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We prove an asymptotic estimation for the length spectrum with certain weights for a compact hyperbolic 
space form. Thereby the Selberg trace formula and a Landau difference method is used. 

Key words: Length spectrum, hyperbolic space form, Selberg trace formula 

AMS subject classification: 11F72, 11M06, 35Q05, 58F19, 58F25 

1. Introduction 
Let G be a properly discontinuous group of orientation preserving isometries of the n-dimensional 
hyperbolic space H5 of constant curvature —1 without fixed points (with the exception of the 
identity map id) with compact fundamental domain. We consider the related Killing-Hopf space 
form V = H5/g. Let fl be the set of non-trivial free homotopy classes of V. In every class w E fi 
there lies exactly one dosed geodesic line. We denote by 1(w) and v(w) its length and muliplicity, 
respectively. The parallel displacement along a closed geodesic line induces an isometry of the 
tangent space in every point of that geodesic line with the eigenvalues 01 (w),. . . ,/35_ i (w), 1 
with I/3(w)I = 1 (i = 1,..., n - 1). Let e(w) be the p1h elementary symmetric function of the 
,(w) (i = 1,... ,n - 1), and put eo(w) = 1. Further on, we introduce the weight 

n-i 
a(w) = V(.) 11 (e'() - 

with N = (n-1)/2. Let S, denote the p-spectrum of the Laplace operator A = dö + M. Thereby 
we have used the differential operator d and the codifferential operator 6 = (—l)"" * d* for 
differential p-forms, where * denotes the Hodge dualization. Let d(j) and d(p) denote the 
dimension of the eigenspaces of closed (do = 0) and coclosed (öa = 0) eigenforms a of A with 
eigenvalues p, respectively. 

Our results are based on the Selberg trace formula as a duality statement between the p-
eigenvalue spectrum and the geometric spectrum of V (expressed by 1(w), v(w), a(w) and e,(w)). 
We will recall that formula in Section 2. For a> 0 we define E(t, a) = f eoa/8 ds. In Section 5 
we will give estimations for the length spectrum with weights e. The main result will be 

Theorem A: We can estimate the sum 

P(T) =	ep(w)	for T -. oo 
.b i(-):ST 

24*



by

O(TN	12 /lnT)	 for 1 <p < n-2 

- E(t,n—l)+	E	4(jz)E(t,N+s/N—p) Pp(T) _	 pESp 
•	 O<j<N2(2n-1)/n2 

+ O(TN ,P_/lnT)	 for pO,n-1 

with N =	cosh t = T, T> 1. We get the some estimation if we replace P(T) by 

Pp* (T)=
wEn 

coh q.,)^T,.(.,)=1 

GiNTHEa [12] has treated the case p = 0 based on a Poisson formula (cf. the literature 
quoted there). The introduction of Pp(T) as an appropriate generalization of Po(T) is motivated 
by the Selberg trace formula (cf. Theorem 1). Indeed, if we exchange the 0-eigenvalue spectrum 
by the p-eigenvaliie spectrum on one side of the Selberg trace formula, on the other side there 
appear additional weights e(). It seems natural that we get the same error estimate for all 
p (as a generalization of [12]). Of course, the results for p = 0 and p = n - 1 are similar. 
But it is interesting that for 1 < p n - 1 the weights e(t) (which are in contrast to the 
case p = 0 no longer necessarily positive) induce a growth limitation of P(T) for T - oo in 
the sense that there is no leading term of the asymptotic development larger than the error 
term. In order to prove Theorem A, we use a Landau difference method and a solution of an 
Euler-Poisson-Darboux equation as a special function which we can use in the Selberg trace 
formula. We will see that in some cases these functions are better adapted to the geometric 
situation than functions which are usually taken in trace formulas when a Selberg zeta function 
is considered. In Section 6 (Part H) we will introduce a Selberg zeta function in a natural way 
with respect to our version of the Selberg trace formula. This zeta function is well known for the 
case n = 2,p = 0. GANGOLLI [9] treats zeta functions of Selberg's type for compact space forms 
of symmetric spaces of rank one from the viewpoint of representation theory. To see differences 
to our treatment one should compare the zeros and poles of the analytic continuation of the zeta 
function to the whole complex plane. The Selberg trace formula bears a striking resemblance 
to the explicite formulas of prime number theory. The Selberg zeta function is analogous in 
many ways to the classical Riemann zeta function. This enables us to study the asymptotic 
behaviour of the p-spectrum using techniques of analytic number theory. As a consequence of 
the well-known Weyl type asymptotic formula (cf. [2, 28] and Section 4) we have 

d (iz) - nT"	for T —+oo	 (1) 
pESp 

with (ti-1\ vol V 'p1 
= (4)/r (j)	and	N = 

2	 (2) 

We will prove (in Part II) the 

Theorem B: The error term 1(T) defined by Alp(T) = nT' + 1Z(T) (T> 1) satisfies 

IR,(T)I = 0 (T''/1nT).
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HnHAL [14] has given this estimation in the case n = 2,p = 0. Weaker results for more 
general spaces were proved by GANGOLLI [8] and Ivan [17] for n = 0. HEJRAL [14] 
remarked (for n = 2) that it seems hard to improve the estimation of Theorem B. The analogy 
between the Selberg and the Riemann zeta function is strongly apparent in our proofs. if 
one were able to improve the T'/hiT - term in Theorem B, there would presumably be 
a corresponding improvement in the estimation arg((1/2 + iT) = O(In T/ lnln T) for the 
R.iemann zeta function, assuming the Riemann hypothesis is valid. But no such improvement is 
known. 

2. The Selberg trace formula 

We begin by recalling the Selberg trace formula for the p-spectrum of compact real hyperbolic 
space forms. Selberg was first led to the trace formula around 1950 - 51. The idea of taking 
the trace seemed quite natural, since it looked like it would be too difficult to get hold of the 
individual eigenfunctions of the Laplace operator (or other related operators). Trace formulas 
bear a very striking resemblance to the so-called explicite formulas of prime number theory. 
Selberg has stated that his discovery was motivated by the classical theory of automorphic 
forms, cf. [14]. 

For further information about the historical development and about modern topics, we refer 
to [4, 9, 11, 13, 14, 18, 21, 24, 25, 27]. The general approach to trace formulas by means of 
analytic number theory begins by the development of the relevant trace formula as a duality 
statement (in our case between the p-eigenvalue spectrum of the Laplace operator and the 
geometric spectrum). Then one has to polarize the trace formula so as to define a natural zeta 
function with good properties under analytic continuation. With this background one is able to 
exploit the analogy with analytic number theory when formulating the deeper results. 

In [5] the trace formula for the p-spectrum for odd n> 3 was given in the context of repre-
sentation theory without details of the proof. In [21] we have used geodesic double differential 
forms, mean value operators for differential p-forms and Euler-Poisson-Darboux equations in 
order to prove the trace formula which we will state in Theorem 1. The used solution of a spe-
cial Euler-Poisson-Darboux equation seems to be very natural for the treatment of hyperbolic 
space forms. We will see later on that in some cases these functions are better adapted to the 
geometric situation than the functions which are usually taken in the trace formulas when the 
Selberg zeta function is introduced. In other cases it is more appropriate to use functions which 
are natural with respect to the tools of analytic number theory. By the telescopage theorem of 
McKean and Singer (cf. [2]) we have d(p) = d" 1 Qi) for E S,\{0} and p = 0,1,.. . , ii - 1. 
The dimension of the space of harmonic p-eigenforms is the pth Betty number B, of the space 
form V. A short calculation gives the following equations for the weight u(w): 

n-I 1	 - =	(W)e''l(w) jI (i	 I	'	 (3) 
3=' 

1	n-i 
c7(IJ) = v(w)2N fl (cosh l() - Re 3(flh/2	 (4) 

j=1 

Now we can state the Selberg trace formula as a duality between the eigenvalue spectrum and 
the geometric spectrum. 

Theorem 1 (Selberg trace formula):	Let h(r) be an analytic function in the strip 
urn r I < N + S with N = (n - 1)/2, 0 < S < 1/2 , which is even, h(r) = h(—r), and satisfies



	

Ih(r)I :5 A( 1 +I rI)* By the help of the Fourier transformg(u) =	h(r)e'"dr of h(r)
we can state the truce formula 

d( 1u)h (rp(1i)) = vol V(5, g) + E l(w)a()e()g(l())	 (5) 
ESp	 wEO 

for p=O,...,n—1 with r(jh)= tJi—(p—N) 2 , where 

N 
f -	 H (r2 +u2 ))h(r)dr	 for n odd 
o	jp-N 2(')	

{	

( 

(S,g) 
= (4	 N )n/2r(n/2)	

f ( H (r2 + u2)	
(6) 

)h(r)r tanh(r)dr for n even. 
o	,=I/2 

.^Lp-NI 

Thereby we have used N = n 2 1 and 

- { 

d(1u)	 for p > 0 
- (-1)P(B0 — B1 + ...+(-1)B)+ K,, for i = ü 

with

K - I V for  ^: n/2 (n even) 
1 0	 for the other cases. 

Further on, vol V denotes the volume of the space form V. 

3. Euter-Poisson-Darboux equations 

We will use the uniquely determined solution z(t, A, j, n) of the Euler-Poisson-Darboux equation 

- (n - 1)2\ 
(+Acothi.++	

4	
)z(tA/Ln)=0	 (7)

for A > 0 with the initial conditions 

z(O,A,,n) = 1,	z(t,A,,i,n) 1t=o = 0.	 (8) 

We need this function in our treatment of mean value operators for differential forms in the 
hyperbolic space H (cf. [21]). We can express z(t, A, jz, n) in terms of the GauB hypergeometric 
function F:

 1	1	A+1 1—cosht \ fcosht + i T 

2	)	 2	) 

with

N=!!, X(1L)=V'N 2 ,s for p:5 N2 and X(tz)iv'i_ N2 for t>N2. 

For our purpose, it is more convenient to use 

Z(T,A,p,n) = sinh 2 ' t z(t,2A,j,n)	 (10)



with
T=cosht (11) 

instead of z(t,A,p,n). In our former paper [21] we have expressed the results in terms of 
z(t,A,p,n), but it is quite obvious how to transform the basic equations, which we will recall 
here. The Euler-Poisson-Darboux equation (7) can be written as 

((T2 - 1)	+ (3— 2A)T + (p + - 1) 2 - N 2)) Z(T,A,p,n) = 0.	(12) 

It valids Z(1,A,p,n) = 0 for A > 1. The recursion formula 

A + 1,,u, n) = (2A + 1)Z(T, A,p,n)	 (13) 
dT 

plays a key role when we use a Landau difference method in order to prove results about the 
length spectrum. Notice that

T 
Z(T,A2,p,n) =	

2A2 
1 9 A2 —	J (T— S)Aa1 Z(S,A1 ,p,n)dS	( 14) 

B(A 1 +A1) 1 

for A2 2! A1 + 1, where B denotes the Beta function. if we use Z(T, A, p, is) in connection with 
the Selberg trace formula, it is useful to write the special case A 1 = 0 of the last equation as a 
Fourier transformation:

2_1 foo Z(T, A, p, is) = 	{T - cosh	e' dr	 (15) 
B(l/2,A) 

with

{8}—{ 
3A for s>0 

- 0	for s<0 
and	 ______ 

_f /
_
i—N 2	for p>N2 N —a' 

s/N2—pi for p<N 2 ,	T 

If we replace h(r(jz)) and g(1()) in Theorem 1 by B( 1/2, A)Z(T, A, p + N 2 - (p - N) 2 , n) and 
{2(T - cosh 1())}', respectively, we get the formula we originally deduced in [21] in order to 
prove the Selberg trace formula. We use A > is in order to ensure absolute convergence of the 
left-hand side of (18) as a consequence of 

IZ(T,A,p,n)I < c TA (14 - N 2 ) 2 for p > N 2 + o, CO > 0.	(16) 

Note that the constant c is independent of T and A. Further on, we will need the equation 
( sinh(N2_pt)/N2_p	for 14<N2 

Z(T,1,p,n)=	______	_	for p=N 2	 (17) 
I. sin(-,/p—N2t)/s/p

__
— 

___
N 2	for p>N2 

with T = cosh t. In the next theorem we will state the mentioned version of the Selberg trace 
formula. 

Theorem 2: For A > o,T > 1 we have 

d;(14)Z(T, A,p + N 2 - (p - N) 2 , is) 
,sESp

1 

= Q(T, A,p) + F(A + 1/2) 2	1()u()e() [T - cosh 1(w)]A_1	(18) 
"En

cosh	)!ST



with

Q(T,A,p) 
= (;1 )vo1 vN__r(._u)r(A+)

(_1)' /2r(n/2)	2r( - N + u) 
-i X	(, - N)2 - (N - v)2)) (2(T - 1))1+u.	(19) C=O 

The sum on the right-hand side of the equation (18) is finite in contrast to the general 
situation in Theorem 1. 

4. Basic estimations for the p-eigenvalue spectra 
Since our version of the Selberg trace formula only involves that part of the p-eigenvalue spectrum 
which corresponds to the coclosed eigenforms of the Laplace operator, we also use this partition 
of the p-spectrum if we exploit basic asymptotic formulas. By the Telescopage theorem of 
McKean and Singer (cf. [2]), it is not difficult to check that it is sufficient to use the coclosed 
part of the p-spectrum. We define 

N9(T)=	E	dt) (20) 
MESp,14<T 

and start with the well-known Weyl asymptotic formula 

N9(T)	/2'	() vol V T'2	for T - oo. (21) 

Using (21), we immediately see (1). By the Selberg trace formula we also get the well-known 
formula for the Euler-Poincaré characteristic x(V) of the orientable space form V in the case of 
even n:

X(V) = (_1)n/2,±+1)/2r(!i-f) vol V. (22) 
Therefore

A(9(T)	(_i)n/2(fl; 1) r(n+ l) X(fl . (23) 

The equation N9(T) = Q(T"/2) implies in the usual way by partial integration 

V	dp(p)j	- -i	0 (T'V2_ )	for s < n/2 
-	

f 24 
pES,O<<T	 1 0 (In T)	for s = n/2 

d(, -3	=	0(T' /2- )	for 3 > n/2. (25)

5. Estimates for the length spectrum 
5.1. Difference operators for spectral functions 
In order to get results about the length spectrum (for p = 0, n = 2) HEJHAL [14] has used the 
fact that the Selberg zeta function is analogous to the classical Riemann zeta function (cf. (26)) 
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in many ways. Thereby methods of analytic number theory are applied, and the train of thought 
is quite long. We will reach the desired result more direct if we start with the Selberg trace 
formula in the version of Theorem 2. We use a Landau difference method which already was 
used in the case p = 0 by GUNTHER [12]. We begin with the definitions (cf. [12] for p = 0) of 
the spectral functions 

P(T) =	e), P(T) =	 e,()	 (26) wen	 wen 
co.b 1(..)<T	 oh I(..)<T*..)=1 

and
Gp,m(T) = E e,,() 1(i)	

r(m1+ 1) [T - cosh l( , )]m	 (27) wen
c.h I()T 

for p=0,1,...,n—1 with m=0,1,2.... We remark that the sums are finite for each fixed T. 
For a function F from R into an arbitrary vector space we use the difference operator 

(VF)(T) = >2(_1)m_P 
(M)

F(T + PS) with S = T",a € (0, 1).	(28)

We obtain  
Gp,m(T)j 

j ...j 
Gp,o(Ti )dTi ... dTm_ i dTm.	 (29) 

It will be useful to consider more generally 

F. (T) = 
fT 1 . . .j F(Ti )dTi . . .dTm_ j dTm 

for an integrable function F from R into an arbitrary vector space. 

Lemma 3: It holds

T+STm+S T2+S 

	

(VFm)(T)SmF(T)r I J	J [F(Ti )F(T)]dTi ... dTm_ i dTm	(30) 

T+ST,,+S T2+S 

	

(V,Gp,m)(T) - 5" Gp,o(T) = I J	J [Gp,0(Ti ) - G,o(T)] (IT1 . . . dTm_i dTm. (31) 

Proof: The first assertion follows from 
+S T+S	 +S 

(V,,Fm)(T)= 
1,	/	...J

J2
F(Ti)dTi...dTm_idT,n.	(32) 

JTm 2 

By using F(T) = G,o(T), we get the second onel 

We will use Lemma 3 in a situation, in which we have some 'a priori' knowledge about 
F(T1 ) - F(T) for T1 € [T,T + mS] as well as information about (V,Fm)(T) in order to get a 
result about F(T) (cf. [12]). The following lemma supplies us with such information.



Lemma 4: For T1 > T we can estimate 

IG,o(Ti ) - G,o(T)I :5	l()a(w) (fl; I) 
< ((p 1 ) (Go,o(T1 ) - Go,o(T)).	(33) 

T<o.h i(..)<Tj 

Proof: Using the definition of Go(T), we find that 

G ,o(T1 ) - G,o(T) =	e9(w)l()a(). 
en 

T<c.h I(..)<Tj 

The lemma follows immediately U 

5.2. Application of the trace formula 
We will use the Selberg trace formula in order to get an estimation of the spectral function 
G ,o(T). More precisely, we can state the following proposition as the main result of this sub-
section. 

Proposition 5: We obtain the following estimations: 
(i) For l < p < n — 2 we have

IG,o(T)I = o (Tm_12/2n)) 

(ii)Forp=O and p=n-1 we have 

	

G,o(T) - 2	E	d;(,i)sinh (/N 2 - i t//'N -	= 0 (T_1)2/(2)). 
'ESp 

We will return to the proof of Proposition 5 at the end of this subsection. We remark that 
we would have much more problems if the right-hand side of equation (27) would be an infinite 
series. We now apply the Selberg trace formula in the version of Theorem 2 and get 

Lemma 6: We have 

	

1/2	

(AESp

(p)Z(T,m+ l,p+ N 2 —(p— N)2n)—Q(T,m+ l,p) Gprn(T)r(m + 3/2)  

The series on the right-hand side is absolutely convergent for m n as a consequence of formu-
lae (16) and (25). 

The case m = n is of special interest. We define 

Hp,rn(T) =
	

2' -	d)Z(T,m+ l,i+ N2 —(p— N)2 ,n)	(34) 
ESp



and
Rp,m(T) = Gp,m(T) - Hp,m(T).	 (35) 

Next we need information about	in order to prove Proposition 5 by the help of Lemma 3. 

Proposition 7: The following statements are true: 
(i) We have

H,o(T) = 2 dp*(,, )
sinh (v'(p - N)2- p t) 

uESp 
"5(p—N)2 

with T = cosh t. The following estimations hold with a = (n + 1)/(2n): 
(ii) I(VH,)(T) - T H,o(T)I = O(T'W) 

(iii) I(VR,,)(T)I = O(T_1+!W) 
(iv) I(VG9,)(T) - T' H,o(T)l = O(T 1 l).	 ___- ____ 

If p = (p - N)2 E Sp , we understand that sinh (./(p - N)2 - p t) //(p N)2 - p = t. 

Proof: By virtue of (17) we get (i). The equation 
IT IT" ...IT2

H,(T) =H,,,0(T1 ) dT1 . .. dT_ 1 dT, 

immediately follows from the recursion formula (13) for Z(T,A,p,n) and from the definition 
(34). By (29) and (35), we obtain

	

T T.s	Ta 
Rp,n(T)=J J ...J Rp,o(Ti )dTi ... dTnidTn. 

1	1 

Using F(T) = H ,o(T), a look at (30) for n = m shows 

T+ST+S T3+S 

	

(VH,)(T) = S' H(T) + I I	I [H ,o(T1 ) - II ,o(T)] dT1 . . . dT_ 1 dT. (36) 

Starting with (i), a simple application of the mean value theorem shows 

- H ,o(T) = O(T'_ l +a )	 (37)

for Ti € [T,T + nTa ] . Using (36) it follows that 

I(VH , )(T) - T' H ,o(T)J = O(TN_l+(t.)0).	 (38) 

The assertion (ii) of the Proposition follows at once if we use a = (n + 1)/(2n). It will turn out 
that this value of a is the optimal choise if we compare (38) with the estimations used for the 
proof of assertion (iii). 

In order to get information about	we break up Rp,n into contributions 

1/2 

2	 (39) r(n+)	MESp
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and
RL'(T) = R(T) - R , (T)	 (40) 

with b € (0, 1). We use (32) with F(T) = m = n and get 

T+S T+S	 +S 
(v:R)(T) 

= f IT0	
fi."
 

R',0(Tj )dT1 . . 

The mean value theorem implies (VR' , )(T) = SRL,O(T) with T € [T,T+ nS],S = Ta . Of 
course, T depends on T and a. By using (16), (24) and (39), we obtain 

1	
^ c"T IRL,0(T)I ^ • 	(p - N)2]1/2 

pESp 

(pN)2<<(T 

and thereby
l(vR,)(T)l = O(r+b').	 (41)

We define
Q# (T,n+ l,p)=	

"Ti!2

r(n+ ) 2Q(T,n+1,p). 

To estimate (VRL')(T) we exploit definition (28): 
n -\ 

(VR',)(T)j	I ) l(R',)(T + VS) + Q#(T + i'S, ii + l , p)l + l(vQ# (., n + 1,p))(T)I. 
&'=O 

Now we are using (16):

IZ(T,n + 1, it, n)I :5 c#T'[1i - N2]T)l'2 

By (19) we see that Q(T, n+ 1, p) is a polynomial of degree n - IN - p1 in T. Therefore the degree 
is at most n. Using again the mean value theorem, we get I(VQ( . ,n+ 1,p))(T)I = O(T"). By 
using Lemma 6, (34), (35), (39) and (40), we obtain 

	

IR(T+ vS)+Q#(T+.uS,n+ l , p)I :5 ctT	 (i)(i - (p - N)2)± 
UESp 

(p_N)2<u,Tb.(M 

We apply (25) and get as an immediate consequense 

	

b( -	 a I(vR)(T)I = o (T + 2 2 ) + 0 (T).	 (42) 

We compare (38), (41) and (42) and get the optimal choise b = 2(1 - a), a = (n + 1)/(2n). 
Thereby the estimation (iii) is an immediate consequence of (40) - (42). The assertion (iv) 
follows from (ii), (iii) and (VG9, )(T) (Van 	+ (V an  

As we have mentioned above, Proposition 7/(iv) gives us information about the first term 
of the left-hand side of equation (31) of Lemma 3. With the help of the following Propositions 8 
and 9 we will consider the integrand appearing in equation (31). 

Proposition 8: We get the estimation Go ,0(T) = Ho,o(T) + 0 (T(m_1)2/(2))



Proof: The functions
Go,o(T) =	E 1(w) o.')	 (43) 

wEn
cosh l()!5T 

and
Ho,o(T) = 2	f(,)sinh(VN—j, t)	 (44) 

,ESp,p<N3 

are monotonidy increasing. We use (32) with m = n, F = R0 ,0 = G0 ,0 - H0,0 and get 
IT+S fiTn+S	,T2+S 

	

(vR0, )(T)
=  	

[G0,(T1) - Ho,o(T1 )]dT1 . dT,. 1 dT. 
 ' 

The monotony of the functions G 0 ,0 and H0,0 implies 

Go,o(T) - Ho,o(T + nS) S(VR0,)(T)	 (45) 

and
S(VRo,)(T) :5 Go,o(T + nS) - Ho ,0(T).	 (46) 

By (37), it follows that
Ho,0(T + nS) = 1Io,o(T) + O(T N_l ) .	 (47) 

Using Proposition 7/(iii), (45) and (47) we get 

G0,0(T) :5 H ,0(T) + O(TN_a) + 

We use a = (is + 1)/(2n) as above and get 

Go,o(T) :5 Ho,o(T) + 0(T_1)2I'(2). (48) 

If we use the transformation T - T# = T + nTa and analogous considerations starting with 
(46) instead of (45), we get

Go,o(T) ^! Ho,o(T) + 0(T(n_1)2/(2n)).	 (49) 

The equations (48) and (49) complete the proof a 

Proposition 9: For T1 E (T,T + nS) we get IG,o(Tj) - G,o(T)I = 0(T(?1)2/(2m)). 

Proof: Using (37) again, Proposition 8 implies Go,o(Tj) - Go,o(T) = O(T(n1)2 I(2Th)) for 
Ti E (T,T + nS). The assertion follows from the application of Lemma 4. 

Proof of Proposition 5: By (31) with a = (n + 1)/(2n), Proposition 7/(i),(ii),(iv) and 
Proposition 9 we conclude that 

	

—2	d.sinh(/(i	N)2 - t) = O(Ti). 
#ES,1'<(p—N)2	 \./(P - N)2 - /4 

By using  
sinh((p—N)2—ut) =o(T 

2" )



for p :5 (p - N)2 if 1 p n - 2 and for p ^! N2(2n - 1)/n2 if p = 0, n - 1, we comlete the 
proofs 

We want to remark that we have used a similar version of this Landau difference method in 
[22, 23] to get results about the asymptotic behaviour of double p-form valued kernels of mean 
value operators for differential p-forms. 

5.3. Proof of Theorem A 

The aim of this subsection is the proof of the spectral estimates of Theorem A with the help of 
Proposition 5. Before we can reach this goal, we still have to consider another spectral function. 
We define

G; (T) =	(coshN 1(w)) a(w)e(w).	 (50) 
Zen 

cosh ((T 
For a > 0 we introduce E(i, a) = f e°'/s ds. It is well known that 

at 

E(t,a)	--	for t - oo.	 (51) 
at 

The asymptotic behaviour of the spectral function	is described by 

Proposition 10: Using T = cosh t, we obtain the asymptotic estimate 

O(TN+ i/lnT)	____
 for l <<pn-2 

2	E	d(p)E(t, N + yN2 - G;(T) 

= {	

uESp 

+O(TN iP/1nT)
	

for p=0,n-1. 

Proof: We obtain G;(T) as a Stieltjes integral 

G;(cosh t) = I 
t cosh' s 

dG ,o(cosh .)(s) 
Jc	5 

with e = min,n{l(w)/2}. Put 

0	 forl<p<n-2 
14(t) = { 2	E for p = 0,n - 1	(52) 

pES 

and f?,(t) = Gp,o(cosh t) - H(t). By the calculus for Stieltjes integrals, we get 

G;(cosh 1) 
= f t coshNs 

dfI(s) + f cosh Vs d14(s). 
8 

Proposition 5 immediately implies 14(t) = 0 ((cosh t)(n_1)21(2t) and we get by partial inte-
gration

	

cosh"s d14(s) = o(E(t,N + 
(n - 1)2\	

(53) 2n



For A < N 2(2n - 1)/n2 we consider 

* cosh' s =	t cosh N3 , 
S	 j S 

= 
1
ti (2_(N+1)e(N+VIF:i•;)s + 0(e'+°))) 

= 2_(N)E(t,N+ ../N2 —p)+ 0(E(t,N + (n 2n 
Therefore we obtain

0 

f* coshs dft 
S	

(s) 

= I
E	d;(1t)E(t, N + N2 - 

gESp
<N2(2'—I )/? 

+0 (E(t,N 14 (jj2))

for 1 < p < n - 2 

for p=0,n-1.
(54) 

The equations (53) and (54) complete the proof U 

Next we define the spectral function

e(w) 
2'v(w) 

oh I (..):ST 

Proposition 11: We obtain the asymptotic estimate 

O(TN+-/iT)  

I 2' E d(p)E(t, N + N -2- G(T) =	pESp 

I	<N2(2n—I)/n3 I	+o(TN+L/inT)

(55) 

for 1 <p n - 2 

for p=0,n— 1. 

Proof: From the definitions (50) and (55), we deduce 

G;(T) - G(T) =	((CoshN l())	- 2NLen

By using (3) we can easily check that, for a sufficiently large c# , we have 

(coshV I()) a() - 2N v(c) 
c# coshN 1(,) ti(). (56) 

By Proposition 10 and (51), it follows that G;(T) = 0(T''/InT). In the same way we can 
prove

(cosh"'l(w))a(w)ep(*) = I 0(T' 2 /1nT) for n>2 
0(T1/2 )	for n = 2.
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By using (56), we deduce that

I O(T' 2 /lnT) forn>2 G(T) - G(T)I 1 0(T' 12 )	for n = 2 

and thereby G;(T)	= O(TN+(?_1)2/(2n)/ In T). Now the assertion is a consequence of 
Proposition 10. 

Proof of Theorem A: We define the spectral function 

P(T) =	 e,i) 
co,b I(..)<T()=I 

for j E N. In view of the definitions, we have Pt1(T) = P(T). One immediately checks that 

2NG(T) = Pp#(T)+1Pp1 (cosh ! ),	 (57) 

P(T) = 

	

00	
t 

	

 P(cosh)	 (58) Pli 

with coshi = T. Now we can use a standard procedure (cf. [12]). We have 
00 

	

00I
	 fl_1 p#(cosh)I< 1'\1p(h) I2NG(T) - P(T)l =	 I I - 

j=2 

(n; 1) (2' G(T) - P(T)).	 (59) 

We observe that P(cosh .) = 0 for j > t with 1 = nlinWEO {l(w)}. The definition eo(w) = 1 
implies P(T) = P(T) for all j. Thus we get 

0<2NG(T)_Pc (T) =	P#(cosh) 
2<j:5t/io

2N 4 G(cosh	^ 2N G(cosh ).	(60) 
2<j<t/10 

Thereby we have used the monotony of G. Proposition 11 implies (4(T) = O(T2N/lnT). 
Therefore we get tG(cosh1/2) = O(T'). We apply (60) to obtain P(T) = 2NG(T) + 
O(T"). Using (59), it follows I2NGt(T) - P,# (T)I- = O(TN) . Similarly we get PP(T) = 
P(T) + O(TN) if we use (58) instead of (57). Thus we get 12"Gt(T) - P(T)I = O(T). 
With the help of these equations we see that the asymptotic spectral estimations of P,, and P 
are given as an immediate consequence of Proposition 11. We remark that d(0) = 1 for p = 0 
and p = n - ii 

Our proof has essentially used the asymptotic spectral estimations of and (4 which are 
also interesting by themselves.
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Book review 

ALAN F. BEARDON: Iteration of Rational Functions. Complex Analytical Dynamical Systems 
(Graduate Texts in Mathematics: Vol. 132). Berlin - Heidelberg - New York: Springer -Verlag 
1991, XVI + 280 pp., 35 Fig. 

The iteration of rational maps became popular after Mandelbrots work in 1978 which in-
troduced the famous set which now is called after him. He iterated the polynomial p(z) - z2 + c 
and was interested In the behaviour of this iteration for different complex parameters c in-
stead of using only real ones. The underlying theory starts with G. Julia and P. Fatou around 
1920 and was developed much further after using computer graphics to see the beauty of the 
considered subsets of the complex plane. 

The aim of the book is to develop this theory clearly, the author gives a lot of examples 
illustrating the different kinds of behaviour. So Chapter 1 fully consists of examples. Chapter 2 
recalls elementary facts about rational maps. Chapters 3-5 introduce the Julia and Fatou sets 
and prove their main properties. Chapters 6-9 consider per(odic points, forward invariant 
components, non-wandering domains, and critical points. Chapter 10 Introduces the Hausdorff 
dimension and shqws that for rational maps of degree X 2 the Hausdorff dimension of the Julia 
set is non-zero. The concluding Chapter 11 again fully consists of examples illustrating the ad-
vanced features developed in the preceding chapters. 

The book contains several illustrations showing the fractal structure of the considered 
sets. Most of these pictures appeared elsewhere before. One should not expect the book to be 
a guide for producing strange fractals of extraordinary beauty, this is not the aim of the book. 
It shows the relevant mathematical Ideas and gives examples where they apply. For mathema-
tical simplicity these examples are sometimes far from producing strange graphics. 
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