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§0 Introduction 

In this paper we study Riemann surfaces Ilvf of topological type of the Möbius strip and discuss 
the class of harmonic functions defined on liv!. Although lif is non-orientable we obtain a 
function-theoretic description of this class which in turn provides us with a functional-analytic 
approach to the classical boundary value operators including Laplace equation and the Riemann-
Hubert problem. 
Our ideas are essentially based on the following model: 

If liv! is a Möbius strip, then it can be identified in a natural way with the half-annulus 

MR = {	<jz <R; Im(z)^! 0; z = - for ITn(z)=O} 

for a suitable conformal parameter R > 1. Consequently lif is just the annulus 
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which is an anti-conformal transformation of the oriented coverings of M(R) into themselves. 
Moreover, the functions on N are just the functions z on R. being invariant under the action 
of r, that is

(I) z(z)=zor(z), zER 

and it is easy to check that the harmonic functions z on 1?. satisfying (I) are in 1-1 
correspondence to holomorphic maps / on R with the additional property 

f(z) = for(z) or 1(z) = -1 or(z) 

§1 Harmonic Functions 

Since any harmonic map z defined on MR admits a harmonic extension to the oriented covering 
R being invariant under the involution, it is easy to check that x can be written as 

(II) x(z) = Re 1(z) 

for a holomorphic map / on 1. (Observe that g = Ox is holomorphic in 7Z and the contour 
integral is, g vanishes; the symbol O stands for the Wirtinger derivative (0. -i&) , (z = u+iv). 
Hence we can define I by / = f g , € R.) 

We now introduce some additional notations: 
Let rn e iN , m > 2 (Sobolev Index) be given and consider a Möbius strip Al = MR. We 
abbreviate .1E = 1R' or JE = U", DR = { z I z t < R), D = D 1 the unit disk in t1, as before 

= {z < zi < R} and we define the following subspaces: 

- H"(iM,E) = {z € H m2 (1,iE)ix = z or} 

(this space is - as the kernel of the continous linear map x - z o r - a subspace of the Hilbert 
space Hm(R.,E) 

- H(N,iE) = {z€Hm(M,iE)Ix=O} 

- Am (DR,02) = If € H'2(, (r) if holomorphic in DR}; A(7,) analogously 

- A(DR, t) = if E A"(DR, a) I f(0) = O} 

-	= {f€Am(R,tr.)if=±T} 

- A' =
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Applying the representation formula (II) to the Laurent series at zero one easily verifies the 
following relations: 

1. zH(IM,JR)	fEA 

2. z  H(IM,JR)	h(z) := zO(z(z)) = (u+iv)(&—iOv)x(u+iv) is in the space AT' 

3. / E AT	zf'(z) E Ar'. 
The definitions of the spaces imrnediatly imply 

4. AT are real sub-hubert spaces of A m (R, (1)); 
the codimension of AT. in AT is equal to 1; 
AT-A'=A' , AT-AT =AT and ATAT=A. 

Theoiem 1(descrption of the harmonic functions): The following statements are true: 

i) Basic relation: The function z is harmonic in M if and only if 

z(z) = Re {g(z) +gor(z)} = Re {(z) +g (-)} 

for a holomorphic function g on the disk DR. 

ii) Manifold structure: The transformation 

it :A"(D,G.) x JR —.H(JM,JR) , 4)(g,$)(z)Re {() +gor(Rz)+2cr} 

is a linear homeomorphism. 

iii) Variation of the conformal type: The extended transformation 

UH(MR, B?) -f-. A-(D, IV) xlRx(1,00) , 4)(g,cs, R) = Re { () + 90 r(Rz) + 2a} 
R>1 

is a global chart for the fibre bundle of all harmonic functions of Sobolv class H,2 defined 
on Mäbius strips. 

Proof:The basic relation is a consequence of (II) and Relation 1. comparing coefficients; ii) and 
iii) are simple consequneces of the basic relation. U 

Let us remark that the transformations 

A(D,C) x JR -. AT 4)±(g;a)(z)=9(z) +gor(Rz)+2a (resp. +2ia) 

are linear homeomorphisms giving explicit descriptions of the spaces AT also of the fibre bundles 
- that are the union spaces over all conformal structures 1, R > 1.
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§2 The Laplacian and Dirichiet's problem 

The functions z defined on the boundary ON of a Möbius strip 1M can be described in two 
possible ways: First we may consider the class 

Hm_(81AW,JE) = { E Hm_(07,E) = zor} 

consisting of all r-invariant z defined on the boundary 81 = ÔDR U 8D b . On the other hand 
a simple argument shows that one can apply the natural isomorphism 

Hm_ (O1M , 1E) Hm (ODR,E) H"(S',E). 

Theorem 2(Dirichlet's problem for harmonic functions): The operator 

L H(1M,1R) —* Hm_ (OM ,1R) ,L(x) 
= SM 

is a linear homeomorphism. 

Proof:A complete proof of this Theorem is given in [2], for the reader's convenience we 
sketch the main ideas: Since L is a linear homeomorphism as a map 

L : H(R,1R) -+ Hm(OR,JR) 

of larger spaces, this is clearly true for the restriction of L to the spaces H'(1Pvf, JR) and 
Hm_(O1M,IR), respectively, provided r-invariant boundary values admit a r-invariant har-
monic extension. In order to prove this last mentioned fact we consider 7 E H' } (OJM, IR) and 
z E H"(R,JR) such that L(z) = y. Observing that zor is also harmonic with L(zor) = -y the 
injectivity of L implies z or = z. •Before studying the Laplacian we observe that the operators 

destroy the property of being r-invariant, for example we have for r-invariant x 

= f'(z) + - f'(- ( z )) , x(-z) 

whereas zz. (and iz) are contained in the classes A'. This motivates the study of the operator 
z I 2x (z ) = (E81)(z5)(z)(z) which has the property 

Lemma 1: The inclusion x E Hm+2(JM,IR) implies that of jz I2x( z ) E Hm(JM,IR). 

Proof:The r-invariance, x(z) = x o r(z), and the fact that r(z) is anti-conformal imply 

Ax(z) = (x o r)(z) = I 7 I 2Ax ( rz ) = - I z(rz) 

hence
zI2z(z) = 1,12

	
= ITz2x(rz) 

and the proof is complete. U
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Theorem 3(The Laplacian): The operator 

T : Hm + 2 (JM , JR) -. Htm (IM,IR) x Hm (8M , 1R) , T(z) = ( IzI 2Ax(z) x) 

is a linear homeomorphism. 

Proof:By the foregoing lemma T is well-defined. Observing that 

T: Hm+2(R.,JR) -p H"(7,JR) x H'(O,li?) 

is a Linear homeomorphism inducing the operator under consideration by restriction to subspaces, 
injectivity and continuity of  are obvious. It remains to show that T = (T', T2) is onto. 
Recalling Theorem 2 we see that T 2 (even the restriction of T2 to the kernel of T') is onto, 
hence we discuss the operator T'	and choose a function y E Hm (JM , Ill?), y = y o r. Let 

krnd T2 

z E Hm + 2 (1 , li?) denote the unique solution of T(z) = (y, 0). Since 

T(z o r) = ( I z I 2 (x o r)(z), 0) = ( I z I 2 I riI2z ( 7_z ), 0) 

=	Tz,0) = (IrzI2z(rz),0) 

= (y(-z),0) = (y(z),O) = T(x) 

x or is a solution, and since T is 1-1 on H" 12 (R, JR) we get z = z or. U 

The preceeding argument gives a sharper version of the lemma, more precisely we have 

z is r-invariant	IZ12AX is r-invariant 

§3 The Riemaun-Hilbert Problem 

Many problems coming from applications can be reduced to the study of operators of the form 

A-(9, C) 3w '-+ Re(Xw) 1 EHm(Og,1R) 

H'(g,1R)3x -* Re{Ar)
SQ 

or of similar type; here Q denotes a domain in the complex plane or more general an (oriented) 
Riemann surface with boundary and A is a given complex function on Q without zeros. The 
above mentioned operators are Fredliolm with index depending on the topological type of G and 
on the so-called geometrical index which measures the increasement of the argument of A. It is 
well-known that the above mentioned Riemann-Hilbert problems are closely connected to the 
uniqueness and stability Theorems for the Plateau-Douglas problem. This is also true for non-
orientable surfaces of the type of the Möbius strip, for details compare (2] and the papers quoted 
there, and from the facts described in §1 it becomes plausible that now the spaces A"(, )
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of the holomorphic functions has to be replaced by the spaces A. We therefore study the 
operators

RH: A -. Hm (OM , 1R) , RH(w) = Re{Aw}1 

RH: Hh"'(1M,1R) -. Hm (OM , 1R) , RH(x) = Re{Az2}1 

and - more general - the inhomogeneous boundary value operator 

S: Hm + 2 (IM , IR) -+ Hm (1?vf,JR) x Hm+(O12tf , 1R) , S(z) = (T(x),RH(z)). 

Theorem 4(The Riemann-Hilbert operator for harmonic functions): The operator


RH:A -+ H"4(OM,lR) , RH(w) = Re{.\w}1 

is Fredholm with index given by index RH = 2?c(A). Here A E Hm (OIM, C) is a given function 
without zeros and c(A) denotes the increasement of the argument of A along OIM. 

Corollary:The index of the Fredholm operator 

RH: H—+'(lM,1R) -. H"(8M,lR) , RH(z) = Re{Ax}1 

is given by 2i(A) - 1 

Proof (of the Theorem): First we identify the spaces Hm_(81M,1R) and Hm_(ODR,lR) 
via the map (which gives a linear homeomorphism)

for Im(z)^!O 
--f for Im(z)<O 

We write w and A instead of w o W and A o qi, respectively. According to Theorem 1 we can use 
the linear homeomorphisms (D and 4)_ as global charts for the spaces A and A, respectively, 
so that we have to calculate the index of the composition RH o	which is to be calculated to 

RHo	: A'(D,GJ) xli? —. Hm(UDR,lR) 

RHo 4(g,a) = Re {A ( () + 2a)}	± Re {A(g o r)(Rz)}1 

that is, RHoI± is splitted in the sum of two operators, RHo = T1 +T2 . Now the functions 
z -4 go r(Rz) are holomorphic outside the disc D. Quoting well-known theorems of Montel 
respectively Sobolev's embedding theorems we see that the second term in the above equation, 
7'2, is a compact operator. Hence the Fredhoim property as well as the desired index formula 
will follow if we can prove the corresponding facts for the operator T 1 . According to [1] the 
index of the map

A' (D, C) g '-. Re	()} 

is 2K(A) + 1 (the case of the unit disk) and the space A(D, C) x lii has codimension i in the 
space A" (D, C) A' (D, C) x C. This proves the theorem.
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The corollary follows from the fact that in the composition 

H 1 (1M,1R) --. A -- Hm(8DR,1R) 
zz '-	Re{zz2} 

(since A(H'(IM,1R)) = Ar].) the first operator  is of co-rank 1. 

Theorem 5(The inhomogeneous Riemann-Hilbert operator): The operator 

	

S : Hm + 2 (IM , IR) -i H"(IM,IR) x Hm+ (ODR,1R) , S(z) = ( Iz]21z(z) , Re{zx:}	
) 80R 

is of Fredhoim type with index given by index S = 2ic(A) - 1. 

Proof:Lf we write S = (S', S 2 ), then the foregoing arguments show that 

index (S2	
) 

= 2i(.X) - 1. 
Ikrnl S' 

On the other hand the map S' is onto by Theorem 4, so that the general index relation [3, 
HiLissats 1.4] immediately implies the desired formula for the index of S. • 
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