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Error Bounds for Projection -Type Iterative Methods in Solving Linear Operator Equations

V. ISERNHAGEN

Error bounds using angles between fixed point sets of orthoprojectors are presented for gene-

ralized PSH- and SPA-methods.
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Let X and Y be Hilbert spaces. Some of the well-known iterative methods for the solution of
linear operator equations

Ax=b (A L(X,)Y); beY) (1
can be written in the form

Xpey = TyXp +Dpb, T,:=1-D,AceL(X,X), D,e L(Y,X). ¥))
Often it is favourable also to consider the iteration of the rests

Fes =Spfy S, = 1-AD, e L(Y,Y), 1, = b - Ax,,. 3)

If we choose the operators D, in such a way that T, are orthogonal projections, then, accor-
ding to (2), we obtain the class of generalized PSH-methods (projection methods), which was
investigated by D. Schott in [4). The elementary variant of this class for finite-dimensional
linear spaces, which is obtained by choosing D, = (E,A)'E,, with row selection matrices E,,
was studied, for instance, by W. Peters [3] and G. Maess [2].

Otherwise, if the operators S,, are orthogonal projectors, then, according to (2), we obtain
the class of generalized SPA-methods (rest projection methods, column approximation me-
thods). They were also investigated by D. Schott in [4]. An elementary variant with D, =
H,(AH,)* and column selection matrices H,, can be found in [2,3].

In this paper we derive error bounds for these general methods using angles between fixed
point sets of orthoprojéctors. More general classes of iterative methods, where 7, or S, are
so-called relaxations of orthogonal projectors, were presented by D. Schott in [S,6].

Definition (see, e.g., [1,7]): Let L, and L, be two closed subspaces of a Hilbert space H
with the intersection L = L, n L,. The acute angle a between L, and L, (« = «(L,, L,)) is gi-
ven by cosa = sup(u,v), where ue L, n L* and ve L, n L* are unit vectors, L* is the orthogonal
complement of L and (-,-) denotes the inner product in H. ’

First we formulate a theorem for the generalized PSH-methods. For that we denote the
orthoprojector onto a linear subspace M by P,,. The proving technique is similar as in [1],
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where a special result is given.

Theorem 1: Let the following conditions be fulfilled:

(i) The equation Ax = b has a generalized solution x* with respect to (D,), i.e. D,Ax" =
D, b holds for all n.

(ii) The operators T, are orthoprojectors.
Then for the generalized PSH-method (2) the error bound

e - Prxo) -1 = (1 F st )l - o) - 7|2
holds for all x, € X, where R = (\;R(T;) and «; = Y(R(T),N;2 ;.. R(T)).

Proof: There is no loss of generality in assuming that x™ = 0, because the statement is in-
dependent of linear translations. Considering the fact that PgXx, is a fixed point for all T;, and
setting v = x, - Pr X,, the inequality to be proved is

n-1
1T T Tov|? (1 - _I'Ismza,.)nvuz forall v e®:. )
M 1=0

This will be shown by induction. .
Of course || T,,v (|2 < llv |2 is true for all v ¢ R(T,)*. Now we assume

-1
T Gagv|? < (1 - .hsinzaj)llvllz forall v e(R(T,)n...n R(T,,))*. (s)
j=i+1

Let ve (R(T,)n...n R(T;):. Then we can write v = w +u with w ¢ R(T;) and u e R(T;)* =
R(T;). Hence, because of T;u =0, the equation yields T,, ... ;,, ;v =T, ... T;,,w. If we de-
compose w in the form

w. = w +w”, where w e R(T,)n...0 R(T,,) and w”e (R(T) n...n R(T.,)*,

then in view of T, ... T;,,w’ = w'we obtain T,, ... T;,,w=w’ +T, ... T;,,w”. Since (T, ... T;,,w",
w) = (w”,w’) = 0, it follows that T, ... T;,,w” e (R(T;) n...n R(T;,,))*. Therefore we have

lwllz = lw’lIZ +llw”lI*> and |IT;

e Tl s W12 ¢ 1T, ... w2,

1

Due to the induction assumption (5) we find
n-1
0T, ... T, I < (1 - r[sinzaj) o 2.
Jj=iv1
Combining this with the latter formulas we get

n-1
IT, ... Twl? s w2 +(1 - 11 sinzaj)llu’"llz

j=i+
n-1% n-—-1 .
< (1 - f[—],'sinzctj)IIWII2 +( li'sinzozj)llw'll2
j:i-o-‘ j:i#;

On one hand we have w ¢ R(7;) and on the other hand w e (R(T,)) n...n R(T;))*, which can be
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seen from

xeR(T)a..nR(T;) and (w,x)=(v,x)- (u,x)=0.
Analogously we find |

we R(T)n..n R(T;,,) and w e (R(T)n...n R(T)

Definition 1 results in the relation (w,w’)llw| *llw’lI"* < cosa;. Taking (w,w’) = llw’||* and
[lwll < llv]l into account, we get the formula

n-1
IT, .. T Tv|? s (1 - Hsinzaj)llvllz.
J=i
For i = 0 the required inequality arises il

If we choose the sequence (D,) cyclically with tﬁe; cycle l_ength L, then we obtain the
cyclically summarized stationary iterative method
-1

x = Tx™ s pb, T=T_,..0%, D=>T_,..T..D;

1=0

Now it is easy to prove the cyclewise error bound
m © - = Sinza V@ 03y - =
1o - P x@) - x=|j2 s(l - Z_osmza,.) 1(x€©) - Px(®) - x=|2.

Here R denotes N 2R(T;).

The error bound (6) has been proven by Smith, Solmon and Wagner in [7] for the elemen-
tary version of this class of methods, the so-called Kaczmarz’s method. In their paper the au-
thors mentioned above investigated interesting applications of this method to the field of ima-
ge reconstruction from its projections (computerized tomography). Hamaker and Solmon [1]
used the error bound to improve the rate of convergence of the Kaczmarz s procedure in the
field of computerized tomography.

It is obvious that the error bound of Theorem 1 can also be used for considerations con-
cerning convergence acceleration of the generalized methods. But it seems to be complicate
to formulate a general heuristics, when the factor containing the angle quantity in the error
estimate become small.

By analogy to Theorem 1 we can give an error bound for generalized SPA-methods. The- |
refore the proof can be omitted here.

Theorem 2: Let the following conditions be fulfilled:
(i) There exists a rest vector r*with S,,r* = r* for all n.
(ii) The operators S,, are orthoprojectors.

Then for the generalized SPA -method (3) the error bound

n-1 i
raen - Brera) - 77l < (1 Esina) o - Bere) - 712

holds for all r, = b - Ax, with arbitrary x, € X, where
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SR = ﬂ,m(S,) and a; = 9(m(5,), n;;,,.‘m(si)).

We remark that obviously the condition S, r*=r"means AD, r* = A(D,b - D,Ax") = 0.
Thus the condition (i) of Theorem 2 is fulfilled. if this holds for the condition (i) of Theorem 1.

Moreover it is possible again to derive a corresponding estimate for the cyclical method
(see (6)). Such an error bound for generalized SPA-methods presented in this paper couldn’t
be found in literature so far. Again the error bounds can also be used as a starting point for
considerations concerning convergence acceleration.
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