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A Counterexample for L*-Estimates for Parabolic Differential Equations

P. KROGER™

We show that the Dini (1) continuity of the coefficients of a linear parabolic differential oper-
ator in non-divergence form is in some sense the weakest condition such that the solutions of
the corresponding initial value problem satisfy an L!-estimate; here a function is called Dini
(_ag_ continuous for a positive number a if the modulus of continuity w of the function satisfies
fo*m.‘"/“_(t)/; dt < . In particular, we improve a counterexamplé of Il'in which shows that an
L'- estimate cannot hold in general if only Dini (a) continuity with a < 1/4 is assumed.
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We consider the initial value problem
Lu = 0 in (0,1) xR™, u(0,) = f
where the coefficients a;; = a;; of the differential operator
du Ou 1< J*u
Lu = — - L = - - = ii(6Z)g—F—
¢ ot e ot 2 Z aii{ z)ax,-az,

1,5=1

are assumed to be continuous and bounded. Moreover, we restrict ourselves to the uni-
formly parabolic case (a;;(t,z))i; = A- 1 for some positive constant A.

Suppose temporarily that the coefficients of L are continuous on {0,00) x R" and
Hélder continuous on {s,00) X R" for every s > 0. Then the initial value problem

Lu =0 fort>s, wu(s,’) = f

is uniquely solvable for every s > 0. The solution u can be written by means of the
transition probability measures Pp(t,z; s, ) of the diffusion process with decreasing time
parameter generated by the parabolic operator L, + % as follows (cf. [5: Chapter 3]):

u(t,z) = /]R @) Pu(t, 235, dy).
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We mention that the diffusion process generated by L. + % is uniquely defined if the
coefficients of the uniformly parabolic operator L are merely supposed to be continuous
(see [5: Chapter 7]). The transition maps P;'*? : C(R™) — C(R") are defined by

Pitif(z) = - f(y) Pu(ti, z;t2,dy)

for every f € C(R") and =z € R". Let B,(") be the kernel of the n—dimensional Brownian
. . . n =2
motion at time ¢, i.e. ﬂ,( )(:z:) = (2:‘) exP(_LzzL)‘

Lemma: Let ty,t; € [0,1] with t; > t, and a function f € C}(R") be given
such that ﬂf:‘l” * f(z) is positive for every z € R". Suppose that f(z) > ﬂf")(:z) for
some positive number ¢ and every z from the complement of an appropriate compact set
K C R"™. Then there exists a positive number § such that, for every differential generator
L=2£- LD NN agj(t,z)é%az’ with matrix norm ||(a;(t,z)) — 1|| < & for every t and z,
P} 2 f(z) is positive for every z € R™.

Proof: Let 6, be a positive number with § < 1 and

u,-ux1-2&)+% > (ts — t2)(1 + 36). (1)

For every positive number r we denote the closed ball with radius r and center 0 in R*
by B,. Let 1g, be the characteristic function of B,.

We claim that [|(ai;(2, 2))— 1| < 6o for every t, z implies that P;**** f is positive outside
B,, for some positive constant rg. The proof of the claim is based on the lower and upper
bounds for transition probabilities given in [4]. It follows from [4: Theorem 2] that for
appropriate positive constants C,, C,, C; the following holds:

P;,l ,tQﬂSn) > CIPI‘,) ,h(lB; * 57%)
> CzﬂE:)_z,)(l—%o) * (1B, * 572)) (2)

n)
> Cs By -
Choose r; in such a way that K C B,,. Then
f2 8" —Cag, . 3)

for an appropriate positive constant Cy. By [4: Theorem 3], we have for positive constants

Cs Co () )
1,8 n n
. PLI 218“ S CS ﬂ(‘l-‘?)(l+?60) * 1871 S CG ﬁ(h—tz)(]+260) . (4)
The proof of the claim can now be completed as follows. By (2)-(4),.
P“"’f > C ﬂ(") — C.C ﬂ(ﬂ) -
L = Y3P(t1-t2)(1-260)+ 5 4L60 (¢, —t7)(14+360)°

The existence of an rq such that the above claim is correct follows from (1).
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On account of the assumptions on f the number C; = inf",,us,o{ﬂ,(:‘l,2 * f(z)} is
positive. By [4: Theorem 1],

n I 1 A n
(P = Bl * )(z) = / P (5 Y aii(t,2) a 3) (B2 * f)(z) dt.
t2 : ig=1
Since f € CZ(R™), we can choose a positive number 6, such that ||(a;;(t,z)) — 1| < & for
every t,z implies || P} f — ﬂf;‘_)_‘z * flloo < C7. Set 6 = min{&p;6;}. The assertion of the
Lemma follows immediately I

For every A with 0 < A <1 we denote by fy the function from CZ(R") which is given

by
_ , h)=f (%) __for every = € IR",

here f stands for a function which satisfies the conditions of the Lemma. Using the scal-
ing transformation (t,z) — (At, VA z) and taking into account that ||(a;;(t,z)) — 1]| < &
for every t,z implies a similar condition for the transformed coefficients, we obtain the
following corollary.

Corollary: Under the assumptions of the Lemma there exists a ?ositive number §
such that, for every L with ||(ai;(t,z)) — 1|| < 6 for every t and z, P,"""** f)(z) is positive
for every z € R". :

We will restrict ourselves to the consideration of one-dimensional processes in the re-
mainder of this paper. Therefore we will write simply B; for the one-dimensional heat
kernel.

Our main result is the following theorem.

Theorem: Let w: [0,00) — R be an increasing continuous function with w(0) = 0.
Suppose that A — ‘—‘1(& is decreasing on (0, 00) and fl ﬂéld/\ = +o00. Let §y be a positive
number.

Then there exists a continuous functxon a: R x[0,1) = R with ||a — 1||eo <6 and

la(t, 21) = a(t2,22)| < w(|(ts = t2, 21 = 22)|) (5)

for every t1,t; € [0,1] and z,,2, € R such that for the corresponding initial value problem
du 2

1 Pu
g = 5 a(t,z) ﬁ, u(O,z) = f(.'l:)
for any given ¢ > 0 there is a function f such that

(L, )Ml > e 1)l

Proof: Let b be a function from C°(R') with 0 < b <1, |¥| < 2, and b(/\) =1 for
every A with |A| > 2, and b(A) = 0 for every A with |A| < 1. We set

a(t,z) = 1+Cy-b (%) w(t) for every (t,z) € (0,1) xR



404 P.KROGER

and a(0,z) = 1 for every z € R. The constant C, will be chosen later in such a way that
0 < Ci < min{3; ﬁ; %} Obviously, we have ||la — 1]]oo < &o.

We check that Condition (5) is met. Let ¢5,¢; € [0,1] and z,,z2 € R be given. In
view of the continuity of a we may and will assume that £,,%; are not equal to zero.
Moreover we suppose that t; < t;. It is obvious from the definition of a that |a(t,,z;) —
alta, z2)] < lw(t). Since A s 2 is decreasing, we have lw(t;) < w(%). On account of
the assumption that w is increasing, Condition (5) is established if |(¢t;—t2, z1—z2)| > %tl.
Now assume that |(t1 — t2, 1 — z2)| < %t,. In particular, we have -litl < t;. Thus,

2 2
la(ts, 1) - altz, 22)| < Cy lolts) — w(ta)] + Cy ”(r) -b(g)

g z? 2z2 a z?
Zp( )] <« £ Z (=
latb<t) s @ e ‘8mb(t)
Since (t,z) — b(’%) is constant outside the set of all ¢,z with z? < 2¢, we can conclude
that

Since |¥'| < 2,
4|z|
T

z? 10 .
Ve b(T)l < 5 for every t with 0 < ¢t < 1.
Hence, ,
2 1
‘b (ﬁ —b _:v_g S —0 |(tl—t2, I —JZQ)I.
tl t2 t2

Taking into account that ty — ty, 1 — z2)| < t; and that A — “Q) i decreasin , we
g _ ) g

can estimate the second term on the right-hand side of (6) as follows:
z? z?
b2} —p( 2
(tn ) ’ (iz )
ta ty — 12

0S wt) —w(ts) < w(ti) - gwlt) =

G

wlta) € zell(t — ta, 21— 22))).

On the other hand,

w(t,) S w(tl —tQ).

This completes the proof of Condition (5).
Let 7 € (0,1) be given. We aim to estimate P;°8, from below. Explicit calculation
yields (recall that 0 < a < 2)

L) B.(z) > ~1B(x)  for every 2
50t 2) 5 5P (z) 2 —-Bi(z or every t,z.
The maximum principle (or [4: Corollary 1]) yields immediately
Pltvoﬂf .2 exp(~1)B-. (7
In order to apply a comparison result (see [4: Theorem 1]) we set

A 1 w(t) 1
5 + 50102 - for every t € [r, =],

Z/gE 2
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the positive constant C; will be chosen later. The corresponding transition maps will be
denoted by P (the transition maps P'** are well-defined although L. contains a zero
order term, cf. for instance [4]). We have

¢
PY" B, = exp (%0102/ ‘% d/\) B (8)
for every t € [r, }]. By [4: Theorem 1],
1. ~1 % 14 - =
P B, - PiTp, = / P}t (L — L) P8, dt. 9)

From (8) and the definition of a we obtain that

o . wf - - g2 W
(b= 10P0) (@) = o (Gt 85 gtite) - 00 gi)

Nl (b(%’) E-1 - &) bue)

for a positive number ¢, which depends only on ¢ and for every ¢ € [r, 1]. Since b(A?)(A2—-1)
is non-negative for every A and bounded below by a positive number outside a compact
set, we can choose the positive constant C; such that the following function is positive:

Bux ((B()(I- PP =1) ~Ca)By).

In view of the Lemma and the Corollary which we have already proved we can choose the
positive number & such that the function P7** ((b(’%) (% - 1)-Cy)- ﬂ,(z)) is positive

for every a with |la —1|| < 6. Thus, we can conclude that P}*(L, — L,)P*" 8, is positive
for every t € [r,}]. By (9),

. H L.
Pl g, — PV PR g = / PM (L — Ly BB dt > 0. (10)

Fipally, we remark that a(t, )8%’5- B 2> ai:; B for every t. The ma.ximurp principle
(or [4: Corollary 1]) yields immediately

L
PR 2 A (11)
We can now conclude from (7), (8), (10), and (11) that

P8, 2 exp(-1) P, B,
exp(~1) P} PE7p,

X ‘
P exp (%c,c2 / ‘@ dr — 1) By

%
> exp (%C&Cz/ &)% d\ — 1) Bi.

28 Analysis, Bd. 11, Heft 3 (1992)

v



406 P.KROGER

Since ||B;||; = 1 for every 7, we obtain in particular that

10 1 Fw())
IP"B:lli = exp| SCiCe dx — 1] [|B|h.
2 A
In view of the assumptions on w the proof is now complete B

Example: We define the function w by w(0) =0, w(A) = —g5 for every A € (0, 1),
and w()) = 1 forevery A € (1, 00). It is easy to check that the assumptions of the Theorem
are met. Moreover, a is Dini () continuous for every a € (0,1) (cf. the abstract of the
present paper or [2] for the definition of Dini () continuity). In view of the results in [2]
corresponding counterexamples for LP-estimates with 0 < p <1 and differential operators
with Dini (}) continuous coefficients cannot exist.
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