*,,<p>• According to (5.4) the conditions for an application of 
Appendix 4 are given. The result is 

p(u*cL,)=p(cb), uu = p(çt<), uup(<p)s(Ifl). (5.5) 

The first relation of (5.5) and I f 1 2: 0 make that Appendix 3 can be applied (with the 

22*
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replacements M —4M', p —4p' etc. in the formulation of Appendix 3) with the result 

s(IfI)=p(p)p(uç').	 (5.6) 

The second relation of (5.5) gives that h( ) <( )0,,p> =<(- )uuckp>=<( )uçb,up>. 
Positivity of h then implies s(h)!^p'(uc'). From this and the obvious fact p(u*ep)--5 

p(p) together with (5.4) and (5.5) we conclude that 
s(h)=p(u*p)=p(p)=p)=p(u*).	 (5.7) 

On the other hand, starting from the third relation of (5.5) we arrive at another 
representation of h, namely h( )<(.)cLq,>r<()cl,uuq,><( )ugIc,uq'>. Positivity of 
h implies s(h)!gp(up)^p(p) and s(h)p(u0):5p0P). Once more argueingwith (5.4) 
we see that in fact equality holds, i.e. s(h)=p(up)p'(p)=p'(ur)=p). Therefore, 
(5.7) can be extended to the sequence of equalities

(5.8) 

By (5.5)we see that p(ucp)p(Jc) and p(u(p)sp(cL'). Hence p(uçt'):^p(uqc), and since 
h()=<()uç,up> is positive over W we can apply Appendix 2 to obtain that uçlseM+uq, 
i.e. the first part of (5.2) is seen. Since I f I(- ) = < (. ) u(P, p> is a positive linear form 
over M, and because of p(p)p'(u), Appendix 2 applies (with the replacements M-
M, p-4p etc. in the formulation of Appendix 2) and gives u* (p £ Mq', i.e. the second 
part of (5.2) is shown. In view to (5.5) and (5.8) 01192 follows. Hence, the one direction 
of (i) is shown. Note that from h( ) = < ( )çb, p> = < ( )u cu, uço> ^- 0 over M' by Appendix 2 
also follows that 

p(p)gu€ M^ç'	is equivalent with UçIEM+UP.	 (5.9) 

To see the other direction of (i), assume p e S() and 0 5(c) with lip are given. 
Suppose u is a partial isometry of M such that (5.1) and (5.2) are satisfied. From (5.1) 
we see that p(up)p(çl)p(u(p). By (5.2) positivity of heM with ht ) <( ), p> on 
W follows. Due to (5.1) we also see that h(-) = < ( )uçb, up>. Appendix 3 can be applied 
to the vectors u(p, up in this situation to see thats(h)p'(uçi'):5p(up). Since by the 
second relation of(S.1) p'(up)p(p), we get that s(h)=p(u(p):5p'(p). From this and 
the third relation of (5.1) we conclude that 

s(h)p)p'(p).	 (5.10) 

According to Remark 2.2, and since, due to h2: 0, s(h)s(IhI) s(Ih*I) holds, the {&, c} 
corresponding cc-minimal pair W., 6.) is given by &( ) < s ( h ) (. ) p, q.'> and c0 ( ) = 

<s(h)()gy>. Relation (5.10) then shows that (w,.,c0)={w,c}, l.e.{,c} is cc-minimal, 
and the proof of (i) is complete. 

To see (ii), we can continue the preceding considerations by defining f,geM. by 
f(.)<(.)ç,p>andg(.)<(.)u*cic,p>, respectively. By (5.2) we can be assured of the 
positivity of g = R, f. Since also f Rg by (5.1), certainly II fit1 = Hg IL. An application of 
Appndix 5 shows that g = I f I, and Appendix 6 yields us(I Pt) w, with P = RI P I being 
the polar decomposition off. Now, due to (5.10) and uup((P) we have pu*i)p(ci,) 
=p(p). Hence Appendix 4 applies with the result that s(I P1) = p(p). Therefore, in view 
to the second relation of (5.1) we have to conclude that wus(Ifl)up(p)u.This,
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however, means that M), a) fand u(o,a)u for the pair (w, a), which is <c-minimal by 
(I). This completes the proof of (ii). 

To prove (iii), let us assume that q', q" S(o) and 4, gb'€ S(a) are given with gicli ç and 
gil'Ilq". Then, by (i) we know that ((j, a) is c(-minimal. By standard arguments we can be 
sure to find w €M' such that wq', ww5=p.(.p), wwp'(g'). By (ii) we infer that 
I(w, a) (y) <yçl, ç> <ygb', q'>, for any y €M. Hence, <(w(p - gii ' ), xi"> 0 for any x E M. 
This implies p1ç')(w5(P - (P' )0. In view top ')w5w, and since p'(q")p'((P') by 
our assumptions on cJ" q" (cf. (5.1)), gil • = w(p has to be followed. By the same reasoning 
the assumptions on 	give p((q)=p((4), and w'=ww	p'(p)gil=p'(gi)4is clear. 

To go the other way around, assume gil 11  and 9)€S((j) and gi'eS(c). Suppose VE M, is 
given such that v 5 v =p'(ç)p'((P). Note thatp((ç)p(() is a consequence of (I). Let 
us define vectors p' = vcc and gil' = vgl'. Then, q" S(o) and 4)' E S(c). By the assumptions, 
(5.1) holds, i.e. p'(q') p'(gil) = p '(u(p), with ubeing the partial isometry figuring within 
(5.1), (5.2). Hence, also vv * p'(çc')=p'((p.)=p'(u(p). Since also uu5=p((P)=p(gil'), u*u= 

p(q')=p(q") holds, we have seen that (S.1) remains valid with (P *, p' in place of 4), P, 
respectively. Let us consider the funtionals h,h' over M' given by h(- )=<(- )ugi,u>, 
h(' ) = < (. )ugil uç'>. By means of the definitions of (P" and q" we realize that h'() = 
h(v(- )v). By assumptions (5.2) has tobe fulfilled, i.e. h^O. Therefore, h' is positive, 
too. Due to uu p(gi)p(gi'), uu =p(g')=p(') we get p(u')=p(gil')2:p(u4'). Thus, 
the conditions for an application of Appendix 2 are given. The result is 

p(uq')u4'=u4', and ugi"€M+uqf. 

Let f,f'€M be given as f(' )=<(' WO, p > and f(- )=<(. )u5 giq">. By the definition of 
ç" gil' we realize that f F' holds. Due to the assumption 4 II ç and (5.2) F is positive, i.e. 
also F' is positive over M. We apply Appendix 2 to the situation at hand and see that 

p'(q")u(P'€ M'q". 

Since p'(p') =p'(gil'), the relation p'(c')ugil' =u*gi, follows. Finally, where we have 
arrived at is the following: 

uup(gis'), uu r p(q '), p '(ç ' ) p'((P')=p'(u(P'), ugb'e M.uq', u"gi"€ M'+c' 

Hence, gi" Ilç' is seen, and the proof of (iii) is complete. 
Suppose now ((j, a) is a cc-minimal pair, and cc ES(o ) . By (i) we know that there are 

vectors '€S(o) and gii'cS(a) with 4'II9 There Is  partial isometry we M' with ç =wc", 
w*wp(q,), ww=p'(). Since gb'llç"requires p'(gi')=p'(ç, we have gil=wgil'€S(a). By 
(III) we conclude that 1lç. Assume there is another gi"eS(c), with (P" Up. By (ii) we 
have, for any x  M, I(o,a)(x)=<xgi,,q')=<x4",q'>. Therefore <(gil-(P"),yç)=O, for all 
yeM, and p'()(gi-gi")=Ohas to be followed. Now, (Pilp and 4, '* lip require p'((P)=p'() 

p'((P"). Thus, gil = (P** has to hold, i.e. (iv) Is true I 

Remark S.2 z The preceding theorem has some interesting consequences. 
(1) Since (w,c} is ---minimal if and only if (o,) is - - minimal, by (I) we follow that 

ills symmetric. i.e. 0 tic, if, and only if q' II 4. Note that (ii) also shows that the partial 
isometry U In Definition SO is uniquely determined. Due to Lemma 4.101), the changes 

0 and qr--o ç within (5.1). ( S.2) require the replacement u-0 u in order to remain 
valid.
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(2) Especially, (iv) shows the following. Let (.,,cs)be s -minimal and 9;€S(w) given. 
There exists OeS(a) such that PM (..i3 O) 112=< In fact, this is a consequence of 
(ii),(lv) and Lemma 4.11(1), and Is  sharpening of Appendix 7 for s-minimal pairs. 
The uniquely determined çL. €S(ci ) with 4 flq, is referred to as the 9-relative 

representative of a (cf. Section 0). 
(3) By (I) and (iv) and (5.9) we realize that in the definition of J lip the condition 

(5.2) can be replaced with the requirements p(p)4 eM, uq €T?. 
(4) Let (w, o) be a --minimal pair of normal positive linear forms over M. Suppose 

p€S(w), and be c&. the (as we now know unique) vector of S(o) with 4s 1197. Then we have 
the estimation lid' - ii2 ii - oh. In fact, for the uniquely determined representing vec-
tors 4V,Y'cPç2 of w,o in the natural positive cone P0 of (MM) (cf. the suppositions of 
Section 4)we have 0s< v', 0>PM(w.o)1'2, whereas in (2) we remarked that 
=<çb,p>. Hence. 

IicL- 97 11 2 11,,,11 2 + 11 97 11 2 _2 < d'. c> ' 1111 2 110i 2 - 2 < !, (D> = 11 Y- 

The result now follows from the well-known inequality iv'- aiI 2	oil1 for the

representing vectors 0, Fc P0 yet mentioned in Remark 4.3. 

Up to now we tried to give characterizations of s - minimal pairs of positive linear 
forms. Whereas Theorem 3.1 gives an abstract characterization in form of a uniqueness 
result, in case of normal linear forms over the vN-algebra M by Theorem 5.1 a 
characterization is given which is of different kind. It reads in terms of the relative 
geometry of the vector representatives ( of the normal linear forms in question) with 
respect to the action of M on the underlying Hubert space H. However, there is yet 
another interesting question to be worth to be considered in case of a general pair 
((j,c) of positive linear forms which is not <c-minimal: What can be said relating the 
structure of those parts of w and c that prevent the pair (,e) from beings-minimal? 
We are going to give an answer for pairs of normal positive linear forms in the vN-
algebra case. To this sake, let us suppose that ((j,0) is a pair of normal positive linear 
forms on our vN- algebra M. We want to characterize first the geometrical relations 
between the pair (o, c} and some pair (o'c1') such that (o,c' }s(w,0). By definition of 
u, both o = w - w' and ti1 = c - a' are normal positive linear forms on our vN- algebra M. 
From Theorem 4.4 and obvious properties of the inflmum we infer that 

PM ,OPM ,+PM ,cI)PM (0I , M (WI ,CI )	 .	(5.11) 

By definition of << also PM(w,c) = PM ((jccl ) is fulfilled. Hence, from the inequality 
(S.11) together with the non-negativity of PM we have to follow that PM(o,)= 
PM((jl ,c) = PM((jl ,el ) =0. Now, for two given positive linear forms v, p and representing 
vectors q, çt of them, according to Lemma 1.1/(i), we know that for a form h defined 
over M' by h( S ) = <(-) 4;,,p>, 11  IL=PM (v,p) 1"2 has to hold. Hence, in case of PM(VP) 
0 we get h = 0, and vice versa. The latter is equivalent to I h I =0. We can now conclude 
as at the end of the proof of Lemma 4.1/(vi) and see thatP(v,p)=0 is equivalent 
with v I p. In application to our situation with PM(;)PM((jl,cf)PM(wl,cl)0 
we thus get that wi. o, oi. c •, wL O1 Since u = ,. + w and c = + c hold, we can also 
follow that 01 cii , 01 o. Especially, the latter holds of course in case that c.f o and 
a' = c, with the (o, a) corresponding s-minimal pair {o,	Let us suppose now that 

0) is a pair of normal positive linear forms, and let (os , a, ) be another pair such that 
wkw and Ci^c11 and 6)1c, aio. Let (60 ,ci0 ) be the (w, or) corresponding u- minimal
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pair. Assume çES(W) and 4jeS(a) are chosen in such away that <4,q?>=P(w,c)l2. 
According to Appendix 7 this choice of representatives is always possible. Let us define 
heM' 1, as h(' )<(' )yç'>. By Lemma 1.1/0) we see that h(e) = IIhILPM (o, a)1"2. 
Hence, h has to be a positive linear form on M'. Let t, t'eM' be given such that lit V5 1, 

lit' il^l and q' = tq € S(w1 ), (P* = t4) £ S(a1 ) are fulfilled. The existence of t, t' with the 
properties indicated follows by standard conclusions from our assumptions	ø and

a *t a1. On the other hand, from the assumptions w I a and a I o the conditions 
p(ç')Ip() and p(i')1p(	can be derived. Hence, both the linear forms f, gdefined 
over M' by f(' )=<t')Dq'> and g(' )=<( )ç(i,q'> have to vanish. Let s(t)and s(t') be 

the supports of t and t', respectively. For n e N we define t, = t + n 1e and t,1 = C + n 1 e. 
Then (tt 1 ) and {t', 1 t' } are increasingly directed systems of positive operators of M' 
such that last upper bound tt,, 1 =s(t) and last upper bound t', - 'V = At'). Thus, since 
h is positive and normal and since F and g are the zero-form on M', we get 

MA O) = limo h( tt 1) = lim, < tt, 1 i, q'> 

= lim e < tt, 1 ci', ci > = limo < t,'', t> = "M n g( t 1 ) = 0, 

and analogously, h(s(t')) = limf(t') 0. This means that both the relations s(t) :5 

s(h) and s(t') 25 s(h) have to hold. Since the norms of t and t' are smaller than one, 
the relations t 2 S. s(h) 1 and t' 2 15s(h) can be followed. According to the latter, and 
due to Remark 2.2 once more again, we infer that in our situation for any x € M 

o1(xx) = <xtço,xtco> = <t 2xq',xf'> :5<s(h)1xq,xq'> 

=(,Axx)-<s(h)xq',xq'> '(w-o0)(xx). 

This together with an analoguous argumentation in case of c leads us to 

Wj :5 00o !5 6), 01 :50-00 :5c
	 (5.12) 

Hence; o zto - u^ w0 and a a -az c. In view to Theoem 4.4 we may conclude that 
PM(o,a) a PM(o-oj,a-dl)2tPM((jo,00). Now, by definition of (W, CF. ) we know that 
PM(o, a) =PM (c.iO ,00 ). Hence also PM(0, ) = PM(0(j1 , aa1 ) - PM( w0 , a.). This tells us 
that {o0,a0 )<c(o-(j1 ,c-a1 )a{u,a} provided that uw1 and a^c1 and w1a1,a1o1. 
On the other hand, by our considerations following (5.11) we know that for any pair 
((j',a') with ((,f,a'}a((j,a) we have that w1 =w-u'and a1 =a-a'obey the relations o J. a 
and al (j1 . With regard to (5.12) we can now summarize all the derived facts into the 
following 

Theorem S.3: Let M be a vN-algebra. Suppose (o, a) and (o', a') are pairs of normal 
positive linear forms over M, and be (o,.,, 00) the (w, a) corresponding a - minimal pair. 
Let functionaI,s.w1 and c be defined as w = w - (j' and a1 = a - a'. Then, the following as-
sertions are valid: 

(1) (w'a'}cc(w,a)if, and only if, ww1 2:O, a 2:c1 ;--O and w1a, a1w. 
(2) 0 the smallest positive linear form v with v :5 w such that w- v I c.and a,, is 

the smallest positive linear form p with p a such that a-p 1 w. 
(3) w- o,, is the largest positive linear form v with v :9 w such that v I a and a-a,, is 

the largest positive linear form p withp :s 6 such that p 1 0.
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We remark that, for given two positive linear forms o and c, the existence of 
largest positive linear forms v and p with v s and p ^ c such that v Id and p 1 0, 

respectively, has been proved first by H. Araki 16]. He refers to this result, which is 
equivalent with Theorem S.3 (3) essentially, as an extension of the non-commutative 
Radon- Nikodym theorem of S. Sakai (cf. [191). We also note that the general 
supposition of this section saying that M should be acting in standard form over H is 
of no relevance for the validity of Theorem 5.3 ( in this point we anticipate the 
reasoning in Section 7) and thus we have decided to give the general formulation at 
once. 

6. PerturbatIons of - minimal pairs. Examples 

In this section some important special cases of <<-minimal pairs of normal positive 
linear forms will be given. The suppositions and notations of the preceding section will 
be adopted and tacitely used, i.e. we are working in a vN- algebra M acting standardly 
on a Hubert space H. Then, the identical representation (id,H) is w,c-admissible for 
any pair of normal positive linear forms (0,0). Especially, Remark 2.2 applies with 
,rrid and says that such a pair (0,0) is " -minimal if, and only if s(lhI)^ p'(p), 

s(Ih*I)^tp(i), where 9P  SW), 0  S(c) and he M. is given by h(- )=<( )0, 92X Assume 
h = RIhI Is the polar decomposition of h. Then, IhI( )=<( )v*,, c,> and IhI() 
= < (), v q'>, from which s (I h I) :s p '( p) and s (I h1 ) ^ p '( ) is evident. Hence, ( ø, c) is 
<<-minimal if, and only if s(IhI) p'(q.'), s(lh*I) p(çj) , fora pair (and so for any pair) 
of vectors pe S(u),e 5(c), with heM^ given by h()=<()çl#,c>. 

We want to apply this criterion in a very specific situation. Suppose, s(o)!5s(c) 
for a pair (0,0) of normal positive linear forms. Then p(g)!r.p(çli) for any. two vectors 
p e S(o),(Pe 5(c). By Appendix 7 and Lemma 1.1/0) there exist vectors p eS(u), cL'eS(c) 
such that < cl',p> = PM(o,c)"2r IIhIIa,where his defined on M ' h()<(),p>. Due 
to h(e)11h 1k, h has to be positive. Thus, Appendix 3 applies with the result that s(h) 

s(IhI) =s(IhI)=p(9P)!5p'((). Moreover, Appendix 3 tells us that p(p)=p(gt) implies 
s(h)=s(IhI)s(IhI)=p'(p)p). With regard to the above criterion we can take for 
established the first parts of the following assertions. 

Lemma 6.1: Let ((J' 0) be a pair of normal positive linear forms. Suppose (wo , c) Is 
the <<-minimal pair such that {o, co ) " (w, a). Suppose the supports s(o)and s(a) of w 
and a fulfil s(o)s(a) (resp.s(w)2:s(c)).Then, w'w0 (resp. a 0), and s(o)=s(a) 
implies (w, a) to be <c — minimal. Suppose (u, a) is <<-minimal and s((j)e M fl W. Then, 
s(c):5s(u) and s(c)"s(w). 

For the last assertion of Lemma 6.1 we note that fora " -minimal pair (0,0) accord-
ing to Definition 5.0 (cf.(S.1)) and Theorem 5.11(1), s(w) -'s(a)has to hold. The skew 
phase of the pair is a partial isometry of M accomplishing the transformation from the 
initial projection s(o) into the final projection s(c).Since the inital projection is a 
central projection the final projection has to be majorized by this central projection, 
i.e. s(c)s(0) has to be fulfilled. We remark, however, that all these results could be 
seen also as an immediate consequence of Theoern 5.3. As an application we can now
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include a quite short proof of the estimation in Remark 4.3. Let w; a, p, v e M,,.. We have 
to prove that

II	II A)	j	L112 tic - v Ii 1/2 IPM (w,ci)"2 PM(p , v ) 1'2 1	I 
II1/2	p 1 1/2 

+ ii p I Ill 

First of all note that due to Lemma 4.2 it is sufficient to derive this estimation for 
normal positive linear forms with equal supports. In fact, we might define sequences 

	

{wk},(ck),(pk) and	with 

+(c +(L + V),Ck C +(A) +p +y), Pk - P +( a + (j +v), Vk = '  

Then Wk —p u, Ck - C, Pi -4 p and vk —9 v in norm, and the above estimation can be 
obtained as the limit of the estimations 

U' 1/2" 
Mk , ak)' 2 - A°M(tJk, vk)'l , lick Iii	ii	'I kPk iii

1/2
 + lIPkIlt	lick - Vk1111 

provided these can be shown to hold for normal positive linear forms with equal 
supports( u. , Ck,pk and vk have equal supports). In line with this, suppose u, a, p. V £ M+ 
all have the the same support. According to a special case of Lemma 6.1 each of the 
pairs (u, a), (p, (j), (,u, v), (a, id, ... is cc - minimal. Assume that I PM W, a)" 2 - PM (p, a)"2 I 
= PM((j,a)"2 - PM(p,c) 1"2, e.g. Suppose € S(a) is given. According to Theorem 5.1 
/(iv) and Remark S.2/(2) we may choose 9P as the (P-relative representative of u, and e 
can be chosen as the ' -relative representative of p. Then, according to Remark 5.2/(2) 
and (4) we have 

PM((j,c) 112 - PM(p,c)1/2 

= <i', '>-PM(p,a)' 2 

= 1< '-,rp>l:5ll	lilt	-eIi	lie 11±1/211 u-p IL1'2, 

	

where we used that	a)1"2^: 1< e. D> I. Therefore, we have arrived at 

IPM (u, a)"2- 'MP' a)"2! 
:g II a 111 1/2 11&)-p ii 1/2 ill 

Analogously we can show that 

I"M1" a)"2 - 13MP' v)1'2l :5 li p	lie - v 1/2 Ut 

Hence, we can follow that 

I PM( u,a)1/2 -PM(p, v)1'2I 

S IPM(A),a)"2-PM(p,a)112if1PM(p,a)"2-PM(p,v)"21 

	

ii 1/2 I	11±1/2 + I '	"1/2' 
lie i	I 

&j - ,U p p	II a-v 'I 1/2 

Therefore, by our discussion from above Remark 4.3 can be taken for proven. 
The representation Theorem 5.1 gives also some idea for an important class of 

cc-minimal pairs. 

Example 6.2: (1) Let w be a normal positive linear form on M. Let a = 08, with a a 0, 
SE M. Then, I(u, a) = R. (j, and a = a,,, where .{ u0 , co) denotes the a - minimal pair which is
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majorized by (w,). For a €Mwith invertible a the pair (w, d) is <<-minimal. Assume 
(,e) is cc-minimal. In this case, for given ç€S() the vector i = aip is the uniquely 
determined vector 1P €S(c) with 4; 11 

(2) In case M possesses tracial normal positive linear forms, for a tracial r € 
and for weM.the pair (,r) is <<-minimal if, and only if, s()s(v). 

Proof: We start with (2). Note first that for a traclal rwe have s(r)eMflM. By 
the last part of Lema6.1 s(w):5s(r) and s((j)-s(r)provided ((j, r) has been supposed 
to be <c-minimal. The vN-algebra N=Ms(r) acting on s(r)His of finite type since tIN 
yields a faithful normal tracial positive linear form on N. Since s(w)-s(r) also with 
respect to N and N is finite, s(i) = s( r) follows. The other direction follows from the 
last part of Lemma 6.1 which then closes the proof of (2). 

To prove (1), we will follow step by step the line of the proof of Theorem 5.1. 
Suppose q' e S(w). Then ' = arp E S(o). For h defined on W by h() = < ( ) q, p> we have 
h(y'iy)= Ilya 112p II 2,10 , for any yeM. Hence, his positive, with s(h)p(a 1'2 q). Owing 

and because p'(0)2ts(h) 
obviously holds, p'()s(h)p(q) follows. From this c=c0 is evident. By our criterion 
from the beginning of this section, (w, c) is cc-minimal if, and only if p)s(h) p(q,). 
Since, for an invertible a €M, p(aq)p(ç) holds, the conditions of our criterion of 
minimallity are fulfilled, i.e. (,c) is <' -minimal in that case. Note that v =s(h)p(a) 
is the partial isometry of the polar decomposition of h. According to the argumentation 
in the proof of Theorem 3.1 in our special situation 

!(w,c)( )<(.)vaq,q,>r<(.)aq,,q,> (Ra(j)(•) 

has to hold. Finally, suppose (, c) is <c-minimal, and qES() is given, and	Then, 
as we know from above p1çls)s(h) = p(c,). For yeM' we have d(y*y) Il y 'I1 2 IIyaqII2 
=Ilay c,11 2 :51Ia1l 2	 with W,o€M' defined by w'( ) = <()p,9'> and 

on M', respectively. We also note that s=s(&')p'(q)p'(çls) by the 
assumptions on 92 and .By the Radon-Nikodym-Theorem of S. Sakai 1191 (cf. also 1201) 
there exists a unique t €W. with support supp(t) = Mc')	s(o)'), such that c 
w*( t(- ) t). Thus II yçb 112 = II ytq' 112, for any y € W, from which condition the existence of 
a partial isometry u €M follows, with uçb tq' and uu p() = s(c), u*u=p( tv). Now, 
p(t):5p(q,), and since p(uj)=p'(tç)=s(c')=s()=p çlp(q') and the linear form 
f( . )<(),uçl><(iq', tç> on Mis positive, Appendix 3 applies (with M — M p-4 
p) and shows that s(f)=p()rp(tq). Since tkO, there exists UEM, with

(6.1) 

Now, uçLs = uaq' = uau*uSv due to uu=p(q), i.e. we also have 

uçb € M+ uq.	 (6.2) 

Finally, h defined on M by h()=<()ucb,uq'>=(()açv,q.'> is positive on W. Since, on 
the one hand p'(u)as(h), and	 by our 
assumptions, we conclude that p( uçb) = p'(0) cp'( This together with (6.1) and (6.2) 
shows that p 1 1 9, (see the definition of II in Definition 5.0). By our assumptions and 
Theorem S.1 /(iv) the uniqueness of'is clean
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Suppose now, WE M.< and a€M are given. Assume as above C twa. As we have seen 
in Example 6.2 I(w, a) = R. 0, and a ;, where {o,, co) denotes the a — minimal pair 
which is majorized by W, o). We are going to find an interpretation of the skew phase 
u(w,a) in this case. Let p€S(w). Then, =apeS(a) r S(a0 ).By Remark 2.2 we have ç' 

s(IhI) p ES(00 ), with hdefinedonM'byh( )=<( ) qi, q'>. As we explained above, hO, 
and s(IhI) = s(h) =p (çti). Similarly as in the preceeding proof, by the Radon-Nikodym-
Theorem of S. Sakai there exists a unique teMwith support supp(t)p'(), such that 
IIyII 2= II ytq II 2 , for y eM', from which relation once more again the existence of a 
partial isometry u eMfollows, with u*çttp and uu*=p((P)s(a)=s(ao), uu p(tq')s 

p(q)s(c). Now, s(o0)=p(s(IhI)p)p(p'()q')p(tp), where we used that supp(t) 
p'(). From this we also get that tptp'(b)q'ts(h)q'=tc' But then, the last part of the 
proof of Examples 6.2 (with v" w,, a, in place of q', w, a) together with the equation uçL' 
=tp =tp' says that 0 II p', necessarily. In view to Theorem 5.110) u(o0 , do ) u has to be 
followed. Since I(o,a) r I(w0,a0 ), uu(o,a) is seen. Hence, what we have proved is the 
following 

Lemma 6.3: Suppose WE M..and a e M are given. Assume a = w".  Let p e S( w), and let 
te M, be the uniquely determined S. Sakais Radon-Nikodym operator which obeys 
<yap,aep> = <ytq.', tp>, for ally  M'. Then, the equations 

wws(c), waç'tp 

have as the unique solution In M the skew phase w = u(u, a). 

Let us assume now that (c.J,a} is cc-minimal. Suppose p e S(w).By Theorm 5.1 there 
exists gtce S(a) with 'iip. By (5.2) and (5.9) we have s(o)e Mçv . Let (a)CM+ be a 
sequence of positive elements such that ap-4 s(o). We define 

and pap + . s(o)i, for any neN. 

Then p,-4 p. In setting ç1 = bp = s(w )a p + .! p + s(w ) 1 ç we see that çl-4 0. Hence, 
for	(.)<(.)p,p> and	 we realize that o —	d a — ,w and 	in 
norm. Since On = w,( b( )b) and ba O's in M and is invertible, Example 6.2 says that 
(o,, a) is <( - minimal for any n € N. Thus we have arrived at the following 

Theorem 6.4: The set {(w,c): o eM,,, there is a eM, invertible, with a	is a

dense subset of the set I' of all cc - minimal pairs in M,,, x M. 

As another application of Theorm 5.1. we find the following 

Proposition 6.5: I(w, a) Is a hermitlan form if and only if 1(0, a) is positive. 

Proof: Assume I(o, a) is a hermitian form. Then, by Lemma 4.11(h) I(o,a) = I(a, (j). 
By Lemma 4.1/(iii) we can suppose that (o, c) is <c - minimal. Let p € S(o) and ç'ES(d) 
be chosen such that ç(.cIIp. By our assumptions we get <( ),p> = <( )p,gL'>. The latter 
also means that I(o,a)= 1(a, w) (. )s()ç, p> =<(. )p, s(o)ft> (we note s(w) p(p)). 
By (5.2) and (5.9) we have S(W)o eMp. By Appendix 2, a positive, selfadjoint linear 
operator F, which is affiliated with M, exists and fulfils s(o)ç(Fp. Let Ff0 )<E(dA)
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be the spectral representation of F. We define E = E( [0, )), E,, = E( [0, n)), and F,, = 
FE,,, for any n € N. Then, all the operators defined belong to M, and st-urn,, E,,= Eand 
Es((j)çL = Fp s()çL'. By assumptions, <yp,Fq,> = <yFep,p> for ally€M. Especially, for 
y €E,,ME,, we get <yq',F,,p><yF,,p,p>. Since yF,,, F,,y eE,,ME,,, by the same 
reasons we are obtaining that <yF,, p, p> = <yF,,tp, F,,p> = < F,,yF,,q.', p > =< F,,yp, F,,p> 
<yp,F,,2p>, for any yEE,,ME,,. Concluding further in this way shows that <yp,F,,kp> 
<yF,,"p,p>, for any k EN and yEE,,ME1,. Our conclusion is that <yp,Bp><yBp,p> 
for any B taken from the C - algebra that is generated by e and F,,. Especially, for 
B F,,1 ' 2 we get inthis way that <yF,,cp,c,><yBBp,p><yBp,Bco>, for any  eE,,ME,,. 
Hence, for z € M we see that 

I(,a)(E,,zzE,,)=< E,,zzE,,Bp;Bp>=IIzE,,Bp112Z!o. 

The inequality J(, a)(E,,z5zE,,) 2t 0 has to hold for any n eN and any z eM. Since I(&', a) 
belongs to M. and st_lim,,Enz*zE,,Ez*zE, I(w,c)(EzzE)a0 has to hold for any 
zeM.BecauseofEs((j)s(w)and<()s(&),p>=<()p,s(w)Øwecanconclude 
as follows:

= <zzEs(ø)',p> = 

= <zzEp,Es(w)çL'> <Ez*zEp , s(e,)cb> = <EzzEs(o)cL',p> 

= I(,o)(EzzE) 2: 0, 
for any zeM. This proves positivity of the skew form provided hermiticity has been 
supposed. The other direction is trivial U 

Remark 6.6' Note that Example 6.2, among other things yields that PM( .i, c ) = 
o )(e ) 2 ,> 2 = ,()2 in the case that ci = wa for some a cM. This is a well-

known fact, cf. (2], (24]. By standard conclusions the result persists to hold true also 
In the case of a unital C- algebra A and cieA"+ , a c  

Let us suppose now we have given two vectors 0, pE H such that çb' 11 92'. Then, it is 
quite interesting to analyze under what kind of perturbations S, 892 EH of the vectors 

pe H the relation ii behaves stable, i.e. ip ii p persists to hold with 0 = ,P' + 80' and p=p 
+ Sp'. Our Example 6.2 yields a special case of this problem. In fact, if we define ' 
= p = p, Sp'= 0, then Example 6.2 tells us that a Up persists for any perturbation of 0, of 
the form SgLs=bp, with bEMb, spec(b)C(-1, ). Note that in the proof of Example 6.2 
we have been following step by step the line of argumentation proposed by the proof 
of Theorem 5.1 . This made sense because we were also aiming at an Interpretation of 
the skew phase in the context considered there (cf. Lemma 6.3). In applications like 
the mentioned question on the behavior of ii under perturbations, however, in most 
cases we have in mind we will not care about the behavior of the skew phases. In line 
with this, it is of interest for us to have to our dispose a simple criterion in order to 
decide whether or not for two given individual vectors , p e H the relation cli tip takes 
place. Such a criterion, which has its motivation in the above problem and proves quite 
useful in such a context, reads as follows. 

Propoaltlon6.7: Suppose p,çI.'€Hare given. Let heM', be defined byh( . )<( . )cl',p>. 
The following assertions are mutually equivalent:
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(a) his positive on M' and p'(tp)=p'( (P)s(h). 

(b)p(p)glc € Mp and p)p'(ç1)=s(h). 
(c) for  € M.. with cL' eS(o), (pis the unique vector within 5(o) such that çIIc'. 

Proof: The equivalence between (a) and (b) is part of the assertion of Appendix 
2. Suppose (a) holds, and let w,c€ Me, be such that p ES(w), 1P E S(o). We have p'(q.') 
PI ) = s(IhI)s(IhI)s(h). With regard to Remark 2.2 we then realize that (w,c) is 
- minimal. Moreover, (a) together with Lemma 1.11(1) implies that p E S(o)and 0 € S(c) 

are vectors obeying <,p>=h(e)=IIh IIi = PM ((J,c)"2 . Thus, p and tp are representing 
vectors for the components of a <(-minimal pair (w,c) fulfilling assumptions as in 
accordance with those we have met in the first part of the proof of Theorem 5.1. In 
conclusion of this part of the proof we deduced that ' 11 92. Hence also cli II p in our case 
at hand. The remaining assertion of (c) follows from Theorem 5.1/(iv). Suppose now 
that çl'IIp. By Theorem S.1/(iv) 0 is the unique vector in S(c) with (P 1192. By Theorem 5.1 
1(i) {,c)is <c-minimal. In view of (5.2) and (5.9) then (b) follows I 

Remark 6.8 i (1) The preceding result could be taken as an invitation for a compre-
hensive redefinition of II which reads as follows: for 0, q'eH let çL' lip in case that h() 
<(•)q,p> is positive on M' and p'(q)p'(')=s(h). 

(2) A pair of normal positive linear forms (c,c) is.-minimal if, and only if for some 
p £ S(c.,), q e S(o) such that h,q1 ( . ) =<( ) cp, p> is positive on M, çV	Is the unique 4'E 
S(c) such that	a 0 and, at the same time, V' = p is the unique p' £ S() such that 

0. 
In order to see this, suppose the pair (c., c) is given and, according to Appendix 7, p 

£ S() and 4 eS(a) have been chosen such that <, p> = h(e) = II hII 1 = PM(<.d) i2 . with the 
linear form h() = < ()c/i, .p> on M'. As we know h a 0. Then, either Proposition 6.7/(a) is 
fulfilled, and then the pair is =-mlnlmal in the sense introduced in Section 1 • or (a) 
does not hold. Since his positive, in the latter case necessarily p'(p) > .s(h) or pXc) = 
s(h) have to occur. Put this case and suppose p()> s(h). Let us define 

J.46)=s(h+expiG{p-s(h)}çl, for 6€R. 

Then, cp(0)e S(c), for any 49  R. Moreover we have h 6 ( . ) =<() c(e),p>=h(()s(h)) • 
h(()(p'(çL.) -s(h))) 

ell 
iO, for any OcR. Since h(()s(h))"hand h(()(p'(c/)-s(h)))=O 

are fulfilled, we get h = h for any e r R. Since by assumption of this case we have 
- s(h)) 0 1( 0, we see that cp' = p is definitely not the unique çL.' € 5(c) such that 

() = <( ) çL", p > is positive. Every choice of 0 £ 10, 270 yields another 0' = 4449) € 
S(c) with h P.O.= h 6 = h a 0. Analogous arguments work in case that p'(.p)>s(h) 
occurs. In this case the conclusion is that p' = p is not the unique p' such that 5 0. 
Hence, If (,c) is not --minimal in the sense of SectIon 1, the positivity requiremnt 
for does not fix uniquely the relative position in H of the representatives p and cp 
to each other. On the other hand, let us suppose now there exist ' * çb, with çb', c 
5(c), such that both h ,<1 a 0 and h,,w a  are satisfied. As we know from Lemma 1.1 we 
have 

II h q, çj IIi = II hp,çV Iii = 

Let w € W be the partial isometry with ww p) and çi' wçl'. We then have 
Rwhp,q	(()w). Since both h , ,p and	are positive and IIwHa i holds, we can 


apply a result of 120: 1.24.1 ] saying that in our situation at hand hr,,.q,'S h , q, has to be 
followed. Since both functionals are positive and of the some norm, necessarily h,<,j,. 

has to hold. But then, by the uniqueness of the polar decomposition we may 
conclude that wS( hp, qc )=s(hp, ,p) holds. Assuming p'(çb)=s( h ç,p) we héve to follow 
that w = p'(çL'), i.e. cli' = cli. This is in contradiction to our suppositions. Hence p)>



322 PETER M. ALBERTI 

s(h 9,p) has to be true. But then, according to Theorem S.1 /(I) and Proposition 6.7/(a), 
(c), (,o) can not be a - minimal in the sense of the definition given In Section I. 
An analogous conclusion has to be drawn in case of q' * , ' E S(i), with h 9,'q1 X 0. 
Hence, what we have proved now is that (c., c ) is - minimal if and only if for some ' t 

S(). 0 E S(c) such that h,,,p(')=<()q.> is positive on M', ' =	is the unique 4" £ 

S(a) such that hç, p' 2t 0 and, at the same time,	= W is the unique (p" c S(w) such that 
0. 

(3) Suppose (,o) is ',-minimal, and 9 eS(.,), 4' €S(c) have been chosen such that 
<P, q'> =	0)1/2. Then, we have 4' 11 9;. With other words, in case we know that 
and o form a . - minimal pair, for any given q' £ S( w) there exists exactly one 4" £ M CI) 
such that <4"q>PM(,)1 2 This unique element 4" 4' of S(c) is the q-reJative 
representative of o. 

In fact, this follows from (2) since 4" = 4' is uniquely determined by the conditions 
'.9' S(c) and hç, qj ' a 0. Accordln, to Lemma 1.1/(i) h,, , q) . sO Is equivalent with <cL",g'> 
= h 9,g1 . (e) II h 9, , ,p . Iii =	ci) 2 The rest follows with view to Remark 5.2/(2). 

Note that by (2) the usage of the term <<-minimality of a pair (w, c) as it was men-
tioned in the introduction (cf. Section 0) is now verified. This says that the character-
ization of e- minimality we have been using in the introduction amounts to be equival-
ent with the definition given at the end of Section I . The difficulties with Proposlion 
6.7 or the seemingly sound redefinition of II in Remark 6.81(1) arise from the fact that 
for arbitrarily given vectors tp, p E H it is not easy to verify whether h is positive or, if 
this is the case, whetherp'(p)p'(çl)=s(h) occurs. But the criterion (and therefore 
also Remark 6.81(2) and (3)) becomes easily applicable in the context of perturbations 
of an existing relation çl' 11 9. 

Example 6.9: Let çL',q.'€H\(0) be vectors such that pllq'. For cr,,6 € R.,.let p(r,)€H 
be defined as p (a, ) =	' + fi p. Then, ' (a, ) II p (&, a'), for any a, fl, a,6 ' € 

Proof: Suppose a', , a", j3'€ R. are chosen according to our assumptions. Let us look 
on the linear functional  h',h,w',c' defined on M' by h'(')<(' )p(a',),p(tzcf3' )>, 
h(')=<()ç1,p>,w'(')<( )p,q>,o'(')=<()9,cb>, respectively. Then, 

h' act' o' + 0$'u' +(a''+r')h, 

where we used that h=h2:O, due to g'llp and Poposition 6.7. Since a'a", 00, (a'' +a") 
€R and h, w c'eM',,,.,. we deduce h'2t 0. By our assumptions and Proposition 6.7. p'(p) = 
p'()s(h) holds, and since s(w')=p'(p) and s(c')=p'( (P), we have s(w')s(c')=s(h). 
Thus s( h')s(h) has to be valid. Due top'(p)=p)s(h)rs(h') once more again, 
and by the construction of the vectors p(a',) and 9,(cz',13'), we see that s(h')p(a,f3)= 
p(a',fl) and s(h')p(a'')'(a"'). Hence s(h')ap'(p(a',13)) and s(h')2tp'(7,(a'')). 
Since in our case s(h')s(Ih'I)s(Ih'I), and because s(Ih'I)^5p'(97(a',fl)) and s(Ih'51) 
^ p'(p(a'')) follow as usually from the construction of h we finally can summarize 
that s(h')=p'(p(a',))p'(p(tr,fi')), with h'being positive. Finally, an application of 
our Proposition 6.7 now yields p($)llp(a'')I 

Another quite useful application of our criterion is in the following situation. 

Example 6.10: Let ', p e H be vectors such that 0 tip. 
(1) Suppose a eMis invertible. Then, a 1 0 11ap.
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(2) Suppose u eMis a partial isometry such that uu 2tp(D) or uu ap(p) holds. 
Then, uçb II up. 

(3) Suppose b eM'. Then, bç1 H bp. 

Proof: Let '=a 1 ' and p' a*g,. Then, since a eM is invertible, p(g1s')=p'((P) and 
p'(ç")p(p) have to hold. Let hand h* be defined on M' by h( )<()gb,p> and h'( ) 

respectively. Then, for any xeM',h'(x)<axa 1 çb,1p > = <x,p >h(x), i.e. 
h' = h. From u p it follows by Proposition 6.7 that h a 0 and s( h) =p'( p) = p'( vs). Hence 
s(h')= p'(p')p'(çV) has to be fulfilled. By Proposition 6.7 gVllp' follows. The second 
part is obtained by an analogous argumentation. To see (3), let çV = bi, P' = bp and let 
hand hbe defined as in the proof of (1). Let q be the orthoprojection onto the range 
of bs(h), i.e. q is the left support of bs(h). Since s(h)=p'(p) =p'(ç') holds, we have 
p')=p(bçl)= p(bs(h)cp)=q =p'(bs(h)p)=p'(bp)=p((P). By the meaning of q and 
since h'( ) = h(b( )b) holds, we see h' ^:O and h'(q)=h(bqb)=h( b*b)=h(e), i.e. 
s(h'):^q. On the other hand, for z = q - s(h) we have 0h'(z)=h(s(h)bzbs(h)). 
Hence, we have s(h)b"zbs(h)=O. The latter implies zbs(h)=O. From this and from the 
meaning of q we infer that bs(h) s(h')bs( h). Hence, s(h')^ q. Taking together these 
facts gives p*( (P*) =p'(7 ) = s( h') = q. An application of Proposition 6.7 now yields the 
result I 

emark 6.11: The assertion of Example 6.101(1) remains valid if In the assumptions 
a is supposed to be a densely defined, closed, invertible operator on H which Is affili-
ated with M, and c D(a), c D(a'). In fact, under these assumtions a tx Q xa1 
for any xc M. Hence, a'xçb = xa q, and thus h'(x) =< xa qJ, a*q,> = 

a< x<J, a*q,> 
<x, 9'> h(x ) for any xc M'. Now, in the polar decomposition a ulal of awe have u c 
11(M) and lal Is a selfadjoint, invertible and positive operator affiliated with M. Thus, 
also the conclusionthat p(a<<)=p(<p) and p(5*9,)=p(q,) hold remains valid. Also it 
Is easy to see that the assertion of Example 6.10/(3) remains true for a densely defined, 
closed operator b on H which is affiliated with M' and 9 and 0 with q', <9 e D( b). 

Let us suppose now that ((,c) is <<-minimal, and assume TES(W)and ES(a) are 
given. Let h be defined on M' by h(' ) = <(),p>, and let h = Rihi be the polar 
decomposition of h. Then y e M is a partial isometry with v v = s( hi), v v s( h1). 
We define 0=v*0. By Remark 2.2, (2.3) and by our assumptions we have s(ihj)p =p 
and "ES(C).Hence, p'('):^s(IhI) and p'(p):gs(thi). Because I  ()=<(' )çt",p> is 
positive, on the other hand, p'()2ts(IhI) and p'(p)as(Ihi) have to be valid. Let be 
defined h'()=<()çjs',p>onM'. Then h' = ihI is positive on M' and p'(cb')s(h')=p'(p) 
is fulfilled. An application of Proposition 6.7 then yields the following 

Proposition 6.12: Let (w, o) be cc-minimal, and assume peS() and 'eS(c). Let h 
be defined on M byh(')=<()tJ.',ep>, and let h'r Rih j be the polar decomposition of 
h. Then, vçbllpholds. 

Note that this result has been proved implicitely already in course of the proof of 
Theoem S.! (cf. also Remark 5.2/(2)). We shall refer to the partial isometry 8(p, 40 = v 
as the relative phase between the representatives p eS(ø) and 0 eS(o ). According to 
the definition, we find that the p-relative representative 0' of a (cf. the definition of
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this term in Remark 5.2/(2)) is obtained from by means of the formula ch'(q',/')P. 
This shows how the algebraic scheme we discussed in Section 0 can be accomplished in 
the case of a (standard form) vN- algebra. 

Let w,w'eM' be partial isometries with w*w=p(q) and w * w' = plo),  respectively. 
We define p'= wp and = w'(P. Because of w* w=plop) the operator w is the uniquely 
determined partial isometry r in M with rr = p'(p) and q'rq'. Hence, by Theorem 5.1/ 
(iii) from v* 0 11 92 we obtain wvçl It ç". Since i :w''çV holds, we get wvwcL" II 
Because of w* w'=p'(0), w' w'=p'( çb'), vv* p( çLs),vv=p'( q') and W*Wrp( 
p'(rp'), wvw' Is a partial Isometry of M' with initial projection p'('.) and final 
projection p'(p'). Since wv*wcb ES(d), by Theorem 5.1 /(iv) and Proposition 6.7 we 
have that g€ M',.defined by g(-) = <( )wv*w*c1,, c"> is positive and s(g)=p'(ç"). Let h'e 
M. be given by h'( ) = <(-)4Y, p'>. Let h' R . I h' I be the polar decomposition of h'. Then, 
by Proposition 6.12 we have v'çVHq'. From Theorem S.1/(iv) we follow that v*cL, = 

wvw'çL. Hence g = Ih' I, i.e. v'v' s(h'i)s(g)p'(q,'). On the other hand, since 
(w, a) is <c-minimal, by the criterion from the beginning of this section we also know 
that Therefore, both the partial isometries v' and wvw' have 
the same initial projection p'( i) and fulfil v' çl' = wvw çl<'. From this v* = wvw' has 
to be followed. Summarizing we get the following 

Lemma 6.13: Let (w, c) be cc-minimal, and assume q, cc' E S(o)and , ' £ S(c ). Let 
W, WE M' be partial isometries with w* w rp'(q)), w'* w' rp'(,) and q" wp, (P ' = w'çk 
The relative phases between p. ' and sp , çV, respectively, transform into each other by 
the law

	

= 8(wq,w'(P) = wS(p,gls )w'.	 (6.3) 

We want to comment once more on the relative geometry of =- minimal pairs. From 
Definiton 5.0 and Theorem 5.1/(i) we know that for a - minimal pair (, 0) the relation 
s()s(d) holds. We will give an example showing that the relations s(o)<s(w) 
(i.e.s(c):5s(cj)ands(c)*s((<,)) and s(w)"s() can occure for a=-minimalpair.This 
then proves that even in case of s(c) s s(w) (cf. the corresponding parts of the asser-
tion of Lemma 6.1 ) equality s ( 0 =  s (w) is not necessary in order to assure that W, c} 
be cc-minimal (but compare this to the special situation described in Example 6.2/(2)). 
On the other hand, by Theorem 5.3 one can easily provide examples of pairs (w,c) with 
s(c)<s(w) and s()-'s(c) fulfilled, which are not <c-minimal (note that this requires 
Mto be an infinite vN-algebra). In fact, suppose H to be separable, and M to be infi- 
nite. Then, there are orthoprojections p, q such that q < p and q p, and ci, p € M .+ with 
s(o) = q, s(p)  = p - q. We define (i = ci +,u .  By Theorem S.3/( 1) we have 4 o, ci) cc {, ci), 
with 0 * ci. Hence, (w, ci) is not cc - minimal. 

Example 6.14 : Assume MB(H), with separable, infinite dimensional H, and be 
((Jk) a maximal family of mutually orthogonal, pure normal states on M. Let p be a 
minimal projection in M such that wk (p)*O, for any k. Let 1k be an arbitrarily 
chosen sequence of strictly positive reals converging to zero. With = 2k=lEkWk(P), 

let us define ;L k = j wk(p). The n, w= ).kuk is a faithful normal state. More- 
over, (0,0) is <<-minimal for any normal state ci with s(ci)p.
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Proof: Let ci be a normal state with s(ci)p. Let p be the uniquely determined 
pure normal state with s(p)=p. Since s( (j)=e, we have s(a)s((J). According to 
Lemma 6.1 we have ci = ci provided {w0 ,ci) is the --minimal pair which is uniquely 
associated with W, a). Let -(jn. By Theorem 5.3/(3) we have w1 Jc. Hence, s(w1) 
is zero (and then (i c) or s(w1 ) = p. In the latter case we had (J, =.Ip for some positive 
A, and w= u - Ap. Let Pk be the support of uk Then, we have wo ( Pk ) a Pk Ap(p1 ) = 

Ak -Ap( PpkP ). Since P' Pk are minimal projections, we have ppkpt (ppkp)p and 
PkPPJC = t ( PkPPkpk, where t is the canonical trace on M. Therefore, p (p1 ) = p( PPkP 
t( ppkp ) = t(pkppk)0k(pkppk) = wk(p). Hence WO ( Pk )= ;L k - wk ( P) kAki9 Ek1 

- AP Since Ek ) 0 and o.,, has to be positive, Ak(l - ^O has to be valid 
for any k. The tatter implies A=O. This is in contradiction with the suppositions of the 
case in question. Hence, only the case s(o1 ) = 0 is possible, i.e. o = wU 

As mentioned in the introduction, the structure of the skew form I(u, ci) reflects some 
aspects of the non-commutativity in the pair (o, ci). According to Definition 5.0 and Theorem 
5.1 this is evident at least in case of a a- minimal pair. In this case one has the feeling that the 
skew phase u( &), ci) provides a quantity which estimates how far from mutually "commuting" 
the components of (o, ci) are. We have to explain first what commutativity among positive 
linear forms should be. We will say that the positive linear form o commutes with another 
positive linear form ci if I(w, ci) is symmetric, i.e. 1(0, ci)=I(ci, (J). In terms of the geometry of 
the representatives we have the following 

Theorem 6.15: Suppose (w, a) is a a - minimal pair of positive normal linear forms on M. 
o commutes with ci if, and only if, for any p e S(o) the set 

S(ci)flM.pflMp	 (6.4)

is non - void. 

Prod: Assume the set of(6.4)is non - void. Let çii€S(ci)with 0€M+rpflM'9,. Then, 
p'(0) -s p'( p) and p( O) :5 p( p) follows. We define h() = <( ) g', q'> on M. Because ' E Mp 
holds, by means of Appendix 2 we see that  '^0. This together with p()sp(p) yields s(h) 

P'(95-) :9p((P) (cf. Appendix 3). From p'(0) :5 p'(p) then follows s(h) = p(q') = p). Ap-
plying Proposition 6.7/(a) in this situation shows that lip. From Theorem 5.1/(H) we see 
that onMwe have I(,ci)=<(.)g(i,p>. Because of cue M'i,.çiand according to Appendix 2 
(in application to M') we see that I(o,ci)0, hence I(o,ci) is herinitian. From Lemma 4.1/(ii) 
we then conclude to 1(o, ci) = 1(0, w), i.e. o commutes with ci. Suppose (i commutes with ci. 
From Lemma 4.11(u) we then conclude that I(o,ci) is hermitian. Moreover, by Proposition 
6.5 even 1(o, ci) ^ 0 can be followed. Let p € S(w) be given. Since (0, ci) is a- minimal 
according to Theorem 5.1 /(Iv) there is a unique çtt€S(ci) such that (P 119:'. Hence, by Theorem 
S.1 Ail) we have I(o,ci)=<(•)u,Ø. Note also that I(o,ci)^tOimplies that u(o,ci)has to be 
an orthoprojection: u(&), ci) = p. By Definition 5.0, (S.1), from 11 92 we then have to follow 
that  'p() = p(p) holds. By Definition 5.0, (5.2), 0 £ M',p and € M.,.p follows U 

Note also that as a consequence of the proof we have that a {Sci fl M.,.p fl v79, 1 = I for 
any p E S( o) in case of a commuting a - minimal pair (w, ci). 

We are going to give an example illustrating the notion of commutativity. 

23 Analysis, Bd. 11, Heft 3 (1992)
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Example 6.16: Let r E. ?v4 + be tracial. Suppose a, b € M with s (a) = s ( b), and let w, ci 

EM.. be defined as w( -) = r  (a (i) and c( ) = r (b(- )), respectively. Then, w commutes with ci 

if andonlyif (ab-ba)s(r)0. 

Proc': Since s ( r) € M fl M' holds, without loss of generality we may contend with sup-
posing that s(02ts(a)=s(b) is fulfilled. Then, s()=s(ci) rs(a)s(b)p is valid. By 
Lemma 6.1 we know that (w,ci} is a .'r -minimal pair. For E >0 let us define aE a + Ep and 

) = r(a()). One easily seesthat 

=	E, with cE defined by c., = a	2 (a'2 ba"2 ) 1'2 aE 1/2, 

where the inverse a is taken with respect to pMp. By Example 6.2 we have 

I(UE , o)( ) = 6),, (c,()) = t( a"2 (a'2 b a"2 ) 1 '2 a'2( 

Since ( WE, c) is u- minimal(cf. Lema6.l), Theorem 4.6 can be applied with the result that 

= limEI(uE,c)(aE()) 

= limE r(	 aE"2(• )) 

= r( a 1/2 ( a 1'2b a 1/2) 1'2a1/2(i). 

I-nce, I(c.,c)(a()) is a positive linear form. 
Suppose now that w commutes with ci. Then, following Lemma 4.1/( ii) and Proposition 

6.5, I(c) has to be positive. The positivity of the form I(,ci)(a()) then implies that we 
have I(w,ci)(()a)=J(c,c)(a()). 1-lence also I(,c)(a(- ))=I(ø,c)(a1/2(- ) a 1/2 ). Note that, 
due tou((j,c)=p=s(()=s(c)=s(a)s(b) (cf. Definition 5.0 and Theorem 5.1), and 
since I(, o) and v are normal, we have for any x 

I(w,o)(x) = I(ø,a)(s(a)xs(a)) 

=	E I(w,c)( a 1/2a 1/2xa 1/2a1/2) 

= Urn r(a; 1/2 a 1J2( a 1/2b a 1/2) i12 1'2a- 1/2x) 

= r((a 1/2b a 1/2 ) 1/2x), 

where we used that 0:5 a 1/2a 1/2 ss(a) and st-limE a1/2a; 1/2 =s(a) holds. Therefore we 
obtain 

I(w,a)() = r((a1/2ba1/2) 1J2(.))	 (6.5) 

As mentioned above I(, c)(a( )) =J(, c)(( W. Now, according to (6.5) this implies that 
a(a 1/2 ba 1/2 ) 1/2 = ( a 1/2ba 1/2 ) 1/2a. lnce, also a(a"2ba 1/2 ) = ( a 1/2ba 1/2 )a is true. 
Thus, we arrived at the relation a 1/2(ab -ha)a 1/2 = 0. Since 0 =a; 1/2 a 1/2(ab -ba)a1/2a1/2 
holds, in taking the limit E - 0 and respecting st-Urn 6 a 1/2a; 1/2 s ( a) = st-Urn6 a; 1/2a1/2 
we Ilnaflygetab- ba= 0. On the other hand, if we suppose that ab - ba r Ohoki.s, for c6 we 
find CE = b1/2a 1/2 From this then '(6, )) = '. E (cE )) = r( b1/2a 2 (•)) follows. I-nce, 
in taking the limit and argueing by Theorem 4.6 we see J( a, c)(- ) = r( b 1/2a . )). Since 
b1/2a 1/2 0 and r is traciaL I(o.i,ci) 2t 0 has to be fulfilled. But then I(w, ci) = I(c, w), i.e. 
commutes with a 
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7. Some auxiliary results 

In this section we shall show how we have to deal with the general C-algebraic case. 
Suppose A is a unital C*- algebra, and W,0 €A" Let {ir,H0 ,ru} be the (w +c)- GNS-  
representation of A. Then, fir, H0 ) is 0, c-admissible. Let p be the orthoprojection of 
ir(A)" with pH0 [ir(A)Q], and define M=pir(A)"p, H r [ir(A)'flJ. Then, Mis a vN-
algebra with a cyclic and separating vector on the Hubert space H. Let ' e M ir, u) and 
çt'e Mir, c), and suppose	to be defined overM by 

Or(•)=<()4ii>, 

respectively. By Lemma 1.1/(i) and in using Appendix 7 we find partial isometries V, WE 
M * =;r(A)p such that vv = p'(q.')pand	wp'((P)p and 

pM(c,cn)2=<wp,vc,>= SUP {KzcL,c>I:zEM,UzIl:1l}. 

Now, obviously we have vcp € S((j,r) and wçti E S(c,) fulfilled. In applying Lemma 1.1/(i) 
and Appendix 7 once more again we realize that we are allowed to suppose that v', w' E 

,r(A Y exist with vv p'(vp) and wwrp( wgts) and 

17A"°	<wwçL',vvq'>	SUP {I<zw,v'> p :zEir(A) ',IIzII:11} 

^ I<w,vØI = <wçL,vq'> = 

i.e. PA(o,c)"2 ;. PM( u c) 112 holds. On the other hand, m = v vw'w € ir(AYp =M', 
with 11 m 11	I, i.e. 

PA(w,c) 112 = <ww,vvç> = <mç(yp> PM(6),r,0iz)112 

by Lemma 1.1/(i). Therefore we conclude that equality has to occur: 

PA(w,c) = PM(W,r,Cir).	 (7.1) 

We might continue our conclusion in this way (making use of Remarks 2.2, 3.2, 4.5 and 
(7.0) to see in addition that 

I((Jir,rJ,r)p7r()p = 1((J, 0),	 (7.2) 

a) is a- minimal over A if and only if ( 0,r, c,) is a - minimal over M.	(7.3) 

Hence, many of the results of the Sections 4 — 6 which have been derived in the special 
case of a vN-algebra with cyclic and separating vector persist to be valid (with 
obvious modifications) in the general case of a unital C- algebra and arbitrary pairs 
of positive linear forms and 'c-minimal pairs of them, respectively. We omit detailed 
formulations of these results which are heavily based on (7.1) -(7.3). 

APPENDIXES 

In this section we collect and prove some auxiliary technical facts and reèults we have 
need for throughout this paper. Suppose F is a positive normal linear form over 
some vN-algebra on H. Then, the support of F is named by s(f). Suppose now Mis a 

23 *
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vN-algebra over some Hubert space H. Let M denote the commutant of M. For a 
vector O E H, by p( O) and plc) the orthoprojections onto the closed linear subspaces 

[Mh)={x(P:xeM'}, (Mci') {xçi':x€M} 

of Hwiil be meant, respectively. Remind that p( 0 ) = s(f) and p'(çi')s(g), with f€M,., 
andg€M..+ given by f(x)<x',ci'>, forany XEM, andg(y)<yci',4>, foranyy€M'. 

Suppose now f is a linear form on a vN- algebra Mover H, and a €M. Let R8 f be the 
linear form R8 f()f(( )a) over M. In case that F belongs to M. we have the polar 
decomposition theorem for F. We remind that by this theorem two assertions are 
established. Firstly, there are a partial isometry u€Mand a positive normal linear form 
g over M such that f = R, g and, secondly, both u and g2: 0 are uniquely determined by 
the condition uu =s(g). In the latter situation g I  I is called modulus of f, and 
II f II I ' = 111 f 111, holds. The decomposition f = R I f is referred to as the polar decomposi-
tion of F. Note that in this case also utt' = s(lfI) is valid, where the adjoint f of I is 
defined by f(x)=f(x) for all x €M (in this case the bar indicates the complex 
conjugation of a complex number). For further details and generalities on vN- and C - 

algebras we shall make use of throughout we want to refer to 1201, [23] (cf. also 1111). 

Appendix 1: Let Mbea vN- algebra over H. Suppose f€ M+, and assume f(x) = Ill IL 

holds for some x €M, lix II !^ 1. Then, xs(f)+m for some  €s(f)Ms(f)1. 

Proof: Let y = s( f)xs( f). By our assumptions f(y) = f(x) II F II = f(e) = f(y) = f(x*) 

for the positive linear form F, where e means the identity operator over H. Hence, we 
have the following estimates 

lI f lli2=lf(ex)1 2 --1;f(x*x)llfli i , 11  
Ill _ -2lf(ey)125f(y*y)Ilflli 

llfll12 = if(ex")i 2	f(xx)IifiIj ,	lIP	- uf(ey ) 1 2 f( ,* ) 11f1112 - 

Since both x and yare in the unit ball of M, we follow that f(s(f)x'xs(f))= 11f Iii = 

f(s( f)xxs( F)) and f(y*y) 1I111 rP(yy) hold, from which we conclude that 

s(f)xxs(f) =y*y = ,(f) 
=yy*= s(f)xx*s(f). 

According to the definition of y the latter also shows that s( f )X's( f ) xs( f ) = Q 

s( f )xs( f ) 1 xs( f). Hence s( f ) 1 xs( F ) = 0 = s( f )xs( f ), which also means that 
xs( I ) s( F )xs( I ) = s( f )x=y. Let x =a + i b, with selfadjoint operators a, b ("i 
means the imaginary unit of the complex numbers C). Since both x and x' commute 

with s( f), and since we have a = 1 -(x+) and b 1 (x - 1P), both a and b commute with 
2	21 

s(f), too. Hence s( f) -s(f)(xx +xx)=s(f)(a2+b2)=(as(f))2( bs(f)) 2, where 
we used that x*x+xx*2(a 2 +b 2 ) holds. The elements as(f) and bs( f) are hermitian 
with f(as( f )) = -(f(x) + 1(f)) = Ill 11± = 1(e) = f(a). Since a is in the unit ball, we get 
the estimation f(e)2f(a)2:gf(a2)f(e):5f(e)2,i.e.f(a2)f((as(f))2)f(e)follows. 
Since (as(f)) 2 is positive, we have (as(f))2s(f), and s(f)(as(f))2+(bs(f))2 
then implies bs(f)0. Thus, the partial isometry y has the form y xs(f)as( I). 
Especially, and according to the above mentioned, the latter means that y is hermitian 
with yyy 2 s(f) and f(y)f(as(f))f(e)f(s(f)). But then, s(f)-y2tOand
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f(s(f)-y)=O have to be fulfilled. Since fis positive and s( f)-yE s( f)Ms( f) we get 
s(f) =y. This means s( f) = xs( f) = s( f)x. We finally get the desired decomposition of 
xas x=xs( f)xs( f)i = s(f)+m, with m xs( f) 1 = s(f)x E s( f)Ms(f)I 

Appendix 2: Let M be a vN-algebra over the Hubert space H. Let ip, q be vectors 
taken from H. Suppose a functional h is defined over M' by h( ) <(- )ç, çt'>. The 
following conditions are mutually equivalent: 

(1) h is a positive linear form. 
(U) there exists a densely defined, positive, selfadjoint linear operator F which is 

affiliated with M and such that p ( ç, )ç& = Fq. 
(LII) p(ço)çbeMço. 

Moreover, incase that p(P) p(cb) the Fin (ii) can be chosen to be invertible. 

Proof: We are going to show the net.of implications  
Assume we have given Fas described in (ii). Suppose F=f0 Ae(d)t), where (e(A)) C M 
is the Fcorresponding resolution of the identity. We define Ff07Ae(dA).Then,FEM,. 
and p(q' )çl' = Fço =lim Fq', i.e. (iii) follows. Suppose (iii) to be valid. Let (a) C M, be a 
sequence of non - negative elements of M such that p()çli limaq. For any y EM' 

our conclusion is 

h(yy) = <yq,yçb> = <p(ç)yq',yçt'> = <p(q')yq',yçli> = <yq',yp(q')çb> 

lim<y',yac> =	 = limllya1"2 112 ^ 0. 

Hence (i) is seen to be true. Suppose (i) to hold, i.e. h is a positive normal linear form 
over the vN-algebraM'.By definition ofhwe see h(pq))=h(p(q))=h(s(h))=h(e) 
= Oh IL. Hence p'(q')^: s(h) and p'(0) 2: s(h). Let the orthoprojection z be defined as z = 

p'(g&)-s(h). Then, for any x,yEM'we have 

h(zxy)=h(s(h)(z,y ))0 = <yço,xzçl'>. 

From this we have to conclude that [M'zcJ.i)Cp(ip)H. This says that p(z(P):5p(tp). We 
define a linear subspace D of H by D [M'q.']ep(q?)H. Since p(P) projects onto 
1M'q] we see that Dis dense in H. Assume Sep(ç)LH and x€M'. Then, xp + 0 if, 
and only if, xp = 0 and S = 0. Note that xtp = 0 is equivalent with xp'( ) = 0. Due to 
p'(p)as(h) also xs(h) = 0 has to be valid. According to this we see that p(92)x = 

Since xzçbe p((p)H, p(co)xçt'=Ocan 
be followed. To summarize, what we have shown is that xp = 0 always implies p( p 
= 0. This proves that E given by 

F0:D3yp+S4F0&rp(q,)yçL+SEH 

for any y€M' and any S€p(p)Hyields a well-defined linear operator acting from the 
dense domain D Into H. Let u€ U(M') be an element of the unitary group of M'. Then, 
uD CD, and for 8 =yq +S with y EM' and Sep(q)Hwe see that 

F0 u8 r F0 (uyip +p(rp)uS) p(tp)uyçv +p(p)uS = u(p(tp)yq +8)=uF8. 

Hence F0 C uF0 u, for any U  Lt(M'). Moreover, if 8 =yip + 8 with ye M' and 8Ep(q)H, we
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see that 

< F0 9,8> = <p(p)YO +S,yq'+S> <p(.p)y,yq'><S,S> 

= <y,p()yq'>+IISII 2 =<yt,,yp(q,),>+IISII2rh(yy)+II8II2kO, 

due to the supposed positivity of h. To summarize, we have proved that F0 is positive, 
and thus also symmetric, on the dense domain D, with F. = uF0 u ID' for any u € U( M'). 
Two conclusions can be drawn from these facts. Firstly, the Friedrich's extension F 
of F0 exists as a densely defined (say on the domain of definition DF), positive, 
selfadjoint linear operator over H. Secondly, due to the uniqueness of this extension, 
from F, uF0 uID, for any u E U(M), in fact Fu*Fu has to be followed on DF, for any 
ueLt(M') (and thus also UDF CDF has to hold, i.e. DF is invariant under the action of 
the unitaries of M'). This means that Fis affiliated with M. Moreover, by the definition 
of FO weget p Op) (P F0 ç' = Fq. This completes the proof of (i). In order to see the 
validity of the last assertion we remark that p(q)=p(gt') implies that 

range(F) F(DF ):D F0(D) =p(q)(Mçb)p(q)H = [M'çb]p(çIl)H. 

Since H = [McLs]p((P)H, range(F) is dense within H. But then, by standard con-
clusions, one can be assured that F 1 exists. Since the properties of being positive, 
selfadjoint and affiliated with Mare hereditary ones, the assertion follows U 

Appendix 3: Let M be a vN- algebra over a Hubert space H. Assume V, (P E  are 
vectors with p(q):^p( cL'). Supposea linear form hon M' is given as h( )<( )0, 'P>. In 
the case that his positive we find s(h)=p'(q)!5p'(0), and p'(q.')=p(çL') follows in the 
case ofp()p(çL). 

Proof: Since h is positive on M', Appendix 2 applies and gives p(gl)p€M. The 
assumption p(tp) :5p(çb) implies p((P)tp '. Thus, q, EMO has to be valid. Hence, as-
consequence of this we conclude that p'(p)p'(cb). Since, by definition of h, s(h):r 
p'(çb) and s(h):5p'( q'), s(h):^p'(p):gp'(cb) follows. Indefining z p(p)-s(h) one easily 
sees thatO = h(zx) = <xcL',zq>, for all x €M The conclusion is that zq € p(çb)H C 

p(p)H. On the other hand, since z eMwe have Zip ep(q')H. This implies zq=O. Since 
z :9 p( q) within M', zq = 0 yields z = 0. This proves p'( ) = s ( h), and s ( h) p'( ) :5 p'( y) 
is seen. Note that, as a consequence of the assumption h ^t 0, h is hermitian. Therefore 
also h( ) = < ( )çt', F> = < ( )q, çi>. Hence, in case of p(p) p(), by interchanging the 
roles of 9P and gI we have to conclude as above that, in addition to the yet proven s( h) = 

p(q):5p'(45), also s(h)p((P):sp'(q') happens to be true. Thus, s(h)p)p(q) 
holds in case of h 2:Oand p(q)=p(çb)U 

Appendix 4: Let M be a vN- algebra d yer the Hilbert space H, and suppose ', ç s € H 
with p'(F)=p(cb). Let f = RIfI be the polar decomposition of the linear form f over M 
given byf()<()ç(.i,q'>. Then, p'(u )p(çL, uus(IfI) = p( rp), and u*us(IfI) 
p(p) are fulfilled. 

Proof: We have f*(. )< ( ) 92 , 0X Let f* RIf*I be the polar decomposition of f. 
Then, If*I( )((. )vq,çi'>, and s(IfI) !5 p((P) is clear. Due to If It )<()uçI',ç'>,



Geometry of Pairs of Positive Linear Forms	331 

and since uu = 5(1 f *1), we see that 

<xcb,q>=f(x)=RjfI(x)<xuu',q'>=<xs(IfI)'/),q>, 

for any x EM. The latter means that <s( If1 )yç'> =0 for any ye M. Hence, we have 
s(lf*I) A ,e p'(cp)H. On the other hand we have 

Taking together these facts yields s( I fl)g& = 0, and we get 'P = 5(1 1*1)'P. This shows 
two facts to hold. Firstly, we must have that s(lf I ) p( 'P ) , and, in view to the above 
mentioned, s( I f1 )=p(çti) has to be valid. Secondly, 'P = s(I f * D0 = uu'P implies that 
p(0):5p(u*'P). Since p(u"P)^p(() holds by triviality, p('P)=p(*'P) has to be valid. 
Together with our assumptions we finally see that p'(p)p'('P)=p'(ucLi). Let us look 
now on the normal positive linear form I f (. ) = <(-  ) u 'P, p> over the commutant N' 
of the vN- algebra N=M'over the Hubert space H. The equation p'Yp'(uc1') with 
respect to Mreads now with respect toNas p(p) p(u*'P). Thus, Appendix 3 can be 
applied with respect to the vN-algebra N. The result is that, with respect to N, s( Ill) = 
p'(ç)=p(u'P).With respect to the vN-algebra M the latter reads as s(if I)p(q')= 
p(u 'P ). This proves our assertion I 

Appendix 5: Let M be a vN- algebra over the Hubert space H. Assume geM.., and 
be m eM, j im Ii :5 1. Suppose Rg is positive. Then we have I g 1 2! Rg, and I g  = Rg 
occurs if and only if 1 1 g IL = II Rg Iii. 

Proof: Let g = RIgI be the polar decomposition of g, and define f by f =R*g. 
Then f = RIgI. F being positive especially means that I is hermitian, hence we can 
apply a technical fact (cf. 120: 1.24.1]) to the situation given by f = R * IgI . The result 
says that fIIn1'u II IgI. Since both m and u are in the unit ball of M, f !5 IgI follows. 
Supposing that fand g have the same norm gives f(e)1g1(e), due to 1 1 g Iii 111g1 

Hence, f ' I g I implies fhgl. The other direction is trivial  

Appendix 6: Let M be a vN- algebra over the Hilbert space H. Assume geM,,, and 
let g = R I g I be the polar decomposition of g. Suppose R,,,-g. = I g I for some me M, 
JIM II^1. Then we have ms(lgI)u. 

Proof: We define f = igI and x =mu. I is positive with f=Rf. Since JJx ii !^1 and 
IIfIIif(e) f(x), Appendix I applies to this and proves that xs( f)=s( f)xs(f)s( 1). 
Because of uu s(f) we may conclude as follows: 

x=mumus(f)=s(f)s(f)s(f)mu. 

Hence u'= s( f)us( f)ms( 11, where we used that uue s( Ig*I) . This means that 
s( f)u*u =s( f)m*s( Ig*I )ms( f)^ s(f)n?ms( f):s s(f), i.e. 

s( f )ms( I fl )ms( f) = s( f )nl'ms( f).
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Appendix 7: Let M be a vN- algebra over the Hubert space H. Forgiven vectors 9,0 
EH let $be defined as.8rsup(I<Kcb,q)>I:KEM',IiK1I:91). There are vectors p',cP'€H 
such that <xc, ç'> = < xp', p'>, <xcLi, g'> = < xçb ', i">, for all XE M, and 13 = < ç p'>. 

Proof: We define 'a normal linear form hover M' by setting h(x)<x(p,ç'>, x€M'. 
Then, 13 = ii h IL. Suppose hr R I h I is the polar decomposition of h. Because of I h I = R h 
and ii h iI = Ill h 11 1, we see that 13 = < us', p>. We are going to construct partial isometries 
v,w€M' such that 

vvap'(p), wwkp'() and <uç1s,p>r<vwcLq.,>. 

Then, q' =vçv and çt' = wtp can be taken to meet our demands. Let z be the central 
projection of Msuch that M'z is finite, and M'z is properly infinite. To be non-trivial, 
let us assume O<z<e. Since s( I h O= u'u and s( I h*1)=uu', with uEM', we haves( I h I) 

I hi) in the vN- algebra M Hence zs( lhl)-'zs( I ha l) within the finite vN- algebra 
Mz. This implies zs( I h I)' — zs( I h*l) L in M'z, too. Now, let in be a partial isometry 
of M' with m*m =s( hi ), mm*=zs( Ih*l) . Then v3 =uz +m is unitary in M'z, and 
since s( I hi )m = 0, we are allowed to conclude that 

*	*	 * <v3 g,q'> = h(v3 ) = hI(v3
S
u) = ihi(s( IhI ) v3 us( I hi)) 

= h1(s(Ihi)(zu5 +m)us( hi)) 

= ihI(s(IhI )zu*us(ihI))1hI(z) = <*çyp>, 

Thus, what we have proved is the relation <vi, q'> = < zif ci', p>. Since M'z is properly 
infinite, we can find mutually orthogonal orthoprojections Pi and P2 in M'z such that 

and Pi -4- p2 =z 1 . We find partial isometries v1,v2€M'zL with 

v1' v, =(p(q,)_s(hp))z1 , v1 v1 :5p v2 v2 =p'(gi')z, v2v2:5p2, 

where we used thatp'(p)^s(Ih I). Let us define v = v1 + v2 u + v3 and w =v2 +z. According 
to the definitions of v1 , v2 , v3 , and since vv2 = 0 = v2* v, holds, one easily infers that 

vVVjVi+Uv2v2U+V3v3(p(p)_5(ihi))z+uLJz'4.Z 

=(p'(9))-s(ihI))z +s(ihi)z'+z	p'(q)z+z 

and w"w =vv2 +z = p'( çb)z +z are fulfilled. Hence, vand ware partial isometries of 
M' such that vvzt p'(q') and ww2tp'( ci'). Moreover, since also p((P)^s(Ih*i) holds, 
we get that vw=u5 v2 v'+	 Hence 

<V'wgi',q.'> = <uzçi',p> +<vçi',p> < uz ,q.'>+<uzgi',q'> =<ucL,q,>, 

due to the previously derived relation <vci', q'> = < u*zcb, q.'>. This closes the proof in 
case of M' with non- trivial finite and properly infinite parts existing. Note that the 
proof has been organized in such a way that makes evident how to deal with the 
remaining "pure" cases of a finite or properly infinite M'. Hence, we can take our 
assertion as verified I 

Appendix 8: Let (f) be a sequence of normal linear forms over a vN-algebra M 
such that f -9 fin norm. Then also I fn I -i I f  in norm. 

For a proof the reader is referred to 123: 111.4.10], e.g. I
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