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Error Bounds for the Truncation of Countable Linear Differential Systems 
Arising from Birth-Death Processes 
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An infinite system of linear differential equations 
+ in(t) , x(0)=c (nO,1,2 .... ; tO; x_ 1 0) is considered. The constant 

coefficients A. , lin are merely assumed to be non-negative. Explicit error bounds 
am dived for théáppróxiniatioii of - a solution by the- aolutlona of-the-finite 
truncated systems. They crucially depend on the ratios of the coefficients A , 
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1. Introduction . Simple birth-death processes with enumerably many states can 
be described by a countable system of differential equations [4] 

x'(t) = Ax(t) , x(0) = c (t O) , (1.1) 

where x and c are Infinite column vectors and A Is a constant Infinite matrix of 
the form

I  

-A0	iii 
A -Aj -pj P2 

A = I	A1 -A2-p2113	 (1.2) 

1	

] H 
with A, k 0 ( I 0), p 0 (1 k 1). It Is known (7] that this system possesses 
for c k 0, c e 11 a non-negative solution which can be obtained approximately 
by truncation. 

For numerical purposes It Is of Interest to know error bounds. Results In 
the case A = A(t) :c A(t),	lmn(t) p(t) are given In [101 , whereas the case 
A a (a ) Is any bounded operator on 1, 	sup	Is I -. 0 or -	1	 1'JnJn+1 " 

sup	I a I + 0 (n + cx)) is considered In [3]. In particular, if A is givenn+1Ji=1 Ii 

by (1.2), then the latter conditions reduce to A. — 0 or	-. 0, respectively. 

28*
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In the present paper error bounds for Inhomogeneous systems without any 
restrictions on the growth of the non-negative coefficients A., (L are derived. 

They crucially depend on the ratios of the coefficients. In particular, if 
- g (0 g co ) as n - a), then the bounds are the smaller, the closer g 

is to 0 or to a). Remark that similar results for more general systems (A is 

a quadrodlagonal matrix with non-negative column sums) are established in (8,9]. 
However, both the assumptions and the assertions are more complicated than in 

the present paper. 

2. Prelimlnailes . We consider a countable system of linear differential equations 
of the form

x'(t) = Ax(t) • f(t) , x(0) = c	(tO) ,	 (2.1) 

where x (x0,x1,...)T, f if0, 	c = (c0,c1,...)T are infinite column vectors 

and A is the matrix defined by (1.2). The following conditions are assumed to 
be satisfied

C(O,w)	(n=O,1, 2,...) ,	 (2.2) 
t 

c , ( fIf&Idr) 0 E 11 for all tO ,	 (2.3) 
0 
0 (n>O) ,	0 (n1) .	 (2.4) 

Remark that we may assume gi,> 0 Instead of 1z, 0 since in case 0 for 

finitely or infinitely many integers n k 1 the Initial-value problem (2.1) can be 
reduced either to a finite system and a countable system satisfying (2.2) - (2.4) or 
to enumerabiy many finite systems, respectively. For convenience, we define 

0 ,	 (n0) .	 (2.5) 

Let N be any non-negative Integer. Truncating all coordinates of the vectors 

x, f, c with indices greater than N as well as the corresponding columns and 

rows of the matrix A we obtain the finite Initial-value problem 

_xN(t) = ANxN(t) +fN(t) , xN(0) = cN (t0) ,	(2.6) 

where	 fN(f,...,&)T c'(c0,c1.... cN) and 

_ c o 1 
A O  - 

AN

AN_i N
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It is well known that the solution of the initial-value problem (2.6) can be 
represented In the form 

x 1(t) (n 0,	N; tO) (2.7) 

where (q, q,..., qNM
	for every fixed in (O'm !9N) denotes the solution 

of the homogeneous system (1.1) with q(0) 8	(Kronecker symbol). It
Is shown in [7] that 

0 e qAN 	q,4t) '1	(0!9m,n 'N; tO) .	 (2.8)

Hence, there follows the existence of the limits 

q,(t) )jmq(t) - (m,n0; tO), (2.9) 

which for every fixed m solve the homogeneous system (1.1) with the initial 
conditions q(0) = 8,, as well as the existence of the Laplace transforms 

Q(s) = etq(t)dt	(5>0).	 (2.10)rim 

Moreover, In [8] there are proved the Inequalities 

0	 (01cm,nscN;tt0).	(2.11) 

Finally, we notice

4?ONO	'EON 
(sEA'i1 =	 ,	 (2.12) 

#o zV... 

where E denotes the unit matrix of order N+1. From (2.7)- (2.9) there follows 

N t 
Ix(t)-x'(t) I

	

	E { f[q,( r) - qjr)] 11jt-r)I dr + Ic I[q jt) q(t)] } (2.13)m0 o 
N+ t 

+ El' {fIfrIdr+ IcmI}	(Om,nN; tO) 
mN+i 0 

for every Integer p 1. Hence, In order to prove the existence of x(t)	mx(t)

and to obtain error bounds for I x(t)-x(t) I It suffices to know upper bounds 
for the non-negative differences - q(t). In the following we will show 
bow these can be derived by means of the Laplace transformation. Thus, we 
first deal with certain principal minors of the matrix sE - AN
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3. Some properties of principal minors of the matrix sE -A . Let 

0	 for 1<1-1 
I	 for 
s+cz1 -p11 

4(s) =	-A1 str11	0	 (10,1, 2,...).	(31)
for j1 

0	-A 	s+a, 

Every determinant Af is a polynomial In s of degree f-i+1 with the leading coef-
ficient 1. The other coefficients being sums of principal minors of the matrix 
-A4*4 are non-negative, since the column sums of _AN are non-negative [1,6]. 
(Remark that sE-AN for 5)0 is a non-singular M-matrix 111.) Therefore, 
ii(s) sJ ' 1 >0 for s > 0. 

Next, the recurrence formula 

4/ (s+crf)At'-Afrl(lJlit2	(0^i^j)	 (3.2) 

can be verified Immediately by Laplace expansion. Using (3.2) and replacing In 
usual way an empty sum by 0 and an empty product by 1 the relations 

k.i , kAk+i = ,J_2 H(A 1ii)	(0^J^fk+1)	(3.3) 

and
k-1 - I v-i	k 

=	f fl	HA )	(0fk+1)	 (3.4) 
vJ\pJ	p.rv Pj 

can be proved by induction (1, j fixed; k f-D. In particular, we have for J= O 

 and 1 = 1 by (2.4), (2.5)
k 

,i(0) = H A k 0	Wit -1)	 (3.5) 
po 

and
k+iiv-i	k	k 

4(0) =	( H	H A)	H p> 0	(k ^ 0).	(3.6) 
V=1 P=1 pv /	P. 

Furthermore, using (3.2), (3.5) and (3.6) the inequality 

4(s)/iir(s)	[4(0) + s4'(0)]/[A1(0) + sLIr'(OJ] (k 0, s> 0)	(3.7)

can be proved by induction. As an Immediate consequence we obtain the estimate 

[l(0)+ s4(0)]/[Ll(0)+s4'(0)]	(0kN, s>0). (3.8)
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4. EstImates of the differences QP(s) - QJs). The entries Q	of the

matrix (sE_AN) 1 have the representations 

	

un-1g AN	n-i 

	

o S& 44 S	 for 0 it m n !c N, 

	

10Ms)	P=M 
=

An-Il	g	in £io	m.i	fi PP for OknmeN, 
pn.1 

which can be obtained easily from (2.12) by Laplace expansion. From (4.1) there 
follows by means of (3.3)	- 

QN41(5) - 9()	n-i(s)Aln-i(s) N N+1 
s zis),.14(s)	pli+i	(0 m, n'N; s, 0). (4.2) ZIM

Hence, by (2.8) and (3.8) 

o !C Q1(s) - QN(5)	[	(Os1	0)][i.o	(0)] N	N+i 

	

HA fl	(4•3) 
14'(0) + sit'(0)] [1 t41(0) + sA'(0)] pm p=n.i 

(0 1c m, n!9 N; s' 0). 

Next, from (3.5) and (3.6) 

N+i 
sfl'(0).s4'1(0) - AN+i[z.1O01i(0)]	(N 0, sO).	(4.4)

Then the Inequality (4.3) becomes 

5 (5) 
0	 i1(0) + sti74)] X	 (4.5) 

	

r	N	 N+1 
I	 1 

k+ s4O) - ,.1 h1 (0)+ sL1-1(0) 

where 5(s) Is defined by 

= [,jn_i(0)+ sA(0)]/flii	(n0).	 (4.6) 

Therefore, 

o QP(s) - Q(s)	 + s11? (0)] if A X	 (4.7) 

	

F	1	 piC+i	1 
s41(0)	11N+P(0) + 

(O:cm,nNN+p; s0)
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In what follows it will be convenient to establish the numbers 
J 

D/= 4J(0)/fl A	(ii^j)	 (4.8) 
P. 1 

whenever A 0 for each p = 1, 1+1, ..., I. According to (3.1), let Dj-1 = 1 and 
0 for 1< 1-1. From (3.4) we obtain the representation 

J+I v-I 
DI c E I(/A)	 (4.9) 

V=i P-1 

holding for all Integers J( 1, too. 
Notice that, If A,> 0 for every Integer p -i I and any fixed I k 1, the sequence 

(D/) 1 Is monotonically Increasing. For these I we define 
D urn D'.	 (4.10) j J—c= 

Obviously, we have I < 1)1	. Remark that DJ = Dj+ (Dj- DtI)D1+1 (ikJ). 
Therefore, Dk c0 for some kI Implies D.	for all k^I. 

Now we distinguish two cases. 
Case I: Assume that A. >0 for all p ^t 0. Then (4.7) can be rewritten as 

0	N' QP(5) - Q, 1(s)	8(s)( o + sD	
Df"P- DIN	

(4.11)') 
(A0 + sDf" P)( A0 + sDf') 

(0 !c m,n' N<N+p; 5>0). 

Case 2: Assume that finitely or Infinitely many A vanish. Let p= mln( p k 0: A= 0), 
p sup( p :k 0: A = 0). Evidently, 0 t p p	Then (4.7) for N < p implies 

0 1C	
'	

Q(s)-Q,(s)	-	ADN	(Ocm,n^N.cN+p;s>0) (4.12) 

For N p we Immediately obtain by (4.7) 
QN+P(5) = QNJun(s) (OmpN , 0nN<N+p; s>0),	 (4.13)nm  

where p,, = max ( p N: A ., = 0); moreover, If pm N (i.e. A. > 0), then (4.7) yields 

N.p 
0 Q,P(s) - Q(s) ' 1 8 (s)Dm-1 ii/DN - H (A,)/L,N+P+1] (4.14) 

	

'N1 L N1	
N1 

( ppN mj9 N; 0rne.NN+p;s>0), 

"N m 
because z1(0) 0 for p. m and A?(0) = D' H p H A for pNm^ N P.1 " P.P"J ' 

by (3.5), (3.6) and (4.9). The estimate (4.14) can be reduced to
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o Q,P(a)_ Q,(s)	(8)L' ,DN	 (4.15) +1

s>0) 

Remark that the upper bounds in (4.14) and (4.15) are equal, when N< j5 and p Is 

sufficiently large. If p c (i.e., only a finite number of the coefficientsA va-

nishes), then for every N> P we have p,, N+p P and therefore (4.14) reduces to 

0 !9 #'J P(s) - ri	 l N (s) ^ 8.(s) D	 - 
P 
! 1 [I/DE	1/DP]	 (4.16) 'eflJ,!	 (flZfl	S 	'1	P1 

( m:9 N, 0'nN N+p; s 0). 

S. Reaults . Using the above estimates we are in position to derive explicit er-

ror boundi for -the approximation of the limits q, defined by (2.9). -For -conve- 
nience, we Introduce the abbreviations 

K(s,tJ = tj8(sXs+cr)eSt , kn (t) = thE K(s,t) (nO, t0) .	(5.1) 

Theorem 1: Assume (2.4). Then for every fixed integer N0 and m,n0,1.....N 

0 ic q(t) - ON t) , Min (1-q1 (t), AN (t)) (t0) ,	 (5.2) nm 

where either

In case 1 if D1 

AN = l	{( t)	s1)l in case I if D1 = = nm

	

I'	+ sDf' I and in case 2 for N< p, 

or, in case 2 for N 

0 
k(t)1,rn /1.+ 

AN = I	1iDN Jun	k (t)D1, 

k(t)D 1 [1/D 1 - 1/D1]

for OmpN 
for 

for ppN<mNffD.l=, (5.4) 

for P=PN(mNffDP+l(Co. 

Hence, for fixed m, n k 0, q(t) converges uniformly in t on every bounded interval. 

R.mrk., 1. It is easy to show that In case 1 

I i	 for nO. 

'0	- for n1 .
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2. In case 2 we have for n > p 

_1+lp	
"•	 - Dn-2 ) l	(5.6) 

because 41(0) 0 implies k(t)	K(.O.t). 3. In cane 2 there follows directly 
from (1.1) with c, S	that q(t) 0 for 0 amc p	N, tlt 0. Thus, 

	

for 0'm apn, tO .	 (5.7) 

. The infima In (5.3) can be approached by setting a l/t (t> o), because 
e/a has a minimum at a lit. 

Proof of 'Theorem 1: Obviously, by (2.8) 0	q(t) - q(t) I 1 - q(t).
From (2.10) there follows 

Q P(s) - Q(s) = fe_ ST [qN+P(r) -nrn q(r)dr (s)0).	 (5.8)rim zXM 0 
Using known properties of the Laplace transformation we obtain 

s[QP(s_of) - Q(s-a)] = fe_ 5T (e1T[qp(r qnrn) - '(r	 c5) )]}dr (s >• (5.9)nM 

Since the Integrand on the right-hand side Is non-negative (see (2.11)), 

e 2 S)t[qN+p(t) - q(t)] (sa, t0).	(5.10) 

Hence

	

qNInmP(t)_ g.4(t) :c(s+cr)eSt[QP(s)_ Q(s)]	(s>0, t0).	(5.1D 

It follows from (5.8) by using (4.13) and the estimates (4.11), (4.12), (4.15) and 
(416) that, for fixed m,n 2 0, q(t) -. q,,(t) as N4 , uniformly In t on 
every bounded Interval. Furthermore, letting p -. co and moreover, If Di < co In 
case 1, s - + 0, we obtain the upper bounds A. nin 

Now, It Is easy to prove that the solutions x N = (x xf',..., x#) T of the 
finite initial-value problems (2.6) converge componentwise to a solution of the 
Infinite Initial-value problem (2.1) as well as to determine explicit error bounds, 
provided the conditions (2.2) - (2.4) are satisfied. We use the abbreviations 

N 
RN = RN(t) =	{ ji1(r)Idr + I c. 11 , R R(t)	rnRN(t) .	(5.12) 

m-O o 

Let M denote any fixed non-negative integer not greater than N.
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Theorem 21 Assume (2.2)-(2.4). Then the Initial-value problem (2.1) has a 

solution x a (x0	)T where 

X. = x(t) = tim r(t)	(n 0,1,2,...; t0),	 (5.13) 
N- W " 

uniformly In t on every bounded interval, with the following error bounds: 

Ix(t) - x'(t)I 

AO
- DN)}R + R - RN In case 1ff D1 <, 

min( 1,A)RM+R-RM	 in case lIfD1, 

R	 ln case 2 for N(p, 

- R - R	 in case 2forpN' co , 15.14) - - - 
PN 

min (1,A)(RM-R)+R-RM	in case 2 for p<MNIfD1co, 

min f1,kfl(1-Dj/D+j)) (RV -R)+R-RN In case 2 fir pN if 

(O'n!cN, t0). 

Proof: Using the error bounds given In (S.3),(5.4) and noting that A(r) 9 A(t) 
for 0 :c t, m M and that q(t) 1 the uniform convergence	-.	as 
N -.	and the error bounds (5.14) can be obtained from (2.13). It Immediately 
follows by (2.6) that -- ,(t) -.	-x(t) as N -	for every fixed n-1!0, 
uniformly In t on every bounded Interval. Therefore, letting N In each 
equation of the system (2.6) we see that the limits xn solve the Infinite Initial-
value problem (2.1). 

6. Remarks and e—iinpl... 1. If ca 0, 1'm 0 (m 0, ta 0), then from (2.7) and 

(2.8) there follows (OnN, tO). Therefore, xkt)x(t) and 
the upper bounds in (5.14) are valid for x,,(t)-xt). Furthermore, by (2.6) 

*( '') = - 'N XN	
N 

V=O
+ Ef v0 

Integrating from 0 to t, we obtain 

From this there follows x s 11 and H x H R. 

2. In (7) it is shown that the following conditions are sufficient In order that 
=1 and that (	...	is the only non-negative solution of 
,  
(1.1) with	 (in 0 fixed)
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(i) rn ge	in case 2, 
(ii) Dm 	D /A = both In case 1 and in case 2 with	for in , m p=rnP P 

In particular, (I) is satisfied for every rn0 if j5	and (U) in satisfied if D,, 
or	i/A. Sufficient conditions for	q(t) ci for some t , 0 and cor- p-rn P	 n=u 
responding uniqueness have also been proved In (7). 

3. Suppose that c Li,, 0 for in)- in0 a 0, t a 0. Then R Rm R for in a in0 and
MO  in case 2. by (5.14), xt)=x(t) for NapNmO. In other words: If in0 

and p rnin(pnz0 : Ap =O), then x	(0anN) for every Nap. In fact, by 
(2.6) it is immediately seen that xj =0 for p.i gC n a N. Hence, x. - 0 for nap+1 
and (2.1) can be reduced to a finite initial-value problem. 

4. The upper bounds AN defined by (5.3) tend to zero as N- of the same 
ZIM 

order as either D1 _Df' if D1 c or i/Dr if D1 . The behaviour of Dr as 
N m is determined by the ratios i&/A, for large p. In particular, putting 
ji 1,/A 1 ,= t, (pf) one can obtain easily from (4.9) that D1- Dr= 0(11uv+11) 

If to =11p, Di_ Dr=o(cN) if w1,cc1, i/Dr=o(1JN) if w , .ri, i,Dr=o(c_N) 
if (.y . c> I and i/Dr 0(1/NI) if Cap. p. This shows that the more different 
the behaviour of A p , i&, for large p is the faster the upper bounds Am(t) for 
fixed ii, in, t tend to zero as N -. . Similar observations can be made in case 2. 

Ezsp10 Ii In the theory of kinetics of compartmentalized free-radical polymeri-
zation reactions one was led to consider the homogeneous initial-value problem 
(1.1) where	A>0,	=n ( p), 0. nO), c0 1, c1 c2 ... 0 (2] . Since Dr

N 
=Z p9(/))V - 

0	 - as N	(see (4.9)), it has (cf. Remark 2) the unique non- 
V = 

negative solution ( q00 , q10, )T• (Remark that qnO is the concentration of loci of 
reaction system which contain n propagating radicals.) Using (3.S),(3.6),(4.6) ,(S.1) and 
(5.3) we obtain the upper bounds

( 

	

Aa=i {(i+	" ( )	ø ' si: ::
	

(A/SL)N) 

Remark that the estimates given in (8,9] fail since the assumption	1/cr c 
Is violated. 

	

Example 2a Let A=l.	c.= I1n1, 1,=0 (n0,1,2,...; t0). Since D" 

we have case 1 with D1 w. Therefore, by (5.14) and in view of Remark 1, 
0 a x(t)_xt) a min f 1,A ) RM + R_RM, 

where by (5.3) (cf. Example I with A z1) 

	

I. DIM-'
n 	ZN I	i{(i+ n+1 ___)(1+8;vt)	iN 1
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M 
and by (5.12) RM	1/m! -R e (Ma,). Obviously, 

m0 

(i) AM(t)a(n-.2)(1.Dl')-i-(l+O'1)/(l.D") 

for taO (putting sal) 

(ii) A,'M(t) a 1	'n!t 
for t,0 (putting sal/i) and 

R - RM =	1/rn! < M.'2 
rnM.1	(M*1)(M41)! 

Suppose that we wish to find an integer N such that Oa x(t) - xt) 10'3 
for some n. L. We start from the sufficient condition 

A M (t)	M*2	 (Or n,MaN; taO) + (M.l)(M+1)! 
which yields Ma 6. Choosing M=6,the inequality is - - satisfied for e.g. n0 It 
N 2,8•lO" or. in view of (U) A06 c	 v 

	

if D=	
0 

v 1. > [ 10 4 e(t*1)(t*154) -tJ/2,8 - 
Since the right-hand aide is a monotone increasing function of t (t a 0) we obtain 
N a 10 for 0' t al, N a II for 0 a t '10 and N 2-12  for 0' taiOO. Choosing N= 12. 
we have A 	42,810	for n1,2.... .12 if (see (ii)) 

[l+(n+1)tJ(t*D") -E(t.1S4)/(t*D2) 2,810g. 
For n= I few computations give the unessentially stronger inequality 2t 3 -. 311 
-53404 t .154 <0. so that A	2,810	and, consequently, x 1 - x12 < 10	for all t16
lying between both positive zeros of the polynomial on the left-hand side, 
at least for 0.003 ata 103. For 0 at '0.003 we use (i) to show that A <2,810. 
Finally, we have	-	C 10 at. least for Oat a 103. In the same way we can pro- 
ceed for n=2.3.... . 12. For example. Oa x5 - x 2 10 holds at least for Oat '945. 

On the other side, in order to determine an integer N being as small as possi-
ble such that the only condition Oa x 5 - x	for Oat '100 is satisfied, we 

N start from the inequality (i.6t)(t.34)(t.i54) aO.012L( !) implying (ii) with 
n 5, Ma 6. If we put t 100 we obtain N a 11. Choosing N = 11. in fact the in-
equality is satisfied at least for 0.02 a t a 208. By using (i) it can be shown as 
above that 0 a X5 - < 10 3 for 0 a t a 0,02 . too. Remark that the present example 
has the constant solution x 1/n! (n= 0,I,...). By numerical computations one 
can obtain real upper bounds 6,, for x,,- x 2 (t) (Oanal2) holding in the intervail 
0' t a1O. They and the corresponding relative errors .5 ,, /x,, 8,,n! are exhibited 
for some n in the following table. 

n 1 2 4 6 1	8 1	ii 1	12 
6,, 7,15-7 3,65-7 3.05-8 1.45-9 3.05-10 2,05-10 I 1,85-10 

7,15-7 7,25-7 7,25-7 1,15-6 I 1,25-S 8.05-3 I 8,6E-2
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