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We show the possibility and the uniqueness of spectral and polar decomposition of (normal) 
elements of arbitrary AW*algebras. 
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The spectral decomposition of normal linear (bounded) operators and the polar decom-
position of arbitrary linear (bounded) operators on Hubert spaces have been interesting 
and technically useful results in operator theory [3, 9, 13, 20]. The development of the 
concept of von Neumann algebras on Hubert spaces has shown that both these decompo-
sitions are always possible inside the appropriate von Neumann algebra [14]. New light 
on these assertions was shed identifying the class of von Neumann algebras among all 
C*aIgebras by the class of C*.algebras which possess a pre-dual Banach space, the W* 
algebras. The possibility of C*theoretical representationless descriptions of spectral and 
polar decomposition of elements of von Neumann algebras (and may be of more general 
C*algebras) inside them has been opened up. Steps to get results in this direction were 
made by several authors. The W*case was investigated by S. Sakai in 1958-60, [18, 19]. 
Later on J. D. M. Wright has considered spectral decomposition of normal elements of 
embeddable AW*algebras, i.e., of AW*a1gebras possessing a faithful von Neumann type 
representation on a self-dual Hubert A-module over a commutative AW*algebra A (on a 
so called Kaplansky—Hilbert module), [23, 24]. But, unfortunately, not all AW*algebras 
are embeddable. In 1970 J. Dyer [5] and 0. Takenouchi [21] gave (*-isomorphic) examples 
of type III, nonW* , AW*factors , (see also K. Saitô [151). Polar decomposition inside 
AW*a1gebras was considered by I. Kaplansky [121 in 1968 and by S. K. Berberian [3] in 
1972. They have shown the possibility of polar decomposition in several types of AW* 
algebras, but they did not get a complete answer. In the present paper the partial result 
of I. Kaplansky is used that AW*algebras without direct commutative summands and 
with a decomposition property, for its elements like described at Corollary 5 below allow 
polar decomposition inside them, [3, §21: Exerc. 1] and 112, Th. 65]. For a detailled 
overview on these results we refer to. [3]. 

The aim of the present paper is to show that both these decompositions are possible 
inside arbitrary AW*a1gebras without additional assumptions to their structures. 

Recall that an AW*algebra is a C*a1gebra for which the following two conditions are 
satisfied (cf. I. Kaplansky [JO]):



(a) In the partially ordered set of projections every set of pairwise orthogonal projec-
tions has a least upper bound. 

(b) Every maximal commutative *-subalgebra is generated by its projections, i.e., it 
is equal to the smallest closed *-subalgebra containing its projections. 

An AW*a1gebra A is called to be monotone complete if every increasingly directed, 
norm-bounded net of self-adjoint elements of A possesses a least upper bound in A. An 
AW*algebra A is called to be normal if the supremum of every increasingly directed net 
of projections of A being calculated with respect to the set of all projections of A is it's 
supremum with respect to the set of all self-adjoint elements of A at once, cf. [25, 161. 
For the most powerful results on these problems see [4] and [17]. 

To formulate the two theorems the following definitions are useful. 

Definition 1 (J. D. M. Wright [24, p.264]): A measure m on a compact Hausdorif 
space X being valued in the self-adjoint part of a monotone complete AW-algebra is 
called to be quasi-regular if and only if 

m(K) = inf{m(U) : U—open sets in X, K C U}

for every closed set K C X. We remark that this condition is equivalent to the condition: 

m(U) = sup{m(K) : K—closed sets in X, K C U}for every open set U ç X. 

Further, if m(E) = inf{m(U) : U—open sets in X, E ç U) for every Borel set E c X, 
then the measure m is called to be regular. 

Definition 2 (M. Hamana [8, p.260] (cf. [1], [22])): A net {a : a E I} of ele-
ments of A converges to an element a EA in order if and only if there are bounded nets 
{a : a E I) and {b : a E I} of self-adjoint elements of A and self-adjoint elements 
a(k) EA, k = 1,2,3,4, such that 

(i) 0	a (') — a(k) < b, k = 1,2,3,4,a El, 
(ii) {b : a E I) is decreasingly directed and has greatest lower bound zero, 
(iii )) 1(i)ka = aa for every a E J ,	1(j)ka(k) = a (where j = 

We denote this type of convergence by LIM{a : a E 1) = a. 

By [6, p.2601 the order limit of {aa : a E I] does not depend on the special choice 
of the nets {a : a E I},{b : a E I) and of the elements a(k), k = 1,2,3,4. If A 
is a commutative AW-algebra, then the notion of order convergence defined above is 
equivalent to the order convergence in A which was defined by H.Widom [22] earlier. 
Note that (cf. [8, Lemma 1.2]) if LIM{aa : a E I) = a , LIM{b : 13 E J} = b, then 

(i) LIM{aa + b15 : a E I,fi E J) = a + b, 
(ii) LIM(zay : a E I) = xay for every x,y E A, 
(iii) LIM{aabø : a E 1,13 E J} = ab, 
(iv) aa <be, for every a E I = J implies a < b, 
(v) II a IIA < limsup{IIaa II A : a E I). 

Furthermore, we need the following lemma describing the key idea of the present paper 
and being of interest on its own. 

Lemma 3 : Let A be an AW*algebra and B C A be a commutative C*subaigebra. 
Then the monotone closures B(D), B(D') of B inside arbitrary two maximal commutative 
C*subalgebras D, D' of A which contain B, respectively, are *-isomorphic commutative 
AW*algebras. Moreover, all monotone closures B(D) of B of this type coincide as C-- 
subalgebras of A if A is normal.



Proof: Let D be a maximal commutative C*subalgebra of A containing B. By 
definition D is generated by its projections. Let p E B(D) be a projection. Suppose 
p g B. Then p is the supremum of the set P = {x € Bt ç D : x p} by [7, Lemma 1.71. 
In particular, OA - p) is the maximal annihilator projection of P inside D. But, P2 = p 
And, hence, the supremum of P being calculated inside D' is a projection p' again, and 
( I A - p') is the maximal annihilator projection of P in D'. Changing the positions of 
D and D' one finds a one-to-one correspondence between the projections of B(D) and 
B(D'). 

Moreover, the product projection PiTh of two projections pi, € B(D) corresponds 
to the supremum of the intersection set of the two appropriate sets P i and P2 of elements 
of B, and hence, to the product projection p,p 2 of the corresponding two projections 
p'1 ,j4 € B(D'). That is, the found one-to-one correspondence between, the sets of pro-
jections of B(D) and of B(D') preserves the lattice properties of these nets. Since B(D) 
and B(D') are commutative AW*algebras (i.e. both they ae linearly spanned by their 
projection lattices as linear spaces and as Banach lattices), this one-to-one correspondence 
extends to a *-isomorphism of B(D) and B(D'). 

Now, fix such a set P ç B. By (10] there exists a global maximal annihilator pro-
jection ( I A - q) of P in A. The problem arrising in this situation can be formulated as 
follows: does q commute with B, i.e. is q an element of D and, hence, of every maximal 
commutative C*subalgebra D' of A containing B? Obviously, (lÀ - q) is the supremum 
of the set of all those annihilator projections {(1A —p)} which we have constructed above, 
but only in the sense of a supremum in the net of all projections of A since monotone 
completeness or normality of A are not supposed, in general. So we have to assume that 
A is normal, cf. [25, 16], to be sure in our subsequent conclusions. Then there follows that 
(1 A - q) has to be the supremum of the set of all those projections {(1A - p)} in the self-
adjoint part of A. Hence, q commutes with B since each of the projections p do. This 
means that q belongs to every maximal commutative C*suba1gebra D of A containing 
B because of their maximality, and q = p for every p € D since q p, and p was the su-
premum of P inside Dt. 

Since P was fixed arbitrarily one concludes that B(D) does not depend on the choice 
of D inside normal AW*algebras A. I 

Theorem 4 (cf. [24, Th.3.1 and Th.3.2]): Let A be a normal AW*algebra and 
a € A be a normal element. Let B C A be that commutative C*subaJgebra in A 
being generated by the elements {1A, a, a}, and denote by B the smallest commutative 
AW*algebra inside A containing B and being monotone complete inside every maximal 
commutative C*subalgebra of A. Then there exists a unique quasi-regular. B-valued 
measure m on the spectrum o(a) C C of a € A, the values of which are projections in B 
and for which the integral

I Adm = a

- 

exists in the sense of order convergence in B ç A. 
If A is not normal, then for every maximal commutative C*subalgebra D of A contai-

ning B there exists a unique spectral decomposition of a € A inside the monotone closure 
B(D) of B with respect to D. But it is unique only in the sense of the *-isomorphy of 
B(D) and B(D') for every two different maximal commutative C*subalgebras D, D' of 
A containing B.



If A is a W*a1gebra, then m is regular and the integral exists in the sense of norm 
convergence. 

Proof: By the Gelfand—Naimark representation theorem the commutative C*subalge 
bra B C A being generated by the elements {1A, a, a} is *-isomorphic to the commutative 
C*algebra C(o(a)) of all complex-valued continuous functions on the spectrum a(a) C C 
of a E A. Denote this *-isomorphism by 0, q : C(o(a)) —+ B. The isomorphism 0 is 
isometric and preserves order relations between self-adjoint elements and, hence, positivity 
of self-adjoint elements. Therefore, 0 is a positive mapping. 

Selecting an arbitrary maximal abelian C*subaIgebra D of A containing B one can 
complete B to B(D) with respect to the order convergence in D. Note that B(D) ç A 
does not depend on the choice of D by the previous lemma if A is normal. 

Now, by [24] , [23, Th.4.1] there exists a unique positive quasi-regular B(D)-valued 
measure m with the property that 

J ) 
f)dm = 

a(a 

for every f E C(o(a)). Since 1 (a)(A) = A for every A E o(a) C C by the definition of 
one gets

IAdrnx = a. 

Moreover, since the extension 0 of 0 to the set of all bounded Borel functions on (7(a) 
fulfils ci'(xE) 2 = = c6(xE) for the characteristic function XE of every Borel set 
E E o(a) the measure m is projection-valued, cf. [24]. One finishes refering to Lem-
ma3 U 

The following corollary is essential to get the polar decomposition theorem. 

Corollary 5 Let A be an AW*aIgebra and x E A be different from zero. Then 
there exists a projection p E A, p 0, and an element a E A such that a, p and 
(xx*)112 commute pairwise, and a(xx) 112 = (axx*a)1/2 = p 

Proof: Consider the commutative C*subaIgebra B of A being generated by the ele-
ments {1 A ,xx}. By the spectral theorem there exists a unique positive quasi-regular 
measure m on the Borel sets of o((zx*)h/2) C R+ being projection-valued in the mono-
tone closure B(D) 9 A of B with respect to an arbitrarily chosen, but fixed, maximal 
commutative C*subalgebra D of A containing B, and satisfying the equality 

IA dm,, = (xx*)/2 

in the sense of order convergence in (D) C A. Now, if (xz*)h/2 is a projection, then set 
a = 1 4 p = zx. If (zx*)112 is invertible in A, then set p = 'A, a = (xx)_112. Otherwise 
consider a number jz E xx)' /2 ), 0 < t < li r li, and set K = [0,j] fl cT((xx*)12). The 
value m(K) E B(D) is a projection different from zero. It commutes with every spectral 
projection of (xx*)112 and with (xx.)h/2 itself. Since m is a quasi--regular measure one has 

JA d(mA(1A - m(K))) = (1 A - m(K))(zx)"2.



Therefore, one finds p = ( 1A - m(K)). and a = ( (1A - m(K))(xx))/2, where the inverse 
is taken inside the C*subalgebra (1 A - rn(K))B(D) ç A. Since /L < flzH the projection 
p is different from zero. The existence of a E At is guaranteed by 0 <ji I 

Now we go on to show the polar decomposition theorem for AW*algebras using results 
of S. K. Berberian and I. Kaplansky. Previously we need it for commutative AW*algebras. 
Note that the proof of the following lemma works equally well for all monotone complete 
C*algebras. 

Lemma 6 : Let A be a commutative AW*41gebra. For every x E A there exists a 
unique partial isometry ii E A such that x = (xx) 112u and tiu* is the range projection of 
(xx.)u/2. 

Proof: Throughout the proof we use freely the order convergence inside monotone 
complete C*algebras as defined at Definition 2. 

First, suppose z to be self-adjoint. The sequence {u = r(l/n + I xI)' : n E N} is 
bounded in norm by the representation theory. It consists of self-adjoint elements, and the 
sequences {Ix I( 1 /n + Iz D 1 } and {(Ix I —x)(1/n+ I z I)- ') are monotone increasing. Hence, 
the sequence {u} is order converging inside A, LIM u,, = ti, and u E Ah. Furthermore, 
the sequence {u I x I : n E N} converges to x in order, i.e., x = u t x I . From the equality 

= xIuuIzI one draws uu > rp (I z I) (where rp(IzI) denotes the range projection of lxi 
being an element of A). Hence, uu rp(lxl) by construction and u is a partial isometry. 

Now suppose z E A to be arbitrarily chosen. Consider again the sequence {u} of 
elements of A as defined at the beginning. One has to show the fundamentality of it with 
respect to the order convergence. Since A is monotone complete the existence of its order 
limit u inside A will be guaranteed in this case. For the self-adjoint part of the elements 
Of {u} the inequality 

o < Ez((1/n + Ixl)_ 1 - ( 1/rn + lx lY') + ( ( 1/n + lx I) - (1/rn + lxD1)x}2 

< 2[x((1/n + n)-' - (1/rn + ixl) 1 ) 2z + 

+((1/n + lxI)-' - ( 1/rn + lxl)-' )xx((1/n + lxD' - ( 1/rn + lxl))] 

is valid for every n, rn E N. The expression of the right side converges weakly to zero as 
rn go to infinity in each faithful *-representation of A on Hilbert spaces. Therefore, it 

is bounded in norm and converges in order to zero as n, rn go to infinity because of the 
positivity of the expression. Since taking the square root preserves order relations between 
positive elements of a C*a1gebra and since self-adjoint elements have polar decomposition 
inside A the order fundamentality of the sequence (I /2(u,, +u) : n E N) turns out. The 
order convergence of the anti-self-adjoint part of the sequence {u), 11/2i . (u, - 
can be shown in an analogous way. Hence, there exists . LIMu = u inside A. 

Now, from the existence of LIMuizl = x one derives the equality x = u l x l . The 
equality xx = lxuu l x I shows that uu rp(lxl) and, consequently, Wu = rp( I x i) by 
construction, i.e., u is a partial isometry. 

To show the uniqueness of polar decomposition inside A suppose x = v i x i for a partial 
isometry v with vv = rp( I x I) . Then v i x i = u l x , i.e., v = v rp(xI) = u I 

Theorem 7 : Let A be an AW*aJgebra . For every z E A there exists a unique 
partial isometry u € A such that a = (xx*) h /2u and uu is the range projection of 
(xz0)/2.



Proof: By [12, Th. 65] polar decomposition is possible inside of all AW5-algebras 
without direct commutative summands under the supposition that every element of it 
has the property of Corollary 5, (see also [3, §21: Exerc. 1]). Since polar decomposition 
works separately in every direct summand we have only to compare Corollary 5, Lemma 
6 and the result of I. Kaplansky I 

The result of Theorem 7 is of interest also because monotone completeness was not 
necessary to show it, what is a little bit surprising. 
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Book reviews 

V. P. KHAVIN and N. K. NIK0LsKIJ (Eds.): Commutative Harmonic Analysis I. General 
Survey - Classical Aspects (Encyclopaedia of Mathematical Sciences: Vol. 15). Berlin - Hei-
delberg: Springer-Verlag 1991, IX + 268 pp, 1 fig. 

Commutative harmonic analysis is one of the eldest branches of analysis with a big influ-
ence on the development of the whole mathematics. Its history is starting with Euler, Berno-
ulli and Fourier, which gave fundamental ideas and stimulating suggestions without having a 
clear conception of a correct realization. This was made much time later by Dirichlet, Can-
tor, Riemann and Lebesgue. Only the applications of modern theories of functional analysis 
especially distribution theory and the theory of commutative groups leads to a new revival of 
methods of harmonic analysis in a much more higher level. Commutative harmonic analysis is 
densely connected with other parts of mathematics (spectral theory, theory of orthogonal 
systems, integral transforms, commutative Banach algebras, ...) and in this way this is basic 
knowledge of each analytic working mathematician. Nevertheless there are many intrinsic 
results which show the relative independence of this disciplin. 

The book under review is splitting into the following three relatively independent parts: 
I. Methods and structure of commutative harmonic analysis 

II. Classical themes of Fourier analysis 
III. Methods of the theory of singular integrals. 

The authors try not only to collect worth mentioning results in theory and application of 
harmonic analysis but also give ingenious suggestions and useful hints for the proofs. In Part 
I most of the proofs are given completely. Let us have a look through the chapters of Part 

- Ill. 
Part I is divided into five chapters. In Chapter 1 there is given a special version on Fou-

rier series in order to recall basic facts of Fourier analysis. The proofs are mostly given 
completely and ingeniously. The construction of harmonic analysis in R is entirely done from 
viewpoint of distribution theory. Translation invariant linear operators and convolutions play 
the main role in Chapter 2. Basic facts on S- and L 2_ theoryof Fourier transform are pre-
sented in a convincing manner. Many very useful examples of different character (Heisen-
bergs uncertainty principle, central limit theorem, Jacobis identity for the 0-function, hypo 
ellipticity) additionally support the understanding. Fourier analysis on topological groups is the 
main topic of Chapter 3. Herein one can find the well-known Peter-Weyl theorem and state- 
ments of almost periodic functions (Theorem of Bohr). The authors also give very nice appli-
cations, for instance a description of the algorithm of Schonhage and Strassen about the fast 
Fourier transform or the quadratic reciprocity law. The historical essay in Chapter 4 suggests 
the reader the general idea of Commutative harmonic analysis. Some remarks on spectral 
analysis as well as intrinsic problems of Fourier analysis conclude the first Part. 
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