On the Dirichlet and the Riemann-Hilbert Problem on Möbius Strips

K.H. SCHUFFLER

In this paper we give 1) a description of harmonic functions on Möbius strips as a manifold modelled on a subspace of the (Sobolev) space of holomorphic functions on ring domains, 2) a functional-analytic theory for the Laplacian, e.g., the Dirichlet boundary value problem and 3) the Fredholm theory for the Riemann-Hilbert operator.

Key words: Dirichlet problem, Riemann-Hilbert harmonic functions and holomorphic functions on Möbius strips

AMS subject classification: 30 E 25, 30 F 15, 31 B 20, 35 J 15, 56 E 12, 58 E 12, 58 G 10

§0 Introduction

In this paper we study Riemann surfaces M of topological type of the Möbius strip and discuss the class of harmonic functions defined on M. Although M is non-orientable we obtain a function-theoretic description of this class which in turn provides us with a functional-analytic approach to the classical boundary value operators including Laplace equation and the Riemann-Hilbert problem.

Our ideas are essentially based on the following model:

If *IM* is a Möbius strip, then it can be identified in a natural way with the half-annulus

$$M_{R} = \left\{ z \mid \frac{1}{R} < |z| < R ; Im(z) \ge 0 ; z = -\frac{1}{z} \text{ for } Im(z) = 0 \right\}$$

for a suitable conformal parameter R > 1. Consequently $I\!M$ is just the annulus

$$\mathcal{R} = \left\{ z \mid \frac{1}{R} < |z| < R \right\}$$

where points z are identified via the involution

$$au: \mathcal{R} \longrightarrow \mathcal{R} \ , \ au(z) = -rac{1}{ar{z}}$$

which is an anti-conformal transformation of the oriented coverings of $M(\mathcal{R})$ into themselves. Moreover, the functions on M are just the functions x on \mathcal{R} being invariant under the action of τ , that is

(I)

$$x(z) = x \circ \tau(z), z \in \mathcal{R}$$

and it is easy to check that the harmonic functions x on \mathcal{R} satisfying (I) are in 1-1 correspondence to holomorphic maps f on \mathcal{R} with the additional property

$$f(z) = \overline{f \circ \tau(z)}$$
 or $f(z) = \overline{-f \circ \tau(z)}$.

§1 Harmonic Functions

Since any harmonic map x defined on M_R admits a harmonic extension to the oriented covering \mathcal{R} being invariant under the involution, it is easy to check that x can be written as

(II)

$$\boldsymbol{x}(\boldsymbol{z}) = \boldsymbol{R}\boldsymbol{e}\,\boldsymbol{f}(\boldsymbol{z})$$

for a holomorphic map f on \mathcal{R} . (Observe that $g = \partial_z x$ is holomorphic in \mathcal{R} and the contour integral $\oint_{S^1} g$ vanishes; the symbol ∂_z stands for the Wirtinger derivative $(\partial_u - i\partial_v)$, (z = u + iv). Hence we can define f by $f = \int_{-\infty}^{x} g$, $z \in \mathcal{R}$.)

We now introduce some additional notations:

Let $m \in \mathbb{N}$, $m \ge 2$ (Sobolev Index) be given and consider a Möbius strip $\mathbb{M} = M_R$. We abbreviate $\mathbb{E} = \mathbb{R}^n$ or $\mathbb{E} = \mathbb{C}^n$, $D_R = \{z | |z| < R\}$, $D = D_1$ the unit disk in \mathbb{C} , as before $\mathcal{R} = \{z | \frac{1}{R} < |z| < R\}$ and we define the following subspaces:

 $- H^m(\mathbb{M},\mathbb{E}) = \{ \mathbf{x} \in H^{m,2}(\mathcal{R},\mathbb{E}) | \mathbf{x} = \mathbf{x} \circ \tau \}$

(this space is – as the kernel of the continous linear map $x \mapsto x \circ \tau$ – a subspace of the Hilbert space $H^m(\mathcal{R}, \mathbb{E})$)

$$- H_h^m(\mathcal{M}, \mathcal{E}) = \{x \in H^m(\mathcal{M}, \mathcal{E}) \mid \Delta x = 0\}$$

$$- A^m(D_R, \mathbb{C}) = \{f \in H^{m,2}(\mathcal{R}, \mathbb{C}) \mid f \text{ holomorphic in } D_R\}; A^m(\mathcal{R}, \mathbb{C}) \text{ analogously}$$

$$- A_0^m(D_R, \mathbb{C}) = \{f \in A^m(D_R, \mathbb{C}) \mid f(0) = 0\}$$

$$- A_{\pm}^m = \{f \in A^m(\mathcal{R}, \mathbb{C}) \mid f = \pm \overline{f \circ \tau}\}$$

$$- A_{\pm}^m = \{f \in A_{\pm}^m \mid \operatorname{Re} \oint_{S^1} \frac{f(z)}{z} = 0\}.$$

Applying the representation formula (II) to the Laurent series at zero one easily verifies the following relations:

- 1. $x \in H_h^m(M, \mathbb{R}) \iff f \in A_+^m$
- 2. $x \in H_h^m(\mathcal{M}, \mathbb{R}) \iff h(z) := z \partial_z(x(z)) = (u + iv)(\partial_u i\partial_v)x(u + iv)$ is in the space $A_{-\bullet}^{m-1}$

3.
$$f \in A^m_{\pm} \iff zf'(z) \in A^{m-1}_{\mp}$$
.

The definitions of the spaces immediatly imply

4. A_{\pm}^{m} are real sub-Hilbert spaces of $A^{m}(\mathcal{R}, \mathbb{C})$; the codimension of $A_{-\bullet}^{m}$ in A_{-}^{m} is equal to 1; $A_{+}^{m} \cdot A_{+}^{m} = A_{+}^{m}$, $A_{-}^{m} \cdot A_{+}^{m} = A_{-}^{m}$ and $A_{-}^{m} \cdot A_{-}^{m} = A_{+}^{m}$.

Theorem 1(description of the harmonic functions): The following statements are true:

i) Basic relation: The function x is harmonic in M if and only if

$$\mathbf{z}(z) = Re\left\{g(z) + \overline{g \circ \tau(z)}\right\} = Re\left\{g(z) + \overline{g\left(-\frac{1}{\overline{z}}\right)}\right\}$$

for a holomorphic function g on the disk D_R .

ii) Manifold structure: The transformation

$$\Phi: A_0^m(D, \mathbb{C}) \times \mathbb{R} \longrightarrow H_h^m(\mathbb{M}, \mathbb{R}) , \ \Phi(g, \alpha)(z) = \operatorname{Re}\left\{g\left(\frac{1}{R}z\right) + \overline{g \circ \tau(Rz)} + 2\alpha\right\}$$

is a linear homeomorphism.

iii) Variation of the conformal type: The extended transformation

$$\bigcup_{R>1} H_h^m(M_R, \mathbb{R}) \xrightarrow{\Phi} A_0^m(D, \mathbb{C}) \times \mathbb{R} \times (1, \infty) , \ \Phi(g, \alpha, R) = Re \left\{ g\left(\frac{1}{R}z\right) + \overline{g \circ \tau(Rz)} + 2\alpha \right\}$$

is a global chart for the fibre bundle of all harmonic functions of Sobolv class $H^{m,2}$ defined on Möbius strips.

Proof: The basic relation is a consequence of (II) and Relation 1. comparing coefficients; ii) and iii) are simple consequences of the basic relation.

Let us remark that the transformations

$$\Phi_{\pm}: A_0^m(D, \mathbb{C}) \times \mathbb{R} \longrightarrow A_{\pm}^m, \ \Phi_{\pm}(g, \alpha)(z) = g\left(\frac{1}{R}z\right) + \overline{g \circ \tau(Rz)} + 2\alpha \ (\text{ resp. } + 2i\alpha)$$

are linear homeomorphisms giving explicit descriptions of the spaces A_{\pm}^{m} also of the fibre bundles – that are the union spaces over all conformal structures \mathcal{R} , R > 1.

§2 The Laplacian and Dirichlet's problem

The functions x defined on the boundary ∂M of a Möbius strip M can be described in two possible ways: First we may consider the class

$$H^{m-\frac{1}{2}}(\partial \mathbb{M},\mathbb{E}) = \left\{ x \in H^{m-\frac{1}{2}}(\partial \mathcal{R},\mathbb{E}) \mid x = x \circ \tau \right\}$$

consisting of all τ -invariant x defined on the boundary $\partial \mathcal{R} = \partial D_R \cup \partial D_{\frac{1}{R}}$. On the other hand a simple argument shows that one can apply the natural isomorphism

$$H^{m-\frac{1}{2}}(\partial M, E) \cong H^{m-\frac{1}{2}}(\partial D_R, E) \cong H^{m-\frac{1}{2}}(S^1, E).$$

Theorem 2(Dirichlet's problem for harmonic functions): The operator

$$L: H_h^m(\mathbb{M}, \mathbb{R}) \longrightarrow H^{m-\frac{1}{2}}(\partial \mathbb{M}, \mathbb{R}) , L(x) = x_{|_{\partial \mathbb{M}}}$$

is a linear homeomorphism.

Proof: A complete proof of this Theorem is given in [2], for the reader's convenience we sketch the main ideas: Since L is a linear homeomorphism as a map

$$L: H^m_h(\mathcal{R}, \mathbb{I}) \longrightarrow H^{m-\frac{1}{2}}(\partial \mathcal{R}, \mathbb{I})$$

of larger spaces, this is clearly true for the restriction of L to the spaces $H_h^m(M, \mathbb{R})$ and $H^{m-\frac{1}{2}}(\partial M, \mathbb{R})$, respectively, provided τ -invariant boundary values admit a τ -invariant harmonic extension. In order to prove this last mentioned fact we consider $\gamma \in H^{m-\frac{1}{2}}(\partial M, \mathbb{R})$ and $x \in H_h^m(\mathcal{R}, \mathbb{R})$ such that $L(x) = \gamma$. Observing that $x \circ \tau$ is also harmonic with $L(x \circ \tau) = \gamma$ the injectivity of L implies $x \circ \tau = x$. Before studying the Laplacian we observe that the operators $\partial_z, \partial_{\bar{z}}$ destroy the property of being τ -invariant, for example we have for τ -invariant x

$$x_z = f'(z) + \frac{1}{z^2} \overline{f'(\tau(z))} , \Delta x(\tau z) \neq \Delta x(z) ,$$

whereas zx_z (and $\bar{z}x_{\bar{z}}$) are contained in the classes A_{\pm}^m . This motivates the study of the operator $|z|^2 \Delta x(z) = (\bar{z}\partial_{\bar{z}})(z\partial_z)(x)(z)$ which has the property

Lemma 1: The inclusion $x \in H^{m+2}(\mathbb{M},\mathbb{R})$ implies that of $|z|^2 \Delta x(z) \in H^m(\mathbb{M},\mathbb{R})$.

Proof: The τ -invariance, $x(z) = x \circ \tau(z)$, and the fact that $\tau(z)$ is anti-conformal imply

$$\Delta x(z) = \Delta (x \circ \tau)(z) = |\tau_{\bar{z}}|^2 \Delta x(\tau z) = \left| \frac{1}{\bar{z}^4} \right| \Delta x(\tau z) ,$$

hence

$$|z|^2 \Delta \boldsymbol{x}(z) = \left|\frac{1}{z}\right|^2 \Delta \boldsymbol{x}(\tau z) = |\tau z|^2 \Delta \boldsymbol{x}(\tau z)$$

and the proof is complete.

Theorem 3(The Laplacian): The operator

$$T: H^{m+2}(\mathbb{M},\mathbb{R}) \longrightarrow H^{m}(\mathbb{M},\mathbb{R}) \times H^{m+\frac{3}{2}}(\partial \mathbb{M},\mathbb{R}) , T(x) = \left(|z|^{2}\Delta x(z), x_{|_{\partial \mathbb{M}}}\right)$$

is a linear homeomorphism.

Proof: By the foregoing lemma T is well-defined. Observing that

 $T: H^{m+2}(\mathcal{R}, I\!\!R) \longrightarrow H^m(\mathcal{R}, I\!\!R) \times H^{m+\frac{3}{2}}(\partial \mathcal{R}, I\!\!R)$

is a linear homeomorphism inducing the operator under consideration by restriction to subspaces, injectivity and continuity of T are obvious. It remains to show that $T = (T^1, T^2)$ is onto. Recalling Theorem 2 we see that T^2 (even the restriction of T^2 to the kernel of T^1) is onto, hence we discuss the operator $T^1_{|_{\text{kernel } T^2}}$ and choose a function $y \in H^m(M, \mathbb{R})$, $y = y \circ \tau$. Let $x \in H^{m+2}(\mathbb{R}, \mathbb{R})$ denote the unique solution of T(x) = (y, 0). Since

$$T(\boldsymbol{x} \circ \tau) = (|z|^2 \Delta(\boldsymbol{x} \circ \tau)(z), 0) = (|z|^2 |\tau_{\bar{z}}|^2 \Delta \boldsymbol{x}(\tau z), 0)$$

= $\left(\frac{1}{|z|^2} \Delta \boldsymbol{x}(\tau z), 0\right) = (|\tau z|^2 \Delta \boldsymbol{x}(\tau z), 0)$
= $(\boldsymbol{y}(\tau z), 0) = (\boldsymbol{y}(z), 0) = T(\boldsymbol{x}),$

 $x \circ \tau$ is a solution, and since T is 1-1 on $H^{m+2}(\mathcal{R}, \mathbb{R})$ we get $x = x \circ \tau$.

The preceeding argument gives a sharper version of the lemma, more precisely we have

x is τ -invariant $\iff |z|^2 \Delta x$ is τ -invariant.

§3 The Riemann-Hilbert Problem

Many problems coming from applications can be reduced to the study of operators of the form

$$A^{m}(\mathcal{G},\mathbb{C}) \ni w \longmapsto Re\left\{\bar{\lambda}w\right\}_{|_{\partial \mathcal{G}}} \in H^{m-\frac{1}{2}}(\partial \mathcal{G},\mathbb{R})$$
$$H^{m+1}_{h}(\mathcal{G},\mathbb{R}) \ni x \longmapsto Re\left\{\bar{\lambda}x_{z}\right\}_{|_{\partial \mathcal{G}}}$$

or of similar type; here \mathcal{G} denotes a domain in the complex plane or more general an (oriented) Riemann surface with boundary and λ is a given complex function on \mathcal{G} without zeros. The above mentioned operators are Fredholm with index depending on the topological type of \mathcal{G} and on the so-called *geometrical index* which measures the increasement of the argument of λ . It is well-known that the above mentioned Riemann-Hilbert problems are closely connected to the uniqueness and stability Theorems for the Plateau-Douglas problem. This is also true for nonorientable surfaces of the type of the Möbius strip, for details compare [2] and the papers quoted there, and from the facts described in §1 it becomes plausible that now the spaces $A^m(\mathcal{G}, \mathbb{C})$ of the holomorphic functions has to be replaced by the spaces A_{\pm}^m . We therefore study the operators

$$\begin{array}{rcl} RH:A^m_{\pm} &\longrightarrow & H^{m-\frac{1}{2}}(\partial M,\mathbb{R}) &, & RH(w) &= & Re\left\{\bar{\lambda}w\right\}_{\partial M} \\ RH:H^{m+1}_h(M,\mathbb{R}) &\longrightarrow & H^{m-\frac{1}{2}}(\partial M,\mathbb{R}) &, & RH(x) &= & Re\left\{\bar{\lambda}x_z\right\}_{|_{x=z}} \end{array}$$

and - more general - the inhomogeneous boundary value operator

$$S: H^{m+2}(\mathbb{M},\mathbb{R}) \longrightarrow H^m(\mathbb{M},\mathbb{R}) \times H^{m+\frac{1}{2}}(\partial \mathbb{M},\mathbb{R}) , S(\mathbf{x}) = (T(\mathbf{x}),RH(\mathbf{x})) .$$

Theorem 4(The Riemann-Hilbert operator for harmonic functions): The operator

$$RH: A^m_{\pm} \longrightarrow H^{m-\frac{1}{2}}(\partial M, \mathbb{R}) \quad , \quad RH(w) = Re\left\{\bar{\lambda}w\right\}_{|_{\partial M}}$$

is Fredholm with index given by index $RH = 2\kappa(\lambda)$. Here $\lambda \in H^m(\partial M, \mathbb{C})$ is a given function without zeros and $\kappa(\lambda)$ denotes the increasement of the argument of λ along ∂M .

Corollary: The index of the Fredholm operator

$$RH: H_h^{m+1}(\mathbb{M},\mathbb{R}) \longrightarrow H^{m-\frac{1}{2}}(\partial \mathbb{M},\mathbb{R}) , RH(x) = Re\left\{\bar{\lambda}x_z\right\}_{|_{\partial \mathbb{M}}}$$

is given by $2\kappa(\lambda) - 1$.

Proof (of the Theorem): First we identify the spaces $H^{m-\frac{1}{2}}(\partial M, \mathbb{R})$ and $H^{m-\frac{1}{2}}(\partial D_R, \mathbb{R})$ via the map (which gives a linear homeomorphism)

$$\Psi: \partial D_R \longrightarrow \partial I\!\!M$$
, $\Psi(z) = \begin{cases} z & \text{for} \quad Im(z) \ge 0 \\ -\frac{1}{z} & \text{for} \quad Im(z) \le 0 \end{cases}$

We write w and λ instead of $w \circ \Psi$ and $\lambda \circ \Psi$, respectively. According to Theorem 1 we can use the linear homeomorphisms Φ_+ and Φ_- as global charts for the spaces A^m_+ and A^m_- , respectively, so that we have to calculate the index of the composition $RH \circ \Phi_{\pm}$ which is to be calculated to

$$RH \circ \Phi_{\pm} : A_{0}^{m}(D, \mathbb{C}) \times I\!\!R \longrightarrow H^{m-\frac{1}{2}}(\partial D_{R}, I\!\!R)$$
$$RH \circ \Phi_{\pm}(g, \alpha) = Re \left\{ \bar{\lambda} \left(g\left(\frac{1}{R}z\right) + 2\alpha\right) \right\}_{|_{\partial D_{R}}} \pm Re \left\{ \overline{\lambda(g \circ \tau)(Rz)} \right\}_{|_{\partial D_{R}}}$$

that is, $RH \circ \Phi_{\pm}$ is splitted in the sum of two operators, $RH \circ \Phi_{\pm} = T_1 + T_2$. Now the functions $z \longrightarrow \overline{g \circ \tau(Rz)}$ are holomorphic outside the disc $D_{\frac{1}{R}}$. Quoting well-known theorems of Montel respectively Sobolev's embedding theorems we see that the second term in the above equation, T_2 , is a compact operator. Hence the Fredholm property as well as the desired index formula will follow if we can prove the corresponding facts for the operator T_1 . According to [1] the index of the map

$$A^{m}(D, \mathbb{C}) \ni g \longmapsto Re\left\{\bar{\lambda}g\left(\frac{1}{R}z\right)\right\}_{|_{\partial D_{R}}}$$

is $2\kappa(\lambda) + 1$ (the case of the unit disk) and the space $A_0^m(D, \mathbb{C}) \times \mathbb{R}$ has codimension 1 in the space $A^m(D, \mathbb{C}) \cong A_0^m(D, \mathbb{C}) \times \mathbb{C}$. This proves the theorem.

The corollary follows from the fact that in the composition

$$\begin{array}{cccc} H_h^{m+1}(I\!\!M,I\!\!R) & \xrightarrow{\Lambda} & A_-^m & \stackrel{\Psi}{\longrightarrow} & H^{m-\frac{1}{2}}(\partial D_R,I\!\!R) \\ x & \longmapsto & z z_z & \longmapsto & Re\left\{\bar{\lambda} z z_z\right\} \end{array}$$

(since $\Lambda(H_h^{m+1}(\mathbb{M},\mathbb{R})) = A_{-\bullet}^m$) the first operator Λ is of co-rank 1.

Theorem 5(The inhomogeneous Riemann-Hilbert operator): The operator

$$S: H^{m+2}(\mathbb{M},\mathbb{R}) \longrightarrow H^{m}(\mathbb{M},\mathbb{R}) \times H^{m+\frac{1}{2}}(\partial D_{\mathbb{R}},\mathbb{R}) , S(x) = \left(|z|^{2}\Delta x(z) , \operatorname{Re}\left\{\bar{\lambda}zx_{z}\right\}_{|_{\partial D_{\mathbb{R}}}}\right)$$

is of Fredholm type with index given by index $S = 2\kappa(\lambda) - 1$.

Proof: If we write $S = (S^1, S^2)$, then the foregoing arguments show that

index
$$\left(S^2_{|_{\text{kernel } S^1}}\right) = 2\kappa(\lambda) - 1$$
.

On the other hand the map S^1 is onto by Theorem 4, so that the general index relation [3, Hilfssatz 1.4] immediately implies the desired formula for the index of S.

References

- [1] GAKHOV, F.D.: Boundary value problems. Pergamon Press: Oxford-London 1966.
- [2] SCHÜFFLER, KH.: Minimalflächen auf Möbiusbändern. ZAA 9 (1990), 503 517.
- SCHÜPPLER, KH. AND TOMI, F.: Ein Indexsatz für Flächen konstanter mittlerer Krümmung. Math.Z. 182 (1983), 245 – 257.
- [4] SCHÜPPLER,KH.: On holomorphic functions on Riemann surfaces and the Riemann-Hilbert problem. Analysis 9 (1989), 283 - 296.

Recieved 23.12.1991

Prof.Dr. Karlheinz Schüffler Mathematisches Institut der Heinrich-Heine Universität Düsseldorf Universitätsstraße 1 D-4000 Düsseldorf 1