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General Sufficient Conditions for the Convexity of a Function
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Sufficient conditions for a given function to be convex on a given segment, in terms of upper
subderivative, are proved.

Key words: Convex functions, upper subderivatives, monotonicity of subdifferentials

AMS subject classification: 49AS52

1. Introduction

Recently, the problem of characterizing an interesting class of convex functions has arisen
(see [3,9]). In the case of R2, this class consists of, roughly speaking, functions for which the
limit of directional derivatives lim,,_,co £ (X +X,,,¥ *it,,); (p, q)) exists, where (x,¥),(p, q) € R?
are given and {(A,,,u,)} ¢ R? is an arbitrary sequence of points of a given set such that (X, ¢ )
—> 0. The importance of that one can see, for example, in [9], where one find an algorithm for
calculating a subgradient for a function from this class. We must agree upon that taking out
"well” behaving convex functions leads to investigations on "bad” one, which may prove diffi-
cult (see [11-13]). Another motivation for seeking new conditions for the convexity can be
found in [8: Theorem 3.2], where, loosely speaking, we should ensure that a given function on
a product set, say on R?, is upper semicontinuous and convex with respect to the second va-
riable.

Herein, we provide general sufficient conditions for a function fto be convex on a given
segment [a, b] of a Banach cpace X (see Theorems 3.1 and 3.2). The basis virtue of them is
that to obtain the convexity it is enough that, in case of upper semicontinuity, the inequality

lim su x*b-a> < 1im inf *b-a

x—»a*s(b-.af> < > y->a+t(b-a) <_}' >

xedom frdom Of, x*e of(x) yedom fndom of, y"edf(y)
f(x)—=>f(a+s(b-a) f(y)—>f(a+t(b-a)

holds for any 0 < s < £ < 1 (see Theorems 3.1 and 3.2 and Lemma 3.3). The conditions encom-
pass the lower and upper semicontinuity case on a Banach space. When f is Lipschitzian it
yields the monotonicity of the subdifferential, see [1,2,4 - 7].

Recently, there has been obtained a new result characterizing the convexity of lower se-
micontinuous functions on the whole_space (see [4,5]), i.e., a lower semicontinuous function
is convex if and only if the subdifferential is monotone. The result has been obtained for fini-
te-dimensional spaces (see [4]) or reflexive Banach spaces (see [5]). In the case when X is
one -dimensional we compare it with the above condition.
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2. Basic facts on upper subderivatives

The apparatus of the paper is taken from Nonsmooth Analysis (see [1,2,7]). Below we shall
summarize those basic facts about generalized derivatives which are used in the sequel.
Let f: X—> Ru{+o} be a lower semicontinuous function on a Banach space X. The upper
subderivative of fat x ¢ X, f(x) ¢ R, with respect to v ¢ X is defined by
f(y +tu) - £

fNx;v) = sup lim su inf R ,
c€>o0 (yf(y))—»(x (x) llu-vll<e

and the subdifferential of(x) by

of(x) = {x'e X*|<x*v> s fNx;v)forall ve X},

where {x™,v)> denotes the value of the linear continuous functional x"at v. Let us recall the
mean value theorem for these two notions.

Theorem 2.1 [10]): Let X be a real Banach space, a,be X, a % band f: X = Ru {+®)} be lo-
wer semicontinuous and finite at a and b. Then, for every x ¢ [ a,b] such that x + b and the in-

equality
£) + BB Db - o1 < 1) o LMl - g (2.0

holds for all y € [a,b], there exist sequences {x,} ¢ X and {xg} ¢ X* such that

dim xp = x and limsup f(x;) s f(a) + Mllx - all
k—=>c k—>o0 6 -

xgedf(xy) Vk and liminf<xg,b-a> 2 £(b) - f(a).
k—>

Throughout the paper for any a,b € X we denote by [a,b] the set {a +¢t(b-2a)| 0 < ¢ s 1}.
We write x <[, p]¥ if there exist 0 < s < t s 1 such that x = a +s(b -a)and y = a +t(b - a).
Further we denote by domof the set {x e X| of(x) + ®}.

3. Convexity on a segment

In this section we provide sufficient conditions for lower and upper semicontinuous functions
to be convex on a given segment [a,b]. Before we do it, let us refer to known facts on convex
functions.

From the classical differential calculus we know that the convexity of a real function is
related to the monotonicity of its derivative. When we use a more sophisticated tool, for
example, the subdifferential calculus, we still have to do with monotonicity (see, e.g., [7:
Proposition 7A]). This strongly suggest that the monotonicity of a derivative is essential for
the convexity. However, it is worth mentioning that the subdifferential can be empty on a
given segment (see [10: Example 4.1]), so we can not follow directly the methods of subdiffe-
rential calculus and some refinements are needed. Let us also notice that the funcion f: R2 —
R, where f(x,y) = -1y|*/2 - x2 is not convex on the line L = {(x,0)| x ¢ R} but f*is equal to
-® on it. So we have the monotonicity, but fip is not convex (examples where f° does not
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exist can be obtained from this one replacing -x2 by a proper non-convex function ¢: R > R
which does not possess the right derivative).

Theorem 3.1: Let X be a Banaxh space and a, b ¢ X with a # b. Assume that f: X—> Ru {+e0}
is lower semicontinuous. If the implication

X <(a b)Y forall x,y ¢ [a,b]n domf

(3.1)
— limsup "b-2a> s lim inf {V“b-2>
(u, F(u)—=>(x, F(x) (v, F(v)—=>(y, £ )
uedomof, u¥ed F(u) vedomof, v®ed f(v)

holds, then fi[ 5 p) is convex.

Proof: Let us introduce an auxiliary function g on [0,1] by g(s) = f(a +s(b - a)).If fir, p] is
not convex, then there exist 0 < s, < 5, < 55 s 1 such that

S$3- S S, - S
8(sy) > Sr=528(s) + S5 gls3). (3.2)

This implies that g(s,), g(s,) € R and (g(s,) - &(s, ))/(S; - 5> (gls,) - 8(s,))/(s5 - s,). Let x; =
a+s{b-a)fori=1273 Weget

flx,) - £lx,) | flxy) - £lx,)
IIx, - x, Ifxg - x, I 3.3)

Now let us consider the case when f(x,) ¢ R, choose x € [x,,x,) and y € (x,, x,] such that

f(x,) - f(x,)
Ix, = x,|I

f - f

f(x) + Ix - x,l| s f(z) + Mllz - x,|l for every z ¢ [x,,x,]
x, - x,l

f(x,) - fx,)

”xz - -\’3"

f(x,) - f(x;)

fi +
) T -]

ly - x,ll < £(z)+ llz - x,ll for every z e [x,,x ,].

In particular, we have

f(x,) - f(x,)
Ix, - x, 1l

f(x,) - f(x,)

f(x) + lx - x,ll s f(x,) and £(y)+ T, Tl ly - x,ll s £f(x,),

thus the auxiliary functions p and q, where

f(x,)-f(x,) flx,)-F(x,)
ix, - x, i lx, - x5l
f(z) L ZEX, f(2) ,Z%X,

p(z)={ T B L ly -x,ll, z =x,

are lower semicontinuous and dp(z) = 0f(z) = dq(z) for z # x,.Theorem 2.1 applied for the func-
tions p and q ensures the existence of sequences {u,} ¢ dom p, {v,} € domg, {ug} and {vg} such
that '

Jim Cue, plug) = (x, £(x) ' (3.4)
im (v, g% = (15 Y

up e oplu,) and v € 9q(v,) for all k (3.6)
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. . X X plxz) - p(x) _ £(x,) - f(x,)
1 , =2 =
ke N Ty goxll/ % " lix -l Ix, - x,1
. - XpoY 9(x) - y) _ flx,) - fx,)
1 2 .
s NV x -1 Mx -yl M, - I

The last two inequalities, by (3.2), imply lim sup,_, Lug,b-ay > liminf 50 <vg, b - 2>, which,
by (3.4) - (3.6), contradicts (3.1). When f(x,) = +o we can run a proof as before, replacing f
by Fgiven as f(z) = f(z) for z #x, and flz)=aforz= X,, where a is such that (3.2) still holds il

In the view of the above proof, it might seem that instead of fwe can consider the func-
tion g, g(t) = f(ta +(1- £)b) on [0,1]. In this case, we may admit in {3.1) only those pairs (¢, g(t))
for which t ¢ (0,1). However, in some particular situation, this restriction would lead to a false
assertion. For example, let us consider the function f: R = R, where f(t) =1 for t < 0 and f(¢)
=-tY2 for t 2 0. This function is lower semicontinuous but is not convex on the segment
[-1,0], condition (3.1) is violated for x = -1/2 and y = 0. The function g is equal to 0 for ¢ = 0
and to 1 for 0 <t < 1. Since 9g(¢) = {0} for t € (0,1), so (3.1) is fulfilled. It is worth noticing
that if we reduce our considerations to the one-dimensional case, then (3.1) is equivalent to
the monotonicity of the multifunction t - af(¢t) (if wee assume that (3.1) holds for every a,b
¢ R). In fact, if the multifunction is monotone (i.e., for all t,,t, ¢ R, the inclusions ;"¢ df(t,)
and t,"¢ 3f(t,) imply the inequality (¢,* - £")(¢, - #,) 2 0), then

limsup <b-2> s lim sup {t"b-a>

(e, F(N—>(x, £(x) t—>x
tcdomo(f), t% o(F)(¢t) t*co(FXt)
s liminf {t"b-a> s lim inf J{tb-a)>.
t—>y (6 £ >y F(y)
t*co(F)(¢t) tedomo(f), t™c o(FX¢t)

So the monotonicity forces that (3.1) holds, and vice verse, if (3.1) holds, then

sup {1t -6,> s inf el -6,
tcof (1) tyedf(t,)
Thus, in the one-dimensional case, Theorem 3.1 is equivalent to Poliquin’s result ([5]; for an
extension see [4]) which states that a lower semicontinuous function fon R? is convex if and
only if the multifunction df(+) is monotone.
The next theorem deals with upper semicontinuous functions. Unexpectedly, the monoto-
nicity alone is not sufficient for its convexity. We give a proper example after that theorem.

Theorem 3.2: Let X be a Banach space and a,b ¢ X with a + b. Assume that f: X - R u{-}
is an upper semicontinuous function such that the following implication holds:

For every x, <(a,b] < X2 <[a,b] X5 there is an ¥, ¢ [ x,, x,]\{~,} such that
F(R,)-f(x,)  f(x3)-f(x,) -

Boxl Tyl 27 % Ta6) % <Lab] ¥z
=|or 3.7
f(x,)-f(x))  f(x;)-f(R,)

Ix, - x, 1l x5 -3,

flxy) - f(x)  £f(x,)-f(x,)
lx, -, It x5 =,

and X, <[ a,6]1%2 <[ a,b] Xa-

If the implication
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X <[ap1Y ¥ x,yelabladom(-f)

= lim su <-utb-a) s lim inf <{-v%b-a (3.8)
(u, FCuD—>(x,f(x) (v, £(v)=>(y. £(y))
uvedomd(-f), u*ed(-F)(u) vedomo(- F), ved(-f)(v)

holds, then fl[e. b1 is convex.

Proof: Let us introduce an auxiliary function g by g(s) = f(a +s(b - a)) for all s ¢ [0,1]. If
fi[ 5, 5] IS NOt convex, then there exist 0 s s, <5, < 55 5 1 such that

S3 ~ S, Sy =S,
3(52) > 53 - slg(sl) + 53 - slg(ss)'

&(sa) - g(sy) > glss) - g(sz). Let x; = a+s;{b-a)fori=12,3.

This implies that g(s,) ¢ R and

We get S2 7 5 $3 ~ §a
(Nx) - (Alx) | CAlxg) - (-Fxy)
llx, - x|l lxy - x ’

Now, by (3.7), there are X,,%, ¢ [x,, x,;]n dom(-f) such that

GO - CAR,) AR - CAxy)

~
llx, - £, 125 - x

. ~ 3] .
Xy “[a,b)X2<[a,b] X2 <[a,6] X3 and

Repeating he method of the proof of Theorem 3.1 we get sequences {u}, {ug}, {v,},{ve} such
that {u,} and {v;} converge to x e [x,,%,] and y € [¥, x,], respectively, and ug € o(-F)(u,), vie
-F)vy) for every k ¢ N, and

X, - %, (-F)x,) - (-F)(F,)

limsup {uy.
e Nk x

o Xl Tx, - %0
l « N3~ :{12 ('f)(«\'g) - ('f)(?z)
imsup (v,
pii NG PO | Tx, - %0

The last two inequalities are a contradiction to (3.8) @

Let us notice that if a function fis continuous, then (3.7) holds automatically. However,
this assumption can not be dropped when the function is upper semicontinuous. Let us consi-
der the non-convex function f(x} = 0 for x + 0 and f(x) =1 for x = 1, which satisfies only (3.8).
For the time being, we focus our attention on locally Lipschitzian functions. We know that in
this case -0f(x) = o(-f)(x) (see [2: Proposition 2.3.1]). Thus Theorems 3.1 and 3.2 yield the
same condition. Moreover, (3.1) is equivalent to the monotonicity of the multifunction of on
[a b] (see [2: Proposition 2.1.5]). Now, we may say that Theorems 3.1 and 3.2 in the case are
neither more nor less than the "classical” sufficient condition for the convexity (see [7: Pro-
position 7A]).

Finally observe that the relation o(-f)(x) = -of(x) may fail, even when the function is
continuous. However, (3.1) and (3.8) are equivalent in this case, as it will be shown in the next
lemma: But for some classes of functions conditions (3.1) and (3.8) are not equivalent. Indeed,
let us consider the function f: R = R, where f(x) = -x for x € [0,1) and f(x) =0 for x € {1, 2].
Conditions (3.1) and (3.7) are fulfilled, with a2 = 0 and b = 2, but the function fis not convex.
Thus (3.8) is violated since

19 Analysis, Bd. 11. Heft 2 (1992)
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1im inf <-t%,2> =0.
(t,(-FXtN—=>(3/2,(-FX3/2))
t%co(-fX¢e)

A-F)1)= (-2,0] and

Lemma3.3: Let X be a Banach space and f: X—> R a continuous function. Then

lim sup u%p) = lim sup <{-vip
u—>x \ 4
uedomdf, u™eof(u) vedomo(-£), v d(-FXv)
and
liminf Ju%p) = lim inf <-vhpd
u—>x VX
uedomof, u™cof(u) vedomo(-£), v¥ed(-fXv)

foreverype X.

Proof: Let us consider the non-trivial case when p # 0. Let a be equal to the left-hand side
of the first equality and B to the right-hand one. For any £ > 0 we can find sequences {x,}, {t,}
€ X such that

(-fXx,) - (CFXx, +t,p) s

tn

o - ¢ for all n.

Xp,=>x,tp,¥t and
By Theorem 2.1 we can find sequences {v,} ¢ domd(-f) and {v;} < X* such that
vp—>x and v;ed(-flv,), 1in’;1_>§°up <vh,-p> za-cs.

Thus B 2 a, similarly a 2 B. The second equality can be obtained from the first one when we
take -p instead of p B

Below we present a result which can be helpful to prove the convexity of a continuous
function (see, for example, [11]).

Corollary 3.4: Let a,be R, a* b, and f: [a, b] > R a continuous function such that the li-
mit
f(x:1) = lim L(X_”Lfiﬁ
t$0 t

exists for every x ¢[a, bl..If the function f'(-;1) is non-decreasing, then (3.1) holds on every
segment [c,d] C [a, b] and f is convex.

Proof: Assume that for some ¢ <d (3.1) is violated. By Lemma 3.3 for some x,y ¢ [c,d]
with x <(c 4]y we get

a= lim sup Wd-c> > lim inf <{(-vid-c¢) =B
u—>x vy
ucdomf, u®edf(u) vedomd(-f£), v d(-FXv)

We infer the existence of sequences {x},{y,},{t,}.{s,} such that x,, > x, y,, >y, 1,40, 5,V 0
and numbers Me («,B), € > 0 such that, for all n,

f(x,+t(d-c) - fx,) > M+e and (-FXYp +spld - ) - (-F)y,)

t, Sn

2 -M+eg.

The continuity of fforces that there exist X,, € [x,,,x, +t,(d -¢)) and ¥, € [y,,, ¥, *s,(d -¢)
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such that

F(R,;d-c)2M+e and (-fN(P,;d-c)2-M+e

Thus
. M+ M-¢
(R0 2 d—_; 22 f(¥,:1) forall n.

This is a contradiction B
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