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The purpose of this note is to apply a generalized Kantorovich majorization principle to existence 
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The purpose of this note i8 to illustrate the applicability of a generalized Kantorovich majoriza. 
tion principle (Theorem 1) to existence and uniqueness results for Holder solutions of nonlinear 
singular integral equations (Theorem 2). This majori.zation principle reduces the problem of 
finding fixed points of abstract nonlinear operators in Banach spaces to that of finding fixed 
points of simple convex functions on the real line. Although this principle may be considered 
as a modification of the classical Banach-Caccioppoli contraction mapping principle, it is much 
more suitable in applications (see, for example, below). In contrast to the classical Kantorovich 
technique, we do not require Fréchet differentiability of the nonlinear operator involved, but 
only a suitable Lipschitz condition. Moreover, since this Lipschitz condition is only local, is 
does not lead to a strong degeneracy as a global Lipschitz condition, but covers large classes of 
nonlinearities arising in applications. 

Let X be a Banach space, and let A : (x0 , R) - X be a (nonlinear) operator, where 
E(xo, R) denotes the closure of the ball B(xo, R) : x E X, jjx - xoII < R}. Suppose that 
the operator A satisfies a Lipschitz condition 

lAx1 - Ax211 :5 K(r )ll xl - x311	(x1, Z3 € .(xo, r); r	R),	 (1) 

where K(r) denots the minimal Lipschitz constant for A on the ball .(xo, R), i.e. 

- sup I lAx 1 - Ax 2	 - 
-	11z1 - Z211 : x

1 , x 2 E B(zo,r);x j ^ X2}



Define a scalar function a [0, R] — [0, oo) by 

a(r)=ao+jc(t)dt,	 (2) 

where
ao=IIxo — AzoII.	 (3) 

Theorem 1: Let A : B(xo, R) - X be an operator satisfying a Lipschitz condition W. 
Suppose that the function a given by (2) has a unique fixed point r, in the interval [0, R], and 
that a(R) < R. Then the operator A has a fixed point x 0 E .(xo, r.). This fixed point may be 
obtained as limit of the successive approximations x, = A'z0 E .(z0 , r.), and is unique in the 
ball B(xo,R). 

Proof: We claim that

II A (z + h ) —Ax II a(r+p)—a(r)	 (4) 

for IIx_zoII:5r and IIhII:5p.In fact, for the subset IX, z+h,...,x+h}of[x,x+h]wehave 

II A (x + h) — Az il !^ F IA ( + h) — A ( + L_h) 
1=111

(r + -ll h ll) ! lhl <	 (±
fl) 

1	 j=1 
n	n  

The last term may be considered as upper R.iemann-Darboux sum of the function ,c = ic(r) with 
respect to the partition {r, r + p, . . ., r + p} of [r, r + p), and hence tends to 

r+p
c(t)dt= a(r+p)—a(r) 

as n —, 00; this proves (4). Now, if we define TO = 0 and r = a"(ro), by induction it follows 
that

lIXm — x ll :5 T — T	(n < in).	 (5) 

Since the sequence (r) is monotonically increasing, it converges to r = sup r,,. By (5), we 
conclude that (xn)n converges to x,; the estimates llx,,— roll < r, and li z . — roll 15 te also 
follow from (5). 

To prove the uniqueness assertion, suppose that x is an arbitrary fixed point of A in 
B(xo, R). Consider the successive approximations 

P0	11 Z - roll, Pn = a'(po),	6 =	,	,, = A'o.
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Applying (4) to x = x0 and h = - x0 yields 

IIi -	= lAx' - Axoll < a(lI z ' - zoll) - a(0) = P1 - r. 

By induction, we get 11C. - xJ < p, - r. Since both (r) and (pn) converge to r,, we 
conclude that 6, -+ x, as well. But	x' for all n, and hence x' = x,i 

We make some remarks on Theorem 1. The usefulness of this theorem consists in reducing 
the (hard) problem of finding fixed points of a nonlinear operator in a Banach space to the 
(simple) problem of finding fixed points of a scalar function. Moreover, in the "generic case" 
r, < R we get much more information on x, than just existence: the smaller we may choose 
the fixed point r, of a, the better we may "localize" the fixed point x, of A, and the larger we 

- may choose the invariant interval [0, R], the better we may "exclude" other fixed points of A. 

The case r, = R, of course, is worse: we may guarantee then only	ssiB(0R)ád -- 

existence  in E(O, R). 
Since the function ,c in (1) is increasing, the function a in (2) is convex. Consequently, 

existence and uniqueness of fixed points of a essentially depend on the size of the "initial value" 
a0 in (3). To illustrate this, we have sketched in Fig.1 and Fig.2 three possible configurations 
in case a is a strictly convex function. For small 0o (Fig.1) we have a unique fixed point r, in 
the interval [0, R]. As ac increases (Fig.2), a second fixed point r' may appear, and we apply 
Theorem 1 by choosing R between r, and r'. If ao is such that the diagonal-is tangential to 
the graph of a at some point r. (Fig.2), we choose R = r, and have existence in .(x 0 , r.). Of 
course, in the classical Banach-Caccioppoli fixed point principle we simply have c(r) ,c < 1. 
In this case we have existence and uniqueness in B(xo, R), where H > r, = (1 - c)-'ao may 
be chosen arbitrarily large (Fig.3). if a is not strictly convex, the graph of a may contain some 



a 

segment on the diagonal starting from some fixed point r (Fig.4). In this case we again choose 
R = r, and have existence in .(xo,r.).

Fig. 3	 Fig. 4 

For Frchet - differentiable operators A, Theorem 1 goes essentially back to L.V. Kan-
torovich [4]. The idea of majorizing the operator A by scalar functions is also due to Kan-
torovich (as a matter of fact, estimates of type (4) are often called "Kantorovich majorants" in 
the literature). The paper [14] seems to contain the first systematic application of Kantorovich 
majorants to nonlinear integral operators. 

It is worthwhile pointing out, however, that our Lipschitz condition (1) is much weaker than 
Fréchet differentiability of A. To recall a classical example, consider the nonlinear superposition 
operator

Fx(i) = f(t, x(t))	 (6) 

generated by some Carathdodory function f : l x Ut - lit in the Lebesgue space L = 
L(fl) (1 < p <co). The Lipschitz condition (1) for the operator F in L is then equiva-
lent to a Lipschitz condition 

If(' u) - f(t, v)I	sc(r)ju - VI	(Jul, lvi :5 r) 

for the generating function f [1]. On the other hand, the operator F is Fréchet differentiable in 
L only if the generating function f is linear with respect to the second variable [5]. 

Now we are going to apply Theorem 1 to the nonlinear singular integral equation 

X(t) = I k(i,r)f(i,x(r))d	(a ^ i b)	 (7) 
j0	t — r



(a)	k(a, a) = k(b, b) = 0, (b) w(k(.,r);ö)log b a = 

(c)	5 w(k(i,.);a)d = 1	or
T w(k(, .); or) dc7 = O(5a.i) 

1
(d)  

in the Holder space C = Ca [a , b], equipped with the usual norm II z c = II x IIc + [z), where 

In(s) - x(i)I [XI. = 8U 
D^$ ,	I - 

For simplicity, we put z 0 = 0 in what follows. The right-hand side of (7) defines a nonlinear 
operator A which may be viewed as composition A = SF of the superposition operator (6) and 
the linear singular operator

lb k(t,r)x(r) 
Sz(t) 

= 	t	
dr.	 (8) 

—T 

The operator (8) has been studied extensively in the classical HOlder space C(0 < o < 1), as 
well as-in several-generalized HOlder spaces. Sufficient conditions . for the boundedness of 6 in --	- 
the space Ca[., ], for instance, have been obtained first by I.I. Privalov [10]; they build on the 
classical Zygmund inequality [15] 

w(Sz;i) < c	w(x;r dr + t )	jW 
w(

1
Iz;r).  

7 

where w(y; . ) denotes the modulus of continuity of the function y. We point out, however, that 
for guaranteeing the boundedness of the operator (8) in the space C one usually has to impose 
quite restrictive conditions on the kernel function k = k(t, r). For the reader's convenience we 
recall that a typical set of such conditions is as follows: 

The sufficiency of the conditions (a) - (d) for the boundedness of the operator 5, as well as 
upper estimates for its norm JIS11 in Ca , may be found in the monograph [3]. 
In order to apply Theorem 1 to the operator A = SF we have to find an explicit formula, or at 
least a good upper estimate, for the Lipschitz constant ?c(r) in (1). Since for the linear part (8) 
we simply have ic(r)	it is the nonlinear part (6) whose Lipschitz constant 

,c(r) = sup IIFx - FyIIc : 
li n lic . , IIIIc	 (9) 1 II - yIIc 

requires a more careful analysis. Before carrying out this analysis, we emphasize the dependence 
of (9) on r > 0. In fact, in [6,7] it was shown that the superposition operator (6) may satisfy a



global Lipschitz condition in the space ca (i.e. K(r) const in (9)) only if the corresponding 
function I is affine in the second variable (i.e. f(t, u) = a(i) + b(t)u with fixed coefficients a, b E 
Ca ) . This degeneracy phenomenon caused the prejudice that it does not make sense to apply 
the Banach - Caccioppoli principle (or its generalizations) to problems involving superposition 
operators in Holder spaces, and may be the reason why in many papers on the equation (7) one 
tries to impose (unnatural) compactness conditions to employ the Schauder principle, rather 
than the Banach. Caccioppoli principle. Similarly, led by the same prejudice, we applied in a 
previous paper [2] Sadovskij's fixed point principle for condensing operators [11] to the equation 
(7). Apparently, E.P. Sobolevskij [12, 13] was the first who emphasized the need of studying 
local Lipschitz conditions in this case (i.e. K(r) depends actually on r in (9)). In fact, in case 
f = f(u) it is shown in [13] that the function (9) is finite on (0, co) if and only if the derivative 
g(u) = f'(u) exists and satisfies ig(u) - g(v)i :5 c(r)Iu - vi for J ul, lvi !S r. 

Building on this idea, we shall derive now an estimate for the function (9) in the nonau-
tonomous case I = f(i, u). To this end, suppose that the partial derivative g(i, u) = Of (t, u)/ôu 
exists and defines a superposition operator 

	

Gz(t) = g(t, z(t))	 (10) 

in the space C. From the well-known formula 

f(t, x(t)) - f(t,y(t)) = [z(i) - y(t))	 A j g[t, (1— ))z(t) + Xy(t)]d 

and the fact that C is a normed algebra we conclude that 

il Fx - Fy iIc :5 li - y lic	g[., (1 - )z(.) + AY(.)1d10 

and hence

	

c(r) < sup{lI Gz ilc . li z Iic	r}. 
Thus, our problem reduces to estimating the growth of the superposition operator (10) on each 
ball E(0, r) C C O . But in [2] it was shown that 

sup {iiGz Ilc . : ll z iic !^ r} = 

where
7c(?) = sup {ig(i, u)i : a t < b; Jul < r} 

and
'ya(r) = sup I ig(t,u) -g(3,v)i a < t,s ^ b; i u l,lv l	r; iu— vi <nt - sla}. 

lt SI C,	 la 

In this way, we arrive at the following



Theorem 2: Suppose that the operators (6), (8) and (10) act in the space c a = Ca [a , b] 

and are bounded. Moreover, suppose that the scalar function a [0, co) -' [0, oo) defined by 

a(r) = no + 11511 
Irmaxevc(t),7a(tdt	 (11) 

(a0 = IISF( 0)IIc) has a unique fixed point r in some interval [0, R], and that a(R) ( R. Then 
equation (7) has a unique solution x E (0,r.) C C. This solution may be obtained as limit 
of the successive approximations x, = (SF)"(0) E E(0, r.) and is unique in the ball B(0, R). 

In some cases, the scalar function (11) may be calculated explicitly. We illustrate this 
by means of a very elementary example. Suppose that the nonlinearity in (7) is a quadratic 
polynomial f(u) = u2 + pu + q, where 

	

0 <p < 1, (1 - p)2 > 4IqIjS(1)IIc.	 (12) 

A trivial computation shows that 'yc(r) = 2r + p and y.(?) = 2r, hence 

a(r) = r2 + pr + qlIS(1)IIc. 

By (12), the function r - a(r) has two different positive roots 

=	{i —± [(i —p) 2 - 4IqIIIS(1)IIc] 

Consequently, the condition a(R) < R holds for any R € [R.., R], and Theorem 2 applies. 
Observe that ic(r) -+ 00, as r .-.+ oo, in this example, and hence the classical (global) Banach-
Caccioppoli principle does not apply. 

We intentionally confined ourselves to the Holder space C when dealing with equation (7). 
One could expect that another good choice would be the Lebesgue space L9 = Lp ( a, b) (1 < 
P < oo), since quite effective formulas for the norm of the linear operator (8) are available in 
this space, too (see, e.g., [8,91). However, according to a classical theorem of M.A. Krasnosel'skij 
[5], the requirement F(L,) C L, necessarily leads to nonlinearities (6) of sublinear growth, i.e. 
If(, u) < a(t)+bluI for some a E L and b > 0, and thus even excludes the elementary quadratic 
example we considered above. 

The authors express their gratitude to the referees for several valuable and interesting 
remarks. 
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