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Sufficient conditions for a given function to be convex on a given segment, in terms of upper 
subderivative, are proved. 
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1. Introduction 

Recently, the problem of characterizing an interesting class of convex functions has arisen 
(see [3,91). In the case of R 2, this class consists of, roughly speaking, functions for which the 
limit of directional derivatives lim,,..,,,,, f'(x +),,Y +t,);(p, q)) exists, where (x,y),(p, q) € 1R2 
are given and {(x, l')} c R2 is an arbitrary sequence of points of a given set such that (Xv , ii) 
- 0. The importance of that one can see, for example, in [91, where one find an algorithm for 
calculating a subgradient for a function from this class. We must agree upon that taking out 
"well" behaving convex functions leads to investigations on "bad" one, which may prove diffi-
cult (see [11 -13]). Another motivation for seeking new conditions for the convexity can be 
found in [8: Theorem 3.2], where, loosely speaking, we should ensure that a given function on 
a product set, say on R 2, is upper semicontinuous and convex with respect to the second va-
riable. 

Herein, we provide general sufficient conditions for a function f to be convex on a given 
segment [a, b] of a Banach cpace X (see Theorems 3.1 and 3.2). The basis virtue of them is 
that to obtain the convexity it is enough that, in case of upper semicontinuity, the inequality 

urn s.ip	<x,b - a> :5	urn irif	<y*,b a> x-i'a*s(b-aJ	 y-s.a*t(b-a) 
xcdomfn do  Of, XE c'f(x)	 y€domfndom af,ycaf(y) 

f(x)— 'f( a*s( b-a))	 f(y)—i'f(a+t( b-a)) 

holds for any 0 :5 s < t :^ 1 (see Theorems 3.1 and 3.2 and Lemma 3.3). The conditions encom-
pass the lower and upper semicontinuity case on a Banach space. When f is Lipschitzian it 
yields the monotonicity of the subdifferential, see [1,2,4 - 71. 

Recently, there has been obtained a new result characterizing the convexity of lower se-
micontinuous functions on the whole - space (see [4,51), i.e., a lower semicontinuous function 
is convex if and only if the subdifferential is monotone. The result has been obtained for fini-
te-dimensional spaces (see [41) or reflexive Banach spaces (see [51). In the case when X is 
one-dimensional we compare it with the above condition.
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2. Basic facts on upper subderivativea 

The apparatus of the paper is taken from Nonsmooth Analysis (see [1,2, 7 ]). Below we shall 
summarize those basic facts about generalized derivatives which are used in the sequel. 

Let 1: X- Ru(+oD) be a lower semicontinuous function on a Banach space X. The upper 
subderivative of fat X  X, 1(x) € R, with respect to veXis defined by 

f 1 (x;v) = skip limsti	i	
f(y+tu)-f(y) 

c>o (y,f(y))_(x,Jx)) IIu-vII<c 
t4o 

and the subdifferential àf(x) by 

ëf(x) = {€ XI<x*,v> :5 f(x;v) for all ye 

where <f,v> denotes the value of the linear continuous functional fat v. Let us recall the 
mean value theorem for these two notions. 

Theorem 2.1 [ 10 ] : Let X be a real Banach space, a,b e X, a - b andf: X- Ru {+oD) be lo-
wer semicontinuous and finite at a and b. Then, for every x € [a, b] such that x I* b and the in-
equality

f(b) - f(a)  1(x) +	 llx - bll ^ 1(y) + 1(b) - 1(a)	- bll	 (2.1) lIb - all	 lb - all 

holds for all y € [a, b], there exist sequences { Xk} c X and {x} c X such that 

lim xk = x	and lim sup f(xk) I 1(a) + f(b) — f(a)il - all 
k-0	 llb - all 

X € aI(Xk) V 	and liminf<%,b -a> z- 1(b) - 1(a). 
k-

Throughout the paper for any a, b E X we denote by [a, b] the set (a t(b - a)l 0 :5 r :5 1). 
We write x <[a,b]y if there exist 0 ^ s < t :5 I such that x = a +s(b - a)and y = a + t(b -a). 
Further we denote by domaf the set {x E XI af(x) - }. 

3. Convexity on a segment 

In this section we provide sufficient conditions for lower and upper semicontinuous functions 
to be convex on a given segment [a, b]. Before we do it, let us refer to known facts on convex 
functions. 

From the classical differential calculus we know that the convexity of a real function is 
related to the monotonicity of its derivative. When we use a more sophisticated tool, for 
example, the subdifferential calculus, we still have to do with monotonicity (see, e.g., [7: 
Proposition 7A]). This strongly suggest that the monotonicity of a derivative is essential for 
the convexity. However, it is worth mentioning that the subdifferential can be empty on a 
given segment (see [10: Example 4.1]), so we can not follow directly the methods of subdiffe-
rential calculus and some refinements are needed. Let us also notice that the funcion f: R2 
R, where f(x,y) = - lyl 112 - x2 is not convex on the line L = {(x,0)l x € R} but fis equal to 
-co on it. So we have the monotonicity, but f1L is not convex (examples where 1' does not
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exist can be obtained from this one replacing -x 2 by a proper non-convex function (P: IR - R 
which does not possess the right derivative). 

Theorem 3.1: Let X be a Banaxh space and a, b € Xwith a * b. Assume that f: X-+ Ru {+co} 

is lower semicontinuous. If the implication 

X <[a,bjY for all x,y€ [a,b]n domf 

urn sp (u,b -a>	urn if <v,b -a>	
(3.1) 

(u, f(u))— .(x, f(x))	 (v, f(v))—(y, f(y)) 
ucdomcIf ucc)f(u)	 vc domcf, vc,f(v) 

holds, then "j [a, b] is convex. 

Proof: Let us introduce an auxiliary function g on [0,1] by g(s) 1(a +s(b - a)). If fl[a bJ is 
not convex, then there exist 0 :5 s, < 2 <s3 :^ I such that 

g(s2) > s+- 
S2	 S2 - S1 

53 s g(s1 ) +
	

(3.2) 

This implies that 9(s1 ), g(s3 ) € R and (9(s2 ) - g(SO)/(S2 - s) > (9(s3 ) - 9(s2 ))/(s3 - s2 ). Let x1 
a + s1(b - a) for I = 1, 2,3. We get 

f(x2) - f(x1 )	1(x3) - f(x2) 
11 X2. X j 11	 11X3X211

	
(3.3) 

Now let us consider the case when f(x2 ) € R, choose x € [x 1 , x2 ) and y€ (X21 X11 such that 

f(x) 
+ f(x2) - f(x1) 

lix11	
) 

ilx2 - X1 11 1 1 X2- x1Il :5 1(z) 
+ f(x2) - f(x1 

liz -x2 ll for every z € [x1 ,x2 ) - x2  

f(x2 ) - f(x3 )	 f(x2) - f(x3) 
1(y) +

ilx2 - x31I ily
 - x2 li :5 1(z) 

+	1x2 - X3 11
liz -x 2Ii for every z [x3,x1. 

In particular, we have 

+
f(x2) - f(x1)	

:5

+ f(x2 ) - 1(x3) 
lix - x 2 li	f(x2) and 1(y) 

"X2 - xli	 11X2 - X.,11Ily - X 2 ll ^ f(X2)1 

thus the auxiliary functions p and q, where 

f(x2) -f(x1)  I 
p(Z) 	llx2-x1li ilx-x2 11,z=x2	_If(Y)+f2)3)llyX2ii, zx2 

and q(z) -	iiX2 x3 

1( 2 )	 ,zx2	 11(z) 

are lower semicontinuous and Op(z) Of(z) = 1q(z) for z x2 .Theorem 2.1 applied for the func-
tions p and q ensures the existence of sequences {Uk} c domp, {Vk} c domq, {u} and such 
that

lim ( Uk, p(uk)) = (x, 1(x))	 (3.4) 
k-

lim (v,q(v)) = (y, 1(y))	 (3.5) 
k-+co 

u	ap(uk) and v € aq(v) for all k	 (3.6)
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limsup(u;,	\	p(x2)-p(x) = f(x2)-f(x1) 
k--^-, \	IIx-xlI/	IXXII	11X2 - x111 

1imsup<"v, 
x2_ Y	

2:
q(x2)-q(y)	f(x2)-f(x3) 

k-co \	Ix, -yll 
\>	

IIx2-yII	11X2 - X311 

The last two inequalities, by (3.2), imply urn sup k <UZ, 1, -a> >  urn inf,.<vZ, b -a>, which, 
by (3.4) -(3.6), contradicts (3.1). When 1(x 2 ) = +co we can run a proof as before, replacing! 
by ?given as ?(z) = 1(z) for z *x2 and ?z) = ot for z x2 ,where a is such that (3.2) still holds I 

In the view of the above proof, it might seem that instead of f we can consider the func-
tion g,g(t) = f(ta +0 - t)b) on [0,11. In this case, we may admit in (3.1) only those pairs (t,g(t)) 
for which t E (0,1). However, in some particular situation, this restriction would lead to a false 
assertion. For example, let us consider the function 1: R - R, where 1(t) = I for t < 0 and 1(t) 
= _tL'2 for t ^t 0. This function is lower semicontinuous but is not convex on the segment 
[-1,0], condition (3.1) is violated for x = -1/2 and 	0. The function g is equal to 0 for t = 0 
and to 1 for 0 < t -1 I. Since cg(t) {0} for t € (0,1), so (3.1) is fulfilled. It is worth noticing 
that if we reduce our considerations to the one-dimensional case, then (3.1) is equivalent to 
the monotonicity of the multifunction t— 6f(t) (if wee assume that (3.1) holds for every a,b 

R). In fact, if the multifunction is monotone (i.e., for all t,, t2 R, the inclusions t: E c)f(t1) 
and t2* E 6f(t2 ) imply the inequality (t - t)(t1 - t2 ) a 0), then 

urn stip <t,b-a> :5 urn siLip <t,b-a> (t,f(t))-'(x,f(x)) 
tcdomc'(f), tca(f)(t)	 tc(fXt) 

s lirri irif <t,b -a> :r	liryi irif <t,b -a>. 
t-+y	 (t. f( t))-( , , f(y)) 

tc a(f)(t)	 tcdom(f), t c 06' X t) 

So the monotonicity forces that (3.1) holds, and vice verse, if (3.1) holds, then 

sup <t t, - f> :5	inf <t,t1 -t2>. 
t1 cf(t1 )	 t2càf(t2) 

Thus, in the one-dimensional case, Theorem 3.1 is equivalent to Poliquin's result ([5]; for an 
extension see [41) which states that a lower semicontinuous function Ion IR' 1 is convex if and 
only if the multifunction of(') is monotone. 

The next theorem deals with upper semicontinuous functions. Unexpectedly, the monoto-
nicity alone is not sufficient for its convexity. We give a proper example after that theorem. 

Theorem 3.2: Let X be a Banach space and a,b E .X'with a $ b. Assume that 1: A'- R u( - co) 
is an upper semicontinuous function such that the following implication holds: 

For every x,<[.b] < X2 <[.b] x3 there is an	e [x1,x3]\{x2} such that 

- IC 1) !( 3 ) - f(X2) 
f(x2) -f(x 1) f(x3)-f(x2)	

II2-x1II > "X3 _X 21 1
and x1 <[a,bj X2 <[a,b]X2 

11X2 - X , 11II X X21I	
=* or	 (37) 

f(x2) - f(x 1) f( X3 ) - f2) and X2 <La,bJ2<[a,bjX3. 11x2 X , 11	11X3-211 

If the implication
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X <[8,bJY ' x,yE[a,b]ndom(-f) 

>	urn	t.1D	<-u,b -a> s	liri-i irif	<-v,b -a>	(3.8) 
(u, f(u))-(x,ftx))	 (vf(v))-.(,f(y)) 

ucdomc(-f), uc.(-f)(u)	 vedoma(- f),v ca(-f)(v) 

holds, then i[a, b] IS convex. 

Proof: Let us introduce an auxiliary function g by g(s) =f(a + s(b - a)) for all s c [0,1]. If 

"I[a,bJ is not convex, then there exist 0 s s < s2 < s3 :5 I such that 

S2 ) > -:- g(s) + 2 g(  

	

This implies that 8(s2 ) € IR and ( s2) g(s j )	9(s3) - 8(s2) Let x = a +s .(b -a) for i = 1,2,3. s2 -s1	s3-s2 
We get 

(-f)(x) - (-f)(x2 )	(-f)(x) - (-f)(x3) 

	

11X2 - x i ii	 IiXa - X 211 

Now, by (3.7), there are 2' A 2 E [x 5 , x3 ] n dom(-f) such that 

X1 <[a,b]Xa < L ab] 2 < [ a,bJ X3 and	Xx1) - (-f)( 2) > (-)(2) - (-f)(x3) 
11 X2 - .' 1 iI	 iL'3 - Xzii 

Repeating he method of the proof of Theorem 3.1 we get sequences { Uk}, {u}, { vk},{ V } such

	

that { Uk} and {vk} converge to x E [xi , 21 and y E [, x31, respectively, and u	a(-r)(uk ), v 
ô(-f)(vk ) for every k e N, and 

- 	• x	\	(-f)(x 1 ) - (-f)(2) l lmsupuk ,	-	) a	 - 
k-*co \ 11x 5- x2 11 /	IIx - x 2 ii 

lim sup /;, 
X3 A2 )

	
(-f)(x 3) - (-f)() 

k-->— \ Iix 3 -x2 ii IiX3	2ii 

The last two inequalities are a contradiction to (3.8) I 

Let us notice that if a function I is continuous, then (3.7) holds automatically. However, 
this assumption can not be dropped when the function is upper semicontinuous. Let us consi-
der the non-convex function 1(x) = 0 for x * 0 and f(x) = 1 for x = 1, which satisfies only (3.8). 
For the time being, we focus our attention on locally Lipschitzian functions. We know that in 
this case -àf(x) = c(-f)(x) (see [2: Proposition 2.3.1]). Thus Theorems 3.1 and 3.2 yield the 
same condition. Moreover, (3.1) is equivalent to the monotonicity of the multifunction f on 
[a, b] (see [2: Proposition 2.1.5]). Now, we may say that Theorems 3.1 and 3.2 in the case are 
neither more nor less than the "classical" sufficient condition for the convexity (see [7: Pro-
position 7A]). 

Finally observe that the relation a(-f)(x) = -c)f(x) may fail, even when the function is 
continuous. However, (3.1) and (3.8) are equivalent in this case, as it will be shown in the next 
lemma: But for some classes of functions conditions (3.1) and (3.8) are not equivalent. Indeed, 
let us consider the function f: R - R, where 1(x) = -x for x € [0,1) and 1(x) = 0 for x E [1, 2]. 
Conditions (3.1) and (3.7) are fulfilled, with a = 0 and b = 2, but the function f is not convex. 
Thus (3.8) is violated since 

19	Analysis. Bd. II. Heft 2(1992)
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= (-,O] and	urn irf	<- t, 2> = 0.
(t,(-fX:))-3(3/2,(-fX3/2)) 

rc)(-fXt) 

Lemma3.3: Let X be a Banach space and!: X- R a Continuous function. Then 

urn SLAP <u',p> =	urn sp <-v,p> 

	

U^x vucdomaf, ucf(u)	vcdoma(-f),vcc(-fXv) 

and
urn irif <u',p> =	urn if <-v',p> 

	

v-- .),.
xucdomàf, ucaf(u)	vEdom)(-f), vc,(-fXv) 

for every p E X. 

Proof: Let us consider the non-trivial case when p * 0. Let a be equal to the left-hand side 
of the first equality and 13 to the right-hand one. For any E > 0 we can find sequences {x}, I t ,,) 
C Xsuch that

(-f)(x) - (-f)(x+t p) 

	

X" - x, t1 'l t and	 a a - E for all n. 
tn 

By Theorem 2.1 we can find sequences {vn} c domà(-f) and {v} C X such that 

v - x and v, € a(-fXv), lirristip <v, -p> a a - 

	

Thus 13 a a, similarly a	The second equality can be obtained from the first one when we 
take -p instead of 61 

Below we present a result which can be helpful to prove the convexity of a continuous 
function (see, for example, [iii). 

Corollary 3.4: Let a, b e R, a 4' b, and!: [a, b] - R a continuous function such that the Ii-
mit

!(x; 1) = lim f(x + t) - f(x) 
t4'O 

exists for every x €[a, b]. If the function f'( . ;l) is non-decreasing, then (3.1) holds on every 
segment [c, d] C [a, b] and fis convex. 

Proof: Assume that for some c <d (3.1) is violated. By Lemma 3.3 for some x,y E [c, d] 
with x <[C.dJyWe get 

a	urn stip <u,d-c> >	1irr irif <-vd-c> (3. 
v—*y 

ucdomc'f, uc.f(u)	 v€doma(-f), v€a(-fXv) 

We infer the existence of sequences {x}, { y,,}, { t,}, {s, 3} such that x,1 - x, y,, -. y, t,3 l0, s,, 4' 0 
and numbers Me (a,(3), e > 0 such that, for all n, 

f(x+t(d - c)) - f(x) 
^: M+E and (-!Xy +s(d-c))-(-f)(y) 

tn	 Sn 

The continuity off forces that there exist k. [x,x +t(d -c)) and y,1 E [y,y, +s(J - c))
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such that 

f'(n;d-c)?-M+t and (-f)'(Yn;dc)2: -Mt 

Thus

M+c	M- E af'(Yn ;l) for all n. dc 
This is a contradiction I 
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