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The Green's Function Method for the Supported Plate Boundary Value Problem 
S. H. SCHOT 

The deflection u of a thin elastic plate is governed by the biharmonic equation 2u = 0, where 
is the two-dimensional Laplace operator. The problem of solving this equation in the do-

main D Occupied by the plate when u and A u are assigned on the boundary D is often called 
the supported plate boundaly value problem. Strictly speaking this terminology is not correct 
since A u should be replaced by the more complicated expression for the plate's moment M(u) 
on aD; however, when D consists only of rectilinear segments (or when the Poisson ratio is 
unity) M(u) reduces to u. Here, the supported plate problem is solved by a Green's function 
method, closed form solutions are obtained for the disk and the half-plane, and the supported 
plate Green's functions for these domains are computed explicitly. As a check, the solutions 
of these boundary value problems are also derived using a modification of the Goursat-
Almansi method. 

Key words: Biharmonic equation, supported elastic plate, boundary value problems, Green's 
function 

AMS subject classification: 31A30, 35.140 

1. Introduction 

The bending of a thin elastic plate, initially occupying a bounded domain Din the (x,y)-plane, 
by a force perpendicular to the plate is governed by the equation 

Lt2u = F(x,y)	 (1) 

in D, where 112 = ( 21 2/ax 2 + c) -lay 2)2 is the biharmonic operator, u is the normal deflection of 
the plate, and F (x,y) is the normal force per unit area divided by the flexural rigidity of the 
plate. One of the following three types of boundary conditions is usually imposed at the edge 
aD of the plate. 

(a) clamped plate	u = 0,	au/an = 0 
(b) supported plate	u = 0,	Au = 0 
(c) free plate	Au = 0, àAu/an = 0. 

Here n represents the exterior normal to the boundary cD of D. Strictly speaking, the nomen-
clature used for (b) and (c) is not correct, for these boundary conditions should be formulated 
in the more general form 

(b) u0, M(u)a Au -(l-x)(u,-Ku)=O 
(c) M(u) = 0, N(u) (Au) + 0 - x)(u0 - Ku,), = 0, 

where K and 0 are the curvature of D and the arclength along 6 D, respectively, and x is the 
Poisson ratio [is]. However, the terminology stated above seems to have become accepted in 
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the mathematical literature [7]. When the boundary oD consists of rectilinear segments (as is 
the case for the half-plane in Section 5 below) it follows that K 0 and u00 = 0 along these 
segments and hence the boundary condition u = Au = 0 on 6D is correct for all x. 

Closely related to the above problem is the boundary value problem in which a plate free 
from normal load is subjected to displacements and slopes along its edge. In this case the de-
flection of the plate is governed by the biharinonic equation 

t 2u0	 (2) 

in D, subject to one of the following three types of boundary conditions on c)D: 

(a') u = f,	au/an = 
(b') u=g1,	,tug2 
(c') Au = h 1 ,	aJu/an = h2 

where f1 ,f2 . ... .h 2 are continuous functions assigned on 6D. By analogy with problems (1)/(a), 
(1)/(b) and (1)/(c) above, the three problems (2)/(a'), (2)/(b') and (2)/(c') are often called the 
clamped plate, supported plate, and free plate homogeneous boundary value problems, respec-
tively. These problems have also been termed the first, second, and third boundary value prob-
lem for the biharmonic equation [2,6]. 

Of these three boundary value problems, only (2)/(a') has received much attention in the 
literature. The classical Green's function method of potential theory has been extended to this 
problem, and closed form expressions for clamped plate Green's functions have been obtained 
for the disk, half-plane, limacon, and other regions [3,9,11]. Moreover, a direct method for 
solving problem (2)/(a') was developed by Almansi [ii and others [10,14]. This method obvi-
ates the calculation of Green's functions and uses forms of Goursat's formula [8] to reduce 
(2)/(a') to two Dirichiet problems for the given domain. When the domain is a disk, Goursat's 
formula asserts that any biharmonic function u defined in a disk lxi <R (i.e. u E C' and L 2 u = 
0 in Ixi <R) can be represented by 

u = ixi 2 'I + '1',	 (3) 

where 4D and '1' are uniquely determined harmonic functions in I x  <R. Conversely, the formula 
(3) in which 'D and 'I' are harmonic in lxi < R represents a biharmonic function u in JxJ < R. 

The supported plate boundary value problem (2)/(b') seems to have been largely ignored, 
and it is surprising that the supported plate Green's functions for such common domains as the 
disk and the half-plane have not even been computed explicitly. However, Reissner [13] ob-
tained the Green's function for a disk in the closely related case of an elastically clamped 
plate. 

In this paper, a Green's function method is developed for problem (2)/(b') which yields the 
solution of this problem in terms of the supported plate Green's function and the stretched 
membrane (harmonic) Green's function for the given domain. The supported plate Green's 
functions are computed explicitly for the disk and the half-plane by a complex variable 
method first suggested for the clamped plate by Garabedian [5,6]. Using these Green's func-
tions, explicit integral formulas for the solutions of the homogeneous supported plate boundary 
value problems are then obtained for these domains. The solutions are also derived without 
the use of Green's functions by extending Almansi's direct method to these supported plate 
problems.
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2. The Green's function method 

The Green's function method for the supported plate utilizes the Green's identities which have 
been used to solve the clamped plate boundary value problem. Hence they will first be review-
ed here briefly [4,6]. 

Let D be a simply - connected plane domain bounded by a simple smooth curve aD. Let u 
and vpossess continuous partial derivatives up to and including order four on the closed do-
main D = D + aD. Then Green's second identity for the biharmonic 'operator is 

JJ ut2v - vA 2u)d4 = f(tu --- tv- u c),Av - vflcJo,	 (4) 
D	 6D 

where n is the exterior normal to the boundary 6 D, do is the element of arclength along D, 
and dA is the area element of D. Now introduce the fundamental solution S(r) r 2 log r of the 
biharmonic equation (2), where r is the distance between the points P £ D and Q e D. If P is 
surrounded by a disk D(P) C D of radius s, the identity (4) with v = S(r) is applied to D - 
DE(P), and the limit as E - 0 is taken, then there results Green's third identity for the bihar-
monic operator, namely 

U(P) =	 au	ats	 +ffSt,2ud4.	 (5) an	an	an	an aD	 D 

If this identity is to be used to solve (l)/(b'), the terms in the boundary integral of (5) 
which contain normal derivatives of u and Au must now be eliminated. This may be accom-
plished by introducing the supported plate Green's function [7] 

F(Q,P)=S(r)+y(Q,P),	 .	 (6) 

where y t C' in D, satisfies i 2y = 0 in D, and takes on the boundary values y = - S and Ay = 
on a D. This definition implies that 2F = 0 for Q * P, Q E D; asymptotically F - S for 0 = 

P; and r = 0 = tF for Q £ 6D. Letting v = y(Q, P) in (4), adding the result to (5), and applying 
the boundary conditions of F on aD, there results 

U(P)	J'(t,u	IUa')dO +jjrt,2ud4.	 (7) an	an 

This identity may be simplified further by noting an important property of the supported 
plate Green's function which does not hold for the clamped plate Green's function [7]: Let the 
harmonic Green's function be denoted by G(Q, P), i.e. the function which has the properties 
AG = 0 for Q * P, Qt D; asymptotically G - T(r) E, (1/270log(11r) for Q = F; and G = 0 for Q £ 
D. Then it follows from the definitions of F and G and from the relation AS = - T that 

1.flQ,P)=-G(Q,P), Q*P.	 (8) 

When (8) is substituted into (7) the latter expression becomes 

U(P) = f(tu- - u-)do +ffr2udA.
an aD	 D



362 S.H.SCHOT 

This identity may now be applied to problem (l)/(b') to yield the solution of this nonhomogene-
ous boundary value problem in the form 

U(P) = f(g2(Q)1I(12P) -	aG(QP))dØ +fJ'F(Q)nQ,P)dA.	 (9) an cD	 D 

Thus for any domain D for which the Green's functions r and G and their normal derivatives 
exist and are regular,,the functions g 1 and g2 are continuous on OD, and F is continuous on D, 
the solution of boundary value problem (1)/(b') can be represented by (9). 

The fact that tite so!uton of problem (1)/(b') is unique can be demonstrated directly and 
without the use df Green's identities. For assume there exist two solutions u and u2 of prob-
lem (l)/(b') and jlet u = u - u2. Then u satisfies the homogeneous boundary value problem 
I 2u = 0 in D; u = 0 .0 on D. Now let v = Au. Then this function satisfies the Dirichiet 
problem Lw = 0 in D; v '0 on D, which is known to have the unique solution v a 0 in D. 
Hence the original problem also reduces to the Dirichlet problem Lu = 0 in D; u = 0 on aD. 
Since this problem has the unique solution u r. 0 in D, it follows that u1 u2 throughout D. 

3. Properties of the supported plate Green's lbnction 

The supported plate Green's function has a physical interpretation similar to that of the cor-
responding clamped plate Green's function. For let a single point force of the 8-function type 
be applied normal to the plate at P, then the deflection of the plate at Q is given by L 2u = 
- P) in D; u = 0 = Au on c'D. The solution of this problem by (9) is 

U(P) =ff8(Q -P)flQ,P)dA =flQ,P). 

Hence flQ,P) represents the deflection at Qresulting from a unit normal force applied at P to 
a plane thin elastic plate which occupies the domain D and is supported along its edge D. 

A number of other properties of F(Q,P) follow immediately from the easily demonstrated 
composition formula [7] 

r(Q,P)=J'J'G(Q,R)Q(R,P)dA,	 ( 10) 

where R € D and dA here represents the area element in the variables used to denote the point 
R. Since the harmonic Green's function G(Q,P) is known to be symmetric and to have the 
same sign throughout D, it follows from (10) that these properties also hold for flQ,P) in D. 
The latter property is noteworthy, since it is known that there exist domains for which the 
clamped plate Green's function changes sign [61. Interpreted physically, the symmetry of 
r(Q,P) asserts a version of Maxwell's reciprocity principle, namely that the deflection at a 
point Q due to a unit force applied at the point P equals the deflection at P due to the same 
force applied at Q. 

The composition formula (10) may also be used to derive an upper bound for flQ,P) on a 
bounded domain D. For, using the maximum principle for harmonic functions, it is easily 
shown [12] that the harmonic Green's function is bounded by 0 < G(Q,P) :5 (1127t)log(h/r) on 
D, where h is the diameter of D. Now, letting the closed domain DD lie entirely in the interior
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of a disk with radius h and center at an arbitrary point of D, it follows that 

27th 
0 <j'fG2(Q,P)dA 

15 =	.	 ( 11) 4n2	r
D 

Applying the Cauchy-Schwarz inequality to (10) and using (11) then yields 

IIIQ,P)12 = f 	s fJ'G( Q,R)dA 

or 0 < IflQ,P)I :5 h/8it throughout D.	 - 

4. The supported plate boundary value problem for the disk	-- - 

The supported plate Green's function for the disk can be computed by a complex variable me-
thod first suggested for the clamped plate by Garabedian [5, 6). Let the disk in the complex 
z-plane be  = {zI Izi < R}, let the points Qand Pin the Green's function flQ,P) be denoted 
by z s e ia € D and = pe e D, respectively, and let r = Iz - I. In accordance with (6) let 
the desired Green's function be written in the form 

r(z,ç) =	Iz - I 2 logIz - +Re{(zi_R2)(z)+nit(z)}, 

where the first term on the right is the fundamental solution S(r) and the second term is an 
arbitrary biharmonic function represented by the appropriate form of Goursats formula (3) in	- 
terms of two harmonic functions. The harmonic functions ReD(z) and Re'Y(z) are now deter-
mined from the two boundary conditions of the supported plate Green's function, i.e. r = 0 and 
Ar = 0 on oD. The application of these boundary conditions is facilitated by introducing the 
inverse point C with respect to the circle Izi = R, namely R 2/1. The relation RIz -	= 1R 2 -
czl then holds on c)D, and applying the first boundary condition, r = 0 on OD, yields 

1 Re'Y(z) = - - Iz-I 2	1R2-1z log	R 

on c)D, and hence 

= _L IZ - C12 log R(z - )	- R2)Re(z) 

	

871	1 R2czI 

for all z € D. The Laplacian of this function is most easily computed by applying this operator 
in its complex form, and is 

	

r=4 àF	---iogIU R-J) + I Re{?_l 

	

azaz	27r	 R 2 -	I	R2 -z 

Applying the second boundary condition, tF = 0 on c)D, then yields 

Re{
I R 2 -	

° 
I 2 1 

87tR 2 _zJ az 
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on 6D, or by analytic continuation, 

I(z) LR2-2. R2_z

	

çz	
log R2 

for all z € D. Thus, the supported plate Green's function for the disk in complex form is 

flz ) -	
'21og 

R(z - () - _L_(R2 - z12)(R2 - IçI2)Re {l0	- 

	

- --Iz - 
	-	 I•z	8it 

On introducing the distances r = I  - I and = I  - R 2/I and making use of 

R 2 -tz	 pssin(8-p) z ps(cos(8_p)+isin(8_p)) and log R2	= log	+ itan pscos(8 - p)- R2 

this Green's function may be written in the real form 

flQ,P) =r2log_&_ - i(R 2 - p2)(R 2 - s2) 
?'	8it	ps (12) 

__ _ [cos(15 - p)log p?j + sin(8 - )tan	cs sin(& - c) ] 
pscos(8-p)-R

_
2 

where Q(s,8) and P(p,(p) are these points in polar coordinates, r is the distance between them, 
and 7 is the distance from Q to the inverse point of P in the circle s = R. On using the identity 

- R 2 r 2 = (R 2 - p 2)(R 2 - s 2) the quantity? can be eliminated and (12) becomes 

- - I r2log[1 
+ (R 2 - p2)(R2 - s2)]

	

flQ,P) - -j-	 R 2 r 2 

_._L. (R 2 - p2 )(R 2 - s2) {cos(-5 - ). log(r 2 + CR2 - 02 XR'  - s2))	(13) 

	

167t	ps

I. 
+ 2sin08 - p	pssin(8-q) 

)tant ps cos(8 - )_ Rf 

The symmetry of this Green's function is now evident. 
By letting the variable point Q approach the "load point" P, so that s = p, 8 = p, and r = 0, 

it is easily seen from (13) that the deflection of the supported circular plate under a unit load 
at Pis

p ) - - _L (R -2log R 2 - p2 
- 8it	p2 

Figure la exhibits a graph of the supported plate Green's function (13) with the unit force 
applied upwards to the horizontally held disk at a point 3/10 of the distance along its diameter. 
The figure thus shows the bending of a thin elastic circular plate which is simply supported 
along its edge and subjected to this point force. (For illustrative purposes the scale of the de-
flection has been magnified.) For comparison, a graph of the clamped plate Green's function 
for the disk subject to an identically located unit point force is shown in Figure lb. The clamp-
ed plate Green's function A(Q,P) = S(r) + A(Q,P) is defined in the same way as that of the 
supported plate; however, the second boundary condition in the definition is replaced by tX/ln
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Fig. la: Supported plate unit disk 
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Fig. lb: Clamped plate unit disk 

= - cS/an on aD. For the disk it may be shown to be [6,11] 

A(Q,P) = __ r 2 log[1 + (R 2 -	- s2)] + 1 (R 2 - p2 )(R 2 - s2) 
16 Tr R 2r 2	 l6ir	R2 

where the same notation as in (13) has been used. The graphs in Figure 1, as well as those in 
Figure 2 in the next section, were computed and plotted using an SAS/GRAPH computer 
graphics package by Mr. James M. Thompson as part of his master's thesis project at The 
American University.
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It may be observed that the graphs of these Greens functions are very similar. However, 
it is evident from the graph of the clamped plate that the normal derivative of the deflection 
vanishes at its edge, whereas for the supported plate it does not. In both graphs the maximum 
deflection does not take place at the (asymmetrically placed) load point, but rather at a near-
by point. This is due to the fact that a plate, unlike a membrane, resists bending. 

To obtain the solution of the supported plate boundary value problem for the disk, the 
normal derivatives of r(Q, p ) and G(Q,P) on c'D must now be computed and substituted into 
(9). Making use of the relations 

r 2 =	+ p2 - 2ps . cos( - q) and 2 = s 2 + R 41p2 - (2R 2s/p)cos(& - p) 

and of s = R and p = Rr on OD, the normal derivative of flQ,P) on aD may be obtained from 
(12) to be 

1ar I (R212!) r	 psin( - p) 1 =	Rp L2 +2Rcos( - p) . log +2sin( - p).tan pcos(& - )- RJ 
(14) 

The harmonic Green's function for the disk is G(Q,P) = (1/27r) log (p/Rr), and its normal deri-
vative on 6D is the negative of the well-known Poisson kernel 

IaG\ I R 2 - p2	 (15) = 2it Rr2 

Substituting (14) and (15) into (9) with F(Q) 0 then yields the solution of the homogeneous 
supported plate boundary value problem (2)/(b') for the disk, 

27t	 27t 
____	 p2	r 

u(p,(p) = R2- P2fgt(,)r_2d& 
+ 

R2- 
8	f2()IP +2Rcos( -	log

(16) 

+2Rsin( -	tan 
1 

psin(& - p) 
pcos( - ) - R] 

5. The supported plate boundary value problem for the half-plane 

The supported plate Green's function for the half-plane may be obtained by a similar method 
to that used for the disk in the last section. For definiteness consider the right half-plane D = 
(zi Rez> 0) and let the points Pand Qbe denoted by z = x +iy E D and 1 = + i7l € D, respec-
tively. The appropriate form of the Green's function for D is 

flz,ç) = 1  - I 2 log Iz - I + Re{(z + y)p(z) +4(z)}, (17) 

where the harmonic functions Re q(z) and Re 4(z) are again determined from the two boundary 
conditions of flz,ç) on aD. Let the image point - of in aD be introduced so that Iz - C1= 
Iz +	on OD. Applying the first boundary condition, r = 0 on c'D, to (17) immediately yields 

Re (z) =	- çI 2 logIz + 8ir 

on D, and hence
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flz,ç) =	I  - c12 log 
I 
Z -	+(z + )Re ç(z)	 (18) 
z + 

for all z E D. Applying the second boundary condition, ir = 0 on ÔD, to (18) leads to 

ç  
8ir z + 

on 8D. Thus, the supported plate Green's function for the right half-plane becomes 

=A	
ç 

Iz - ci 2 logI Z_-	-	(z +y)( +)logIz + 
Iz + 

On using the identity (z + Xc +) iz +I2 - iz - c1 2 this reduces to the remarkably simple form

	

=	iz - ci2loglz - ci -	Iz +i 2 logiz +i. 

If the distances r = I  - C  and ? I  + t I are introduced this may be written in the real form 

	

flQ,P)	(r2logr - ? 2 1og?).	 (19) 

The distances r and 7 may in fact be interpreted in more general terms as the distance from 
Q to P and the distance from Q to the image point P of Pin any straight line boundary D, re-
spectively. Interpreted in this way, relation (19) represents the supported plate Green's func-
tion for any half-plane. According to the remark made in Section 3, physically this Green's 
function represents the deflection of the plate at any point Q due to two individual point 
loads, each acting perpendicularly to the plate but in opposite directions at P and P. On taking 
the negative Laplacian of (19), this expression reduces, in agreement with (8), to the harmonic 
Green's function for the half-plane, namely G(Q,P) (112it)log(7/r). 

A graph of the supported plate Green's function (19) is shown in Figure 2a. For compari-
son, the clamped plate Green's function for the half-plane A(Q,P) = (1/16 7t )[r 2 log(r 2/72) - (r2 
- 72 J under the same point load is plotted in Figure 2b. Again, these graphs representing the 
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Fig. 2b: Clamped plate right half-plane 

deflection of the two plates are quite similar, except that the normal derivative of the deflec-
tion vanishes at the straight edge of the clamped plate but not at that of the supported plate. 
Moreover, as for the disk, the maximum deflection for the half-plane does not occur at the 
load point. 

When the normal derivatives of flQ,P) and O(Q,P)for the right half-plane are computed 
on its boundary OD and substituted into (9) with F(Q) a 0, the solution of the homogeneous 
supported plate boundary value problem (2)/(b') for the right half-plane is obtained, namely 

u() = 5sl(Y)s+(,_fl)2dY 
+ 	fg,(Y)log[2+(y_,i)2]dy.	 (20) 

-	 -o 

6. Direct method for the supported plate boundary value problem 

The direct method developed by Almansi [ii for the clamped plate may be extended to solve 
the supported plate boundary value problems for the disk and the half-plane. This will serve 
as a check on the solutions obtained by the Green's function method in the last two sections. 

To solve the homogeneous supported plate boundary value problem (2)/(b') for the disk in 
polar coordinates D = {(p , q )I 0 -- p R, 0 s p 27r} let a Goursat solution (3) be chosen in the 
form

u(p,p) = (p2 - R 2)11(p,p) +'Y(p,p),	 (21) 

where cD and IF are harmonic functions in p < R. The first boundary condition, u = g1 on = 
{(p ,EI p = R, 0 :5 r 2t}, when applied to (21) yields u(R,) = 'Y(R,) = g1() on 6D, so that 
'F satisfies the Dirichlet problem
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A IY = Oin D, '1'g(&) on c)D. 

The solution of this Dirichlet problem is given by Poisson's integral 

2t 
'f'(p,(P) =	_J'g(&)R202d,	 (22) 

0 

where r 2 = R 2 + p2 - 2pRcos( - p). The second boundary condition, Au = g2 on aD, when 
applied to (21) yields 

(zxu )I , D = 4[a(PcI)/'691P=R = 92(4) 

on cD, so that the harmonic function 6(p1)/6p satisfies the Dirichlet problem 

	

= 0 in D,	 = 4'g2() on c)D. 

The solution of this Dirichiet problem is c)(p)/àp 1/8 f 2' 2()((R 2 - p 2)/r 2 ) dO, so that 

27t	p 

	

CR	dpdO. _- =	 r2  
0	0 

Substituting (22) and (23) in (21) the solution of the homogeneous supported plate boundary 
value problem for the disk takes the compact form 

27t	 27t	p 

	

u(p,q') = -1— f9 
(0) R	dO - R 2 - p2 fg2(0)j'R	dip dO.	 (24) 

The inner integral in (24) can be evaluated by elementary integration, and becomes 

j
P2 ; R2 dip = p + 2Rcos(O - p)log -2Rsin(O - c)tan'R 

0 
When this integral is substituted back into (24) the resulting solution reduces to (16). 

Problem (2)/(b') for the right half-plane D = {( , ii)I > o} may be solved in a similar 
manner by the direct method. This time the appropriate form of the Goursat solution (3) is 

u(,i) = p(,i)
	

(25) 

where p and 4 are harmonic functions on D. The boundary conditions u = g1 and Au g2 on 
= {(,)I t = 01 in problem (2)/(b') for the right half-plane lead to the boundary values 

4(0,) = g1(7), (Au)ID = 2-(0,i) = 

for these functions. The corresponding Dirichlet problems for the harmonic functions 4 and 
are solved by the applicable Poisson integrals for the half-plane, namely 

+ 
- -	2+(y_.y)2' and	ii) =	-Jg2(y)2(,)2dy,	(26)2 7t - tJgi(y)	

I	 _______ 

-w	 -

(23)
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respectively. Substituting	and 4, ii) from (26) back into (25) yields 

u() = Jgi(Y)s+(,.)2 dy +	Jg2(y)j'2 (	)5 ddy, 

which agrees with (20). 
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