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Esror Bouads forthe Truncation of Countable Linear Differential Systems
Arising from Birth-Death Processes

E. WAGNER

An infinite ayatem of linear differential equations xp(t)=Ap 1xp 1()-(Ageun) xu(t)
*Une1Xne(t) + (), x,(0)=c, (n=0,,2,...;t20; x_y=0) is considered. The conatant
coefficlenta A,, g, are merely asaumed to be non-negative. Explicit error bounda
are derived for the “approximation of a solution by the  aolutions of-the—finite
truncated systems. They crucially depend on the ratios of the coefficients Ap,,u,.
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1. Introduction . Simple birth-death processes with enumérably many states can
be described by a countable system of differential equations [4]}

x'(t) = Ax(t) , x(0)=c (£20) , 1.1

where x and c are infinite column vectors and A is a constant infinite matrix of

the form
) 3] o
Ao “A1py w2
A= Al ‘Az‘yz ”3 (1.2)

with 2,20 (120), g 20 (f21). It is known [7] that this system possesses
forc20, ce l; a non-negative solution which can be obtained approximately

by truncation.
For numerical purposes it is of interest to know error bounds. Results in

the case A = A_(¢) < A(e), g = u,(t) < p(t) are given in (0] , whereas the case

<£j€n janel

A= (a”) is any bounded operator on l1 satisfying lx~x}1p ¥ |aU| -0 or

n
su 21 IBUI” 0 (n> ») is considered in [3]. In particular, if A is given

n+l ‘jgwj=

by (1.2), then the latter conditions reduce to A,~0 or pg_ -0, respectively.

28*
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In the present paper error bounds for inhomogeneous systems without any
restrictions on the growth of the non-negative coefficients A,, y, are derived.
They crucially depend on the ratios of the coefficients. In particular, if
A/, 8 (0<g<o) as n-> o, then the bounds are the smaller, the closer g
is to 0 or to . Remark that similar results for more general systems (A is
a quadrodiagonal matrix with non-negative column sums) are established in [8,9].
However, both the assumptions and the assertions are more complicated than in
the present paper.

2. Preliminartes . We consider a countable system of linear differential equations
of the form

x'(t) = Ax(e) + fit), x(0)=c (t20) , 2.1

where x = {x5,x,,..3T, f={£f,£,.}7, ¢ = (¢4,¢,,..}T are infinite column vectors
and A is the matrix defined by (1.2). The following conditions are assumed to
be satisfied :

fae ClO)  (n=0,1,2..., 2.2)
t.

¢, {[If@ldr) pag ¢ 1 for all £20, 2.3)
[+} .

A, 20 (n20), pp>0 (n21). (2.4)

Remark that we may assume g, > O instead of y, > 0 since in case g, = 0 for

finitely or infinitely many integers n 2 1 the initial-value problem (2.1) can be

reduced either to a finite system and a countable system satisfying (2.2) - (2.4) or
to enumerably many finite systems, respectively. For convenience, we define

#o=0, ap=i,+p, (n20). (2.5)

Let N be any non-negative integer. Truncating all coordinates of the vectors

x, f, ¢ with indices greater than N as well as the corresponding columns and

rows of the matrix A we obtain the finite initial-value problem

-%x“(t)= ANxN(t) +fN(g) , xN(0) =cN (£20),  (2.6)

where xN= (xf;",xf',...,xg)’: fN=(Ib,!i,....f;,)7: cNe (cq.c4.....000 )T and

@ ¥
Ao -al- o
AN = “
. ‘u
0 N

Ana "oN
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It is well known that the solution of the initial-value problem (2.6} can be
represented in the form

N t :
xNie) ;;o { Jqu(r)fm(e—r)dncmq,‘:'m(e)} (n=0,1,..,N; £20) (2.7

where (gl . qlV ..., qN,,)T for every fixed m (0 < m <N) denotes the solution
of the homogeneous system (1.1) with gX (0)=5__ (Kronecker symbol). It
is shown in [7]1 that

0sgN(t)esqlti)<1  (0smns<N;t20). 2.8)

Hence, there fpllows the existence of the limits
 Gpa® = hm gl () (manx0;e30), 9
which for every fixed m solve the homogeneous system (1.1) with the initial

conditions qm(

0)=35, ., as well as the existence of the Laplace transforms
QN () = [ ak (e)at (5>0). (2.10)

Moreover, in {8] there are proved the inequalities

T3, nm

0 « L(e™ GN ()] < L qNe)] (0<macN;e20). @10

Finally, we notice

Lo e e
(sE-AN) = : : . 2.12)
Qo - - Oy

where E denotes the unit matrix of order N+1. From (2.7)-(2.9) there follows

N ¢
L¥rie)-aier L | ({ (2l - @M ONIE (e-D dr + I Mq,(6)- a¥ (8]} 213)
N+ t
+ Zy Ulfm(r)ldr# Ile} (0<m.n<N; t20)
maN+1 0

for every integer p > 1. Hence, in order to prove the existence of x_(t) = ,}l_r’nwxf(t)
and to obtain error bounds for |xn(t)-xf,v(t)l it suffices to know upper bounds
for the non-negative differences q,__ (t) - q,’:u(t). In the following we will show
how these can be( derived by means of the Laplace transformation. Thus, we
first deal with certaln principal minors of the matrix sE - AN,
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3. Some properties of principal minors of the matrix sF -AN . Let

0 for fci-1
for j= 1-1
sty gy 0
alls) = =), sta . (1=0,1,2,...). @D
. .. for j21
. . -”j
O ’ _/\]_1 s+al

Every determinant A{ is a polynomial in s of degree j-i+1 with the leading coef-
ficient 1. The other coefficients being sums of principal minors of the matrix

~AN are non-negative, since the column sums of -AN

are non-negative [1,6].
(Remark that sE-AN for s>0 is a non-singular M-matrix [1].) Therefore,
4J(s)2 s171*1,0 for s>0.

Next, the recurrence formula

8] = (s+apaft -2, u a2 (0<is)) 3.2)

14y
can be verified immediately by Laplace expansion. Using (3.2) and replacing in
usual way an empty sum by 0 and an empty product by 1 the relations

. k+1
apaket- pkart = 4172 VQJ("M”") (0<i<j<k+1) (3.3)
and .
kel/ v-1 k
4K0) = .E,( pg;“" ,,‘pr) (0<j<k+1) (3.4)

can be proved by induction (i, j fixed; k=j-1). In particular, we have for j=0
and j=1 by (2.4), (2.5)

k
2450 = T2 20 (kz-1) 3.5
p=0 P
and
Koy = 3 Tu, i1 i (k20)
ak0) = Al = 0 k=20). 3.
1(0) v=1(p=1u" piy p) p=lyp> (3.6)

Furthermore, using (3.2), (3.5) and (3.6) the inequality
2%(5)7881s) < [4E(0)+s45(0))/[ AE2(0) + s45*10]) (k20,550) (3.7
can be proved by induction. As an immediate consequence we obtain the estimate

a%(s)/45(s) « [ AK0) + s4¥(0)]/[25(0)+ saD(0)]  (0<kcN, 550). (3.8)
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4. Estimates of the differences QN’P(s) - QN (s). The entries QX of the

matrix (sE-AN)"1 have the representations

w,ﬁl;\ for 0<m=<n<N,
A{)V(s) p=m
QN (s) = (4.0
ag” 1(5)4:;1(5) 'ﬁ‘

#, for O0<n<ms<N,
aMs) p=n+1

which can be obtained easily from (2.12) by Laplace expansion. From (4.1) there
follows by means of (3.3)

QN1 - QN (s) = ‘wﬁx n (0<mnsN;s>0). (4.2)
- “mmS S TSV A s) o @ pmnerhe L TR NEET T TR

=n+1 -
Hence, by (2.8) and (3.8)

n-1 m1 1 1 N N+
0 < QNls) - QN (g1 « 48O s MO AT N s HOY) Y,

N(onsAN(o) AN*1(0)+ saAN*1(0) P‘m Po=ne
23
(0O<m,n<N;s>0).

. u, (4.3)

Next, from (3.5) and"(3.6)

s Hu = AN*H0) 454N H0) - Ay, [4510)+54M0)]  (N20,550). (4.9)

Then the inequality (4.3) becomes

5
0 5 QNN - QN (s) < -—[A“’"(O) + sAmYO)] X (4.5)

N N+l
A, I,
pSm pam
2M0)+ saM0) Y101+ s4N*T(0)] ’

where §,(s5) is defined by

n
5,.(s) = [43710) + saT"YO))/ Hlup {nz0). (4.6)
p=
Therefore,
X
0 < QMNeP(s) - QN (s) < [am 10) + saP"10) il A, X .7
pom P

N+
1 - p= ‘1A 4
a5(0) + 540 45*P0) + saY*P(0)

(0<m, nsNcN+p; §>0) .
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In what follows it will be convenient to establish the numbers
_' .
D} = 4ak0) /pILAp (1<is)) (4.8)

whenever 1 >0 for each p = 4 i+1,.., ] According to (3.1), let D} '=1 and
D{=0 for j<i-1. From (3.4) we obtain the representation

J*1 vt
D} = Z II (1, 72) 4.9)

holding for all integers j« i, too.
Notice that, if A o’ 0 for every integer p 2 / and any fixed /21, the sequence

(D)) a1 18 monotonically increasing. For these i we define
D, = lim D} . (4.10)
FET- )

Obviously, we have 1 < D, « . Remark that D}B Df‘“-b (D“‘— D“‘“)D‘,l (i<k<j).

Therefore, D, ¢ for some k=i implies Dy <o for all k21i.
Now we distinguish two cases.

Case 1: Assume that Ap >0 for all p20. Then (4.7) can be rewritten as
DN*P-pN
) Gov oo Pl bR
(0O<smn<sNcN+p; s550).

0 < QN>P(s)- QN (s) < 5 (s)a,+sD/™ (4.10)

Case 2: Assume that finitely or infinitely many Ap vanish. Let p=min{p20: Ap=0},
p=sup{p20: Ap=0). Evidently, 0 <p <5< . Then (4.7) for N« p Iimplies

) Ay +sDPT1
0 < QN:P(s)- QN () = L5 ()02 21

3 +sD1N (0<m,nsNcN+p; s>0) (4.12)

For N 2 p we immediately obtain by (4.7)

QN+Pls) = QN (s) (0sm<py, 0<n<N<N+p; s>0), (4.13)

where p,; = max{ p<N: AP=0); moreover, if p\, <N (ie. An>0), then (4.7) yields
1 - ’ Ne

0 < QNP(s) - QN ()< 55D A1 /DN | - pedl, A7) meﬁ*l] (4.14)

) (pspy<m<N; 0sn<sN«N+p; 5>0),

because 47'(0) =0 for py;, <m and 4P(0)= D™ e+ 1 l}l ppnI;IN. A, for py<ms<N

by (3.5), (3.6) and (4.9). The estimate (4.14) can be reduced to
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0 < QNLPls) - QN (o) < L5 (DY /DN (4.15)
(ppoy<msN;O0<n<NN+p; 5§50)

Remark that the upper bounds in (4.14) and (4.15) are equal, when N<p and p is
sufficiently large. If p <o (i.e., only a finite number of the coefficients A o VA~
nishes), then for every N>j5 we have ONZ PNep® p and therefore (4.14) reduces to

0 < QN+P(s) - QN.(s) = L5 siDE(1/DY, - 1/DN3P] (4.16)

(pcm<N,0<n<N«N+p; s>0).

5. Results . Using the above estimates we are in position to derive explicit er-
ror bounds for the approximation of the limits g, defined by (2.9).-For -conve-
nience, we introduce the abbreviations

=1 t =
K, (s5,8) = 55 (sHs+a,)e5t, k () -.h}g K (st) (n20, £20). 5.1
Theorem 1: Assume (2.4). Then for every fixed integer N20 and m,n=0,1,...N

0 < g, (6)- gN (£) < min{1-gN (), A ()} (¢20) , (5.2)

where either

%oansn(mw,-p{") Incase! if Dy <o .,

Agm= M{K(SQM] in case 1 if D = o 5.3
20|77 2y + sDY and in case 2 for N<p,

or, in case 2 for N2 p,

0 for 0<m<py, (<ps ),
Itn(t)D‘,’I:"':l/D‘,’;,l for pyycmsN ¢p (),

Apm ® kn(t)D‘-:‘:;‘/D‘-zl for ;-5= pn<ms<N If D5 =, 5.4
kO0DFEM1/DY, - 1/D;,,] for p= py<msN if Dy, <.

Hence, for fixed m,nz0, q:'m(t) converges uniformly in t on every bounded interval.

Remarks: 1. It is easy to show that in case 1

@, & (0) 1 for n=0,

n-1
- (5.5)
Ao (uAn/un)prnlt(xp/up)-(1oxn/y,)u>;"1- D{2) for nat .
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2. In case 2 we have for n>p

n n-1
k,=(1 Aﬂ/““)\,:g_‘u(pgv 2,7u,)= (1 xn/gh)v:‘},: o ort-oriTt se

becauae Ag_l(O) = 0 implies k (t) = K (+0,t). 8. In case 2 there follows directly

from (1.1) with ¢ =46 . that qnm(z):--o for 0 « m«< p«<n«< N, t20. Thus,
qm(t)ﬂo for O<m<«<pcn, t20. 5.7)
6. The infima in (5.8) can be appronchod by setting as=1/t (t>0), because
e5t/5s has a minimum at s=1/¢t.
. - oN -
Proof of Theorem 1: Obviously, by (2.8) 0 < q,.(6) - g (8) < 1 qly (¢).

From (2.10) there follows .
QN:P(s) - QN (s) = _re-“ [ahzP) - g (]dr  (5>0). (5.8)
o
Using known properties of the Laplace transformation we obtain
s[QN:P(s~a,) - QN (s-a )] = fe 5T d{ "[aNP() - g (r)]}dr (s>a,). (5.9
Since the integrand on the right-hand side is non-negative (see (2.11)),

SIQNPls-a,)- QN (s-a )] » €% [gNp(e) - gV (1] (s>a,,t20).  (5.10)
Hence

gNeP(e) - gl (t) < (s+a,) eSE[QN:P(s) - QY (s)] (550, ¢20). (5.10

It follows from (5.8) by using (4.13) and the estimates (4.11), (4.12), (4.15) and
(416) that, for fixed m,n=0, q,’:’m(t) - q,{t) a8 N> o, uniformly in t on
every bounded interval. Furthermore, letting p = = and moreover, if D<o in
case |, s = +0, we obtain the upper bounds Af;’m.

Now, it is easy to prove that the solutions x¥ = (xg’, xlN, ,xN)T of the

finite initial- value problems (2.6) converge componentwise to a solution of the
infinite initial-value problem (2.1) as well as to determine explicit error bounds,
provided the conditions (2.2) - (2.4) are satisfled. We use the abbreviations

N t
Ry=Ryt= 3 { {If;n(r)ldr +legll o R=R(&) = im Ry(e) . (5.12)

Let M denote any fixed non-negative integer not greater than N. °
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Theorem 2: Assume (2.2)-(2.4). Then the initial-value problem (2.1) has a

solution x = ( Xq ,X;, ... }T, where
Xy = X,(6) = lim xN(e) (0= 0,1,2,..; £20), (5.13)
uniformly in t on every bounded interval, with the following error bounds :

Ix, () - x]N(e)l

(mm{l,}\—o«,,an(mw, -DM}Ry + R~ Ry in case 1 if Dy < ,
min{1, AN, JR,, + R-R,, in case 1 if D=,
R in case 2 for N<p,
S1R- RPN- ’ R " " 'in case 2 for psN<psoo, -(5.14) - -
min(1, AN J(Ry - R5) + R- Ry, in case 2 for p<M<Nif D5, =,
min{1, k (1- D2,/D; )} (R -R;)+ R-Ry; in case 2 for p<N if bﬁ,1 <o

(0<n<N, t>0).

Proof: Using the error bounds given in (5.3), (5.4) and noting that A:'m(‘r) < A:'M(t)
for 0<r<t, m<M and that g (t)<1, the uniform convergence x) = x, as
N - © and the error bounds (5.14) can be obtained from (2.13). It immediately
follows by (2.6) that adz-x:'(t) - de'xn‘t) as N - o for every fixed n20,
uniformly in t on every bounded interval. Therefore, letting N - o in each
equation of the system (2.6) we see that the limits x,_, solve the infinite initial-
value problem (2.1).

6. Remarks and examples. 1. If Cm2 0. fmx 0 (m=20, t20), then from (2.7) and
(2.8) there followa 0<xMt) < xN*}(e) (0O<n«N, t20). Therefore, xMo)<x (&) and

the upper bounda in (5.14) are valid for xn(t)—x}:’(t). Furthermore, by (2.6)
d ¥ N N, ¥ N
2z x = -Ayxu+ L f &« X f .
dt(v:O v ) NN " Sov J=o v

Integrating from O to t, we obtain
N - N £ -
. N,
Z e « VEO{CvOJfL(r)dr}.
From this there follows xe¢li and Ixl«R.

2. In {7] it is shown that the following conditiona are aufficient in order that

T g (=1 and that{ g - Py }T ia the only non-negative solution of
neo nm Y 90m’ Y1m ‘

1.1) with c,=5, . (m 20 fixed)
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() m<J in case 2,
) D 0ZD‘1/A = both in case 1 and in case 2 with g <> for m>p-

In particular, (1) is aatiafied for every ma0 if s and (i1) is aatiafied if D ==
or Pgml/Ap =, Sufficient conditions forn:qunm(t)<l for aome t>0 and cor-
responding uniqueness have also been proved in [7].

8. Suppose that €= f1y =0 for m>mgp =0, t20.Then R=Rm=Rm° for mamg and
in case 2, by (5.14), x:,(t) =xn(t) for Nzpy,2m,. In other words: If mgy <5
and p.ﬂ tnln(pkrno: Apt:O). then xg" = x, (0O<n<N) for every N:p'. In fact, by
(2.6) i1t ia immediately seen that x}lv:O for 9'01 < n < N. Hence, xnno for n2 p'#l
and (2.1) can be reduced to a finite initial-value problem.

4. The upper bounda AN defined by (5.3) tend to zero as N—o of the same
order as either Dl-Dl if Dj<w or IIDF if D;=w. The behaviour of D]Iv as
N -~ o is determined by the ratios pp/Ap for large p. In particular, putting
“p/Apz“’p (p21) one can obtain easily from (4.9) that Di—Dlh’Gl O (17 (N+1)1)
i w,=1/p, DI—DN=O(¢:N) if wy=cc1, 1/D)=OWN) f w, =1, 1/D]=0(N)
if wp=c>l and 1/1)l 0(1/N!) if w_=p. This shows that the more different

P

the behaviour of Ap, “g for large p is the faster the upper bounds Anmu) for

fixed n,m.t tend to zero as N —~ . Similar observations can be made in case 2.

Bxample 1s In the theory of kinetica of comp alized free-radical polymeri-

zation reactions one was led to conaider the homogeneous initial- value problem

(11) where A aX>0, Bp=np (u>0, nIO) c°=l <:1=sc2 .2 0 [2) . Since D{v

Z vi(u/A)Y —~ o as N—= = (see (4.9)), it has (cf. Remark 2) the unique non-
negative solution (qoo, - TP RREE A (Remark that 9n0 18 the concentration of loci of
reaction system which f:onuun n propagating radicals.) Using (3.5),(3.6),(4.0),(5.1) and
(5.3) we obtain the upper boundsa

. o
{(1’ A ny) (Aé“)n at A+s } ((A/u’ ) (N~o) .

Ao-aDN

% s>0
Remark that the estimates given in [8,9] fail since the asaumption :2;1 l/an< ©
is violated .

Bxample 2: Let A,=1, Hp=n, C,= 1/n}, f;,=0 (=0,1,2,...; t20). Since Dl" =v§o\a! .
we have case 1 with Dl=cp. Therefore, by (5.14) and in view of Remark 1,
0 « x,(e)- xMe) < min{t, AN JR\, + R-Ry,.

where by (5.3) (cf. Example 1 with Aéutl)

M-1 DM—l
N 1+ aD. .o at 1es
Aoy 1mf {x_,,u,ghwl } - {1 TR ) IT“F‘}
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M
and by (5.12) Ry, = 2 i/m! R = e (M —~ ™). Obviously,
M m=0

W ANV s (ne2)(1 » D{"‘)%:-(lo oM-1)/{1+ D}N)

for ¢t >0 (putting s=1) ,

) AN < [1etnenre](es DPY) 2 (e+ DM ') /(e « DY)
for t>0 (putting s=1/t) and
- = ¥ __Me2
R-Rpyg= X VM < (Rfen(MaDI -

Suppose that we wish to find an iInteger N auch that O‘xn(t)—x,l;l(t)<10—3

for some n, t. We atart from the sufficient condition

M+2 3

(M+1){(M+1)!
which ylelds M 2 6. Chooaing M =6, the inequality ia satisfied for e:g. n=0 -if-

AN (De+ <10~ (0<n, MsN: t20) ,

N .
ADe< 2.810°% or. in view of G, if Df¥= T vi> [10%e(er1)(e+154) -£] /2.8 - ¢.
Since the right-hand side is a monotone increasing function of t (£20) we obtain

N210 for Ox<txi, Nx211 for O<t<10 and N212 for 0x<ts100. Choosing N=12,
we have A11126 <2.810™% for n=1.2,..12 1f (see (D)

1+ (nee)(e+ D™ 1) 2 _(re154)/(t+ DI2) ( 2.8:107%.
1 nlt 1

3 2

For n=1 few computations give the unesaentially stronger inequality 2tV+ 311t

-53404 t +154 <O, so that A}g <2,810™% and, consequently, xq- x:2< 1073 for all ¢
lying between both poaitive zeros of the polynomial on the left-hand side,

at least for 0.003 <tx<103. For O £t < 0,003 we use (i) to show that A{g <2,8'10_4A
Finally, we have x‘—xiz <1073 at least for O<t <103. In the same way we can pro-

ceed for n=2,3,.....12. For example, 0 < xg - x‘§2 < 10-3 holds at least for O<t < 945.
On the other side, in order to determine an integer N being as amall as poaal-

N

ble such that the only condition Ofxs—xs <10.3 for O<t <100 1a asatisfled, we

start from the inequality (106t)(t034)(t*154)SO.012¢.(t0Vgo v!) implying (1) with
n=5, M=6. If we put t=100 we obtain N 211. Choosing N =11. in fact the in-
equality ia satisfied at least for 0,02 <t < 208. By using (1) it can be shown asa
above that O < xg - xg <1073 for 0xct « 0,02 , too. Remark that the present example
has the constant solution X,= 1/n! (n=0,1....). By numerical computationa one
can obtain real upper bounds &, for Xp= xLz(t) (0<n<12) holding in the intervall
OSzSIoa. They and the corresponding relative errors 6, /x,=8 n! are exhibited

for some n in the following table.

n 1 2 4 6 8 1 12
é 71E-7 | 3,6E-7 | 3.0E-8 | 1.4E-9 |3, 0E-10}|2,0E-10|1,8E-10

$,7/x,| 7.1E-7 7.2E-7 | 7,2E-7 |1.1E-6 | 1,2E-5 | 8.0E-3 | 8,6E-2
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