On the Dirichiet and the Riemann-Hilbert Problem on Möbius Strips

K. H. SCHOFFLER

In this paper we give 1) a description of harmonic functions on Mobius strips as a manifold modelled on a subspace of the (Sobolev) space of holomorphic functions on ring domains, 2) a functional-analytic theory for the Laplacian, e.g., **the Dirichiet boundary value problem and 3) the Fredholm theory for the Riemann - Hubert operator.**

Key words: *Dirichiet problem, Riemann -Hilbert harmonic functions and holomorphic functions on Mbius strips*

AMS **subject classification: 30E25, 30F15, 31820, 35J15, 56E12. 58E12, 58G10**

§0 Introduction

In this paper we study Riemann surfaces *IM* of topological type of the Möbius strip and discuss the class of harmonic functions defined on M . Although M is non-orientable we obtain a function-theoretic description of this class which in turn provides us with a functional-analytic approach to the classical boundary value operators including Laplace equation and the Riemann-Hilbert problem.

Our ideas are essentially based on the following model:

If M is a Möbius strip, then it can be identified in a natural way with the half-annulus

essentially based on the following model:

\nMöbius strip, then it can be identified in a natural way with the following formula:

\n
$$
M_R = \left\{ z \mid \frac{1}{R} < |z| < R \, ; \, Im\left(z\right) \geq 0 \, ; \, z = -\frac{1}{\bar{z}} \text{ for } Im\left(z\right) = 0 \right\}
$$

for a suitable conformal parameter $R > 1$. Consequently M is just the annulus

$$
\mathcal{R} = \left\{ z \mid \frac{1}{R} < |z| < R \right\}
$$

where points *z* are identified via the involution

$$
\tau : \mathcal{R} \longrightarrow \mathcal{R} \ , \ \tau(z) = -\frac{1}{\bar{z}}
$$

which is an anti-conformal transformation of the oriented coverings of $M(\mathcal{R})$ into themselves. Moreover, the functions on M are just the functions x on R being invariant under the action of *r,* that is

$$
x(z) = x \circ \tau(z), \ z \in \mathcal{R}
$$

and it is easy to check that the harmonic functions x on R satisfying (I) are in 1-1 correspondence to holomorphic maps f on $\mathcal R$ with the additional property

$$
f(z) = \overline{f \circ \tau(z)} \text{ or } f(z) = \overline{-f \circ \tau(z)}.
$$

§1 Harmonic Functions

Since any harmonic map x defined on M_R admits a harmonic extension to the oriented covering R being invariant under the involution, it is easy to check that x can be written as

$$
x(z) = Re f(z)
$$

for a holomorphic map f on $\mathcal R$. (Observe that $g = \partial_z x$ is holomorphic in $\mathcal R$ and the contour integral $\oint_{S^1} g$ vanishes; the symbol ∂_z stands for the Wirtinger derivative $(\partial_u - i\partial_v)$, $(z = u + iv)$. Hence we can define f by $f = \int^2 g$, $z \in \mathcal{R}$.)

We now introduce some additional notations:

Let $m \in \mathbb{N}$, $m \geq 2$ (Sobolev Index) be given and consider a Möbius strip $M = M_R$. We abbreviate $E = \mathbb{R}^n$ or $E = \mathbb{C}^n$, $D_R = \{z \mid |z| < R\}$, $D = D_1$ the unit disk in \mathbb{C} , as before $\mathcal{R} = \left\{ z \middle| \frac{1}{R} < |z| < R \right\}$ and we define the following subspaces:

 $-H^m(M, E) = \{x \in H^{m,2}(\mathcal{R}, E)|x = x \circ \tau\}$

(this space is – as the kernel of the continous linear map $x \mapsto x \circ \tau$ – a subspace of the Hilbert space $H^m(\mathcal{R}, E)$)

s space is - as the kernel of the continuous linear map
$$
x \mapsto x \circ \tau
$$
 - a subspace of the Hilb
\nwe $H^m(\mathcal{R}, E)$)
\n- $H_h^m(M, E) = \{x \in H^m(M, E) | \Delta x = 0\}$
\n- $A^m(D_R, \mathbb{C}) = \{f \in H^{m,2}(\mathcal{R}, \mathbb{C}) | f \text{ holomorphic in } D_R\}$; $A^m(\mathcal{R}, \mathbb{C}) \text{ analogously}$
\n- $A_0^m(D_R, \mathbb{C}) = \{f \in A^m(D_R, \mathbb{C}) | f(0) = 0\}$
\n- $A_{\pm}^m = \{f \in A^m(\mathcal{R}, \mathbb{C}) | f = \pm \overline{f \circ \tau}\}$
\n- $A_{\pm}^m = \{f \in A_{\pm}^m | \text{Re} \oint_{S^1} \frac{f(z)}{z} = 0\}.$

Applying the representation formula (II) to the Laurent series at zero one easily verifies the following relations: plying the representation form

owing relations:

1. $\boldsymbol{x} \in H_h^m(M,\mathbb{R}) \iff f \in A$

2. $\boldsymbol{x} \in H_h^m(M,\mathbb{R}) \iff h(z)$: plying the representation formula (II) to the Laurent series at zero one easily verifies the
owing relations:
1. $x \in H_h^m(M, R) \iff f \in A_{+}^m$
2. $x \in H_h^m(M, R) \iff h(z) := z\partial_z(x(z)) = (u+iv)(\partial_u - i\partial_v)x(u+iv)$ is in the space A_{-+}^{m-1}
3. f plying the repres

owing relations:

1. $\boldsymbol{x} \in H_h^m(M, \mathbb{R})$

2. $\boldsymbol{x} \in H_h^m(M, \mathbb{R})$

3. $f \in A_{\perp}^m$ \Longleftrightarrow

The definitions

-
-

3.
$$
f \in A_{\pm}^{m} \iff z f'(z) \in A_{\mp}^{m-1}
$$
.

The definitions of the spaces imrnediatly imply

4. A_+^m are real sub-Hilbert spaces of $A^m(\mathcal{R}, \mathbb{C});$ the codimension of A_{-}^m , in A_{-}^m is equal to 1; $A_+^m \cdot A_+^m = A_+^m$, $A_-^m \cdot A_+^m = A_-^m$ and $A_-^m \cdot A_-^m = A_+^m$.

Theorem 1(description of the harmonic functions): The following statements are true:

i) Basic relation: The function z *is harmonic in M if and* only *if*

$$
x(z) = Re \left\{ g(z) + \overline{g \circ \tau(z)} \right\} = Re \left\{ g(z) + \overline{g\left(-\frac{1}{\overline{z}}\right)} \right\}
$$

for a holomorphic function g on the disk DR.

ii) Manifold structure: The transformation

$$
\Phi: A_0^m(D,\mathbb{C})\times\mathbb{R}\longrightarrow H_h^m(M,\mathbb{R})\ ,\ \Phi(g,\alpha)(z)=\mathbb{Re}\,\left\{g\left(\frac{1}{R}z\right)+\overline{g\circ\tau(Rz)}+2\alpha\right\}
$$

is a linear homeomorphism.

iii) Variation of the conformal type: The extended transformation

$$
\bigcup_{R>1} H_h^m(M_R, I\!\!R) \stackrel{\Phi}{\longrightarrow} A_0^m(D, \mathbb{C}) \times I\!\!R \times (1, \infty) , \Phi(g, \alpha, R) = Re \left\{ g\left(\frac{1}{R}z\right) + \overline{g \circ \tau(Rz)} + 2\alpha \right\}
$$

is a global chart for the fibre bundle of all harmonic functions of Sobolv class $H^{m,2}$ defined *on Mäbius strips.*

Proof:The *basic relation is a consequence of (II) and Relation 1. comparing coefficients; ii) and iii)* are *simple consequneces of the basic relation.* ^U

Let us remark that the transformations

$$
\Phi_{\pm}: A_0^m(D,\mathbb{C})\times\mathbb{R}\longrightarrow A_{\pm}^m\;,\; \Phi_{\pm}(g,\alpha)(z)=g\left(\frac{1}{R}z\right)+\overline{g\circ\tau(Rz)}+2\alpha\;\;(\text{ resp. }+2i\alpha)
$$

are linear homeomorphisms giving explicit descriptions of the spaces *AT* also of the fibre bundles - that are the union spaces over all conformal structures $R, R > 1$.

§2 The Laplacian and Dirichiet's problem

The functions x defined on the boundary ∂M of a Möbius strip M can be described in two possible ways: First we may consider the class

$$
H^{m-\frac{1}{2}}(\partial M, E) = \left\{x \in H^{m-\frac{1}{2}}(\partial \mathcal{R}, E) \middle| x = x \circ \tau\right\}
$$

consisting of all τ -invariant x defined on the boundary $\partial \mathcal{R} = \partial D_R \cup \partial D_{\perp}$. On the other hand a simple argument shows that one can apply the natural isomorphism

$$
H^{m-\frac{1}{2}}(\partial M, E) \cong H^{m-\frac{1}{2}}(\partial D_R, E) \cong H^{m-\frac{1}{2}}(S^1, E).
$$

Theorem 2(Dirichlet's problem for harmonic functions): *The operator*

$$
L: H_h^m(M, R) \longrightarrow H^{m-\frac{1}{2}}(\partial M, R), L(x) = x_{\big|_{\partial M}}
$$

is a linear homeomorphism.

Proof:A *complete proof of this Theorem is given in [2],* for the *reader's convenience we sketch the main ideas: Since L is a* linear *homeomorphism as a map*

$$
L: H_h^m(\mathcal{R}, \mathbb{R}) \longrightarrow H^{m-\frac{1}{2}}(\partial \mathcal{R}, \mathbb{R})
$$

of larger spaces, this is clearly true for the restriction of L to the spaces $H_h^m(M, I\!\!R)$ *and* $H^{m-\frac{1}{2}}(\partial M,R)$, respectively, provided τ -invariant boundary values admit a τ -invariant har*monic extension. In order to prove this last mentioned fact we consider* $\gamma \in H^{m-\frac{1}{2}}(\partial M, R)$ and $x \in H_h^m(\mathcal{R},\mathbb{R})$ such that $L(x) = \gamma$. Observing that $x \circ \tau$ is also harmonic with $L(x \circ \tau) = \gamma$ the *injectivity of L implies* $z \circ \tau = z$. **Example 3** for studying the Laplacian we observe that the operators ∂_z , $\partial_{\bar{z}}$ destroy the property of being τ -invariant, for example we have for τ -invariant x

$$
x_z = f'(z) + \frac{1}{z^2} \overline{f'(\tau(z))} , \, \Delta x(\tau z) \neq \Delta x(z) ,
$$

whereas $z\mathbf{z}_z$ (and $\bar{z}\mathbf{z}_\bar{z}$) are contained in the classes A_\pm^m . This motivates the study of the operator $|z|^2\Delta x(z) = (\bar{z}\partial_{\bar{z}})(z\partial_{z})(z)(z)$ which has the property

Lemma 1: The inclusion $x \in H^{m+2}(M,R)$ implies that of $|z|^2 \Delta z(z) \in H^m(M,R)$.

Proof:The τ -invariance, $x(z) = x \circ \tau(z)$, and the fact that $\tau(z)$ is anti-conformal imply

$$
\Delta x(z) = \Delta(x \circ \tau)(z) = |\tau_{\bar{z}}|^2 \Delta x(\tau z) = \left| \frac{1}{\bar{z}^4} \right| \Delta x(\tau z),
$$

hence

on
$$
x \in H^{m+2}(M, R)
$$
 implies that of $|z|^2$
\n \Rightarrow , $x(z) = x \circ \tau(z)$, and the fact that $\tau(z)$
\n $= \Delta(x \circ \tau)(z) = |\tau_i|^2 \Delta x(\tau z) = \left|\frac{1}{z^4}\right| \Delta x$
\n $|z|^2 \Delta x(z) = \left|\frac{1}{z}\right|^2 \Delta x(\tau z) = |\tau z|^2 \Delta x(\tau z)$

and the proof is complete. U

Theorem 3(The Laplacian): *The operator*

$$
T: H^{m+2}(M, R) \longrightarrow H^m(M, R) \times H^{m+\frac{3}{2}}(\partial M, R) , T(x) = \left(|z|^2 \Delta x(z) , x \Big|_{\partial M} \right)
$$

is a linear homeomorphism.

Proof:By *the foregoing lemma T is well-defined. Observing that*

 $T: H^{m+2}(\mathcal{R}, \mathbb{R}) \longrightarrow H^m(\mathcal{R}, \mathbb{R}) \times H^{m+\frac{3}{2}}(\partial \mathcal{R}, \mathbb{R})$

is a linear *homeomorphism inducing the operator under consideration by restriction to subspaces*, *injectivity and continuity of T are obvious. It remains to show that* $T = (T^1, T^2)$ *is onto.* $\emph{Recalling Theorem 2 we see that T^2 (even the restriction of T^2 to the Kernel of T^1) is onto,}$ *hence we discuss the operator* T_1 *hence* T^2 *hence* T^2 *hence we discuss the operator under consideration by restriction to subspaces, injectivity and continuity of* T *are obvious. It remains to show that T* krnd *T2* $x \in H^{m+2}(\mathcal{R}, \mathbb{R})$ denote the unique solution of $T(x) = (y, 0)$. Since emma T is well-defined. Observing that
 $f^{+2}(\mathcal{R}, \mathbb{R}) \longrightarrow H^m(\mathcal{R}, \mathbb{R}) \times H^{m+\frac{3}{2}}(\partial \mathcal{R}, \mathbb{I})$

lucing the operator under consideration by

T are obvious. It remains to show the

that T^2 (even the restriction o

$$
T(x \circ \tau) = (|z|^2 \Delta(x \circ \tau)(z), 0) = (|z|^2 |\tau_{\bar{z}}|^2 \Delta x(\tau z), 0)
$$

\n
$$
= \left(\frac{1}{|z|^2} \Delta x(\tau z), 0\right) = (|\tau z|^2 \Delta x(\tau z), 0)
$$

\n
$$
= (y(\tau z), 0) = (y(z), 0) = T(x),
$$

\nand since *T* is 1-1 on $H^{m+2}(\mathcal{R}, \mathbb{R})$ we get $x = x \circ \tau$.

 $x \circ \tau$ is a solution, and since T is 1-1 on $H^{m+2}(\mathcal{R}, \mathbb{R})$ we get $x = x \circ \tau$.

The preceeding argument gives a sharper version of the lemma, more precisely we have

x is
$$
\tau
$$
-invariant $\iff |z|^2 \Delta x$ is τ -invariant.

§3 The Riemaun-Hilbert Problem

Many problems coming from applications can be reduced to the study of operators of the form

$$
A^{m}(G, \mathbb{C}) \ni w \longmapsto Re \{\bar{\lambda}w\}_{|_{\partial G}} \in H^{m-\frac{1}{2}}(\partial G, \mathbb{R})
$$

$$
H_{h}^{m+1}(G, \mathbb{R}) \ni x \longmapsto Re \{\bar{\lambda}x_{z}\}_{|_{\partial G}}
$$

or of similar type; here G denotes a domain in the complex plane or more general an (oriented) Riemann surface with boundary and λ is a given complex function on $\mathcal G$ without zeros. The above mentioned operators are Fredliolm with index depending on the topological type of $\mathcal G$ and on the so-called *geometrical index* which measures the increasement of the argument of λ . It is well-known that the above mentioned Riemann-Hilbert problems are closely connected to the uniqueness and stability Theorems for the Plateau-Douglas problem. This is also true for nonorientable surfaces of the type of the Möbius strip, for details compare (2] and the papers quoted there, and from the facts described in §1 it becomes plausible that now the spaces $A^m(\mathcal{G}, \mathbb{C})$ of the holomorphic functions has to be replaced by the spaces A_T^m . We therefore study the operators

$$
RH: A_{\pm}^{m} \longrightarrow H^{m-\frac{1}{2}}(\partial M, R) , RH(w) = Re \{\bar{\lambda}w\}_{|_{\partial M}}
$$

$$
RH: H_{h}^{m+1}(M, R) \longrightarrow H^{m-\frac{1}{2}}(\partial M, R) , RH(x) = Re \{\bar{\lambda}x_{\pm}\}_{|_{\partial M}}
$$

and - more general - the inhomogeneous boundary value operator

$$
S: H^{m+2}(M, R) \longrightarrow H^m(M, R) \times H^{m+\frac{1}{2}}(\partial M, R), S(x) = (T(x), RH(x)).
$$

Theorem 4(The Riemann-Hilbert operator for harmonic functions): *The operator*

$$
RH: A_{\pm}^{m} \longrightarrow H^{m-\frac{1}{2}}(\partial M, R) , RH(w) = Re \{\bar{\lambda}w\}\Big|_{\infty},
$$

is Fredholm with index given by index RH $= 2\kappa(\lambda)$. Here $\lambda \in H^m(\partial M, \mathbb{C})$ *is a given function* without zeros and $\kappa(\lambda)$ denotes the increasement of the argument of λ along ∂M .

Corollary:The *index of the Fredholm operator*

$$
RH: H_h^{m+1}(M, R) \longrightarrow H^{m-\frac{1}{2}}(\partial M, R) , RH(x) = Re \{\bar{\lambda}x_x\}_{|_{\partial\Omega}}
$$

is given by $2\kappa(\lambda) - 1$.

Proof (of the Theorem): *First we identify the spaces* $H^{m-\frac{1}{2}}(\partial M,R)$ *and* $H^{m-\frac{1}{2}}(\partial D_R,R)$ *via the map (which gives a linear homeomorphism)*

$$
\Psi : \partial D_R \longrightarrow \partial M \text{ , } \Psi(z) = \begin{cases} z & \text{for } Im(z) \geq 0 \\ -\frac{1}{z} & \text{for } Im(z) \leq 0 \end{cases}
$$

We write w *and* λ *instead of* $w \circ \Psi$ *and* $\lambda \circ \Psi$ *, respectively. According to Theorem 1 we can use so that we have to calculate the index of the composition RH* o *which is to be calculated to RHo* Φ and $\lambda \circ \Psi$, respectively. According the spaces μ
 RH $\circ \Phi_{\pm}$ and Φ_{-} as global charts for the spaces μ
 RH $\circ \Phi_{\pm}$: $A_0^m(D, \mathbb{C}) \times \mathbb{R} \longrightarrow H^{m-\frac{1}{2}}(\partial D_R, \mathbb{R})$

the linear homeomorphisms
$$
\Phi_+
$$
 and Φ_- as global charts for the spaces A_+^m and A_-^m , respectively,
so that we have to calculate the index of the composition $RH \circ \Phi_{\pm}$ which is to be calculated to

$$
RH \circ \Phi_{\pm} : A_0^m(D, \mathbb{C}) \times \mathbb{R} \longrightarrow H^{m-\frac{1}{2}}(\partial D_R, \mathbb{R})
$$

$$
RH \circ \Phi_{\pm}(g, \alpha) = Re \left\{ \bar{\lambda} \left(g \left(\frac{1}{R} z \right) + 2\alpha \right) \right\}_{\partial D_R} \pm Re \left\{ \overline{\lambda(g \circ \tau)(Rz)} \right\}_{\partial D_R}
$$

that is, RH \circ Φ _± *is splitted in the sum of two operators, RH* \circ Φ _± = $T_1 + T_2$ *. Now the functions z* \rightarrow $\frac{1}{g \circ r(Rz)}$ are *holomorphic outside the disc* $D_{\frac{1}{g}}$. Quoting well-known theorems of Montel *r*-*i y s* (*i*(*x*) are nononisipally disside the disc $D_{\frac{1}{R}}^{\perp}$. Quoting well-above intestents of Monter in the above equation, T_2 , is a compact operator. Hence the Fredholm property as well as the desire T_2 , is a compact operator. Hence the Fredholm property as well as the desired index formula will follow if we can prove the corresponding facts for the operator T_1 . According to [1] the *index of the map*

$$
A^{m}(D, \mathbb{C}) \ni g \longmapsto Re \left\{ \bar{\lambda} g\left(\frac{1}{R} z\right) \right\} \Big|_{\partial D_R}
$$

is $2\kappa(\lambda) + 1$ *(the case of the unit disk) and the space* $A_0^m(D, \mathbb{C}) \times \mathbb{R}$ *has codimension 1 in the space* $A^m(D, \mathbb{C}) \cong A_0^m(D, \mathbb{C}) \times \mathbb{C}$. This proves the theorem.

The corollary follows from the fact *that in the composition*

On the Dirichlet and the Riemann-
\nlows from the fact that in the composition
\n
$$
H_h^{m+1}(M, I\!\!R) \xrightarrow{\Lambda} A_L^m \xrightarrow{\Psi} H^{m-\frac{1}{2}}(\partial D_R, I\!\!R)
$$

\n $x \longmapsto zz_z \longmapsto \qquad \text{Re} \{\bar{\lambda} z z_z\}$

(since $\Lambda(H_k^{m+1}(M,R)) = A_{-k}^m$) the first operator Λ is of co-rank 1.

Theorem 5(The *inhomogeneous* Riemann-Hilbert operator): *The operator*

Since
$$
K(H_h - (u_n, K)) = A_{-s}
$$
, the first operator K is of G -t data K .

\nTheorem 5(The inhomogeneous Riemann-Hilbert operator): The operator

\n
$$
S: H^{m+2}(M, R) \longrightarrow H^m(M, R) \times H^{m+\frac{1}{2}}(\partial D_R, R) , S(x) = \left(|z|^2 \Delta x(z) , Re \{ \bar{\lambda} z x_z \} |_{\partial D_R} \right)
$$

is of Fredholm type with index given by index $S = 2\kappa(\lambda) - 1$.

Proof:If we write $S = (S^1, S^2)$, then the foregoing arguments show that

$$
f(R) \times H^{m+\frac{1}{2}}(\partial D_R, IR) , S(x) =
$$
\ngiven by index $S = 2\kappa(\lambda) - 1$.
\n
$$
S^2
$$
, then the foregoing argument
\nindex $\left(S^2_{\vert_{\text{kernel }S^1}}\right) = 2\kappa(\lambda) - 1$.

On the other hand the map S^1 is onto by Theorem 4, so that the general index relation [3, *Hilfssatz 1.4] immediately implies the desired formula for the index of S.*

References

- [1] GAKROV, F.D.: *Boundary value problems.* Pergamon Press: Oxford-London 1966.
- **[2] SCHÜFFLER, Xli.:** *Minimalfiãchen auf Möbiusbãndern.* ZAA 9 (1990), 503 517.
- *]3]* SCHUPPLEIt, KR. AND TOMI, F.: *Ein Index.satz für Fiãchen konstanter mittlerer Krümmung.* Math.Z. 182 (1983), 245 - 257.
- *[4]* SCHUPPLER,KH.: *On holomorpliic functions on Riemann surfaces and the Riemann-Hilbert problem.* Analysis *9* (1989), 283 - 298.

Recieved 23.12.1991

Prof.Dr. Karlheinz Schüffler Mathematisches Institut der Heinrich-Heine Universität Düsseldorf UniversitàtsstraBe I D-4000 Düsseldorf 1