Error Bounds for the Truncation of Countable Linear Differential Systems Arising from Birth-Death Processes

E. WAGNER

An infinite system of linear differential equations $x'_n(t) = \lambda_{n-1} x_{n-1}(t) - (\lambda_{n} + \mu_n) x_n(t)$ $*\mu_{n+1}x_{n+1}(t) * f_n(t), x_n(0) = c_n$ (n=0,1,2,...; t>0; x₋₁=0) is considered. The constant coefficients λ_n , μ_n are merely assumed to be non-negative. Explicit error bounds are derived for the approximation of a solution by the solutions of the finite truncated systems. They crucially depend on the ratios of the coefficients λ_n, μ_n .

Key words: Birth-death processes, linear differential equations AMS subject classification: 34A30, 34A45, 60J80

1. Introduction . Simple birth-death processes with enumerably many states can be described by a countable system of differential equations [4]

$$
x'(t) = Ax(t) , x(0) = c (t \ge 0) . \qquad (1.1)
$$

where x and c are infinite column vectors and \bm{A} is a constant infinite matrix of the form

$$
A = \begin{bmatrix} -\lambda_0 & \mu_1 & & & 0 \\ \lambda_0 & -\lambda_1 - \mu_1 & \mu_2 & & \\ \lambda_1 & -\lambda_2 - \mu_2 & \mu_3 & & \\ 0 & & & & \end{bmatrix}
$$
 (1.2)

with $\lambda_i \geq 0$ ($i \geq 0$), $\mu_i \geq 0$ ($i \geq 1$). It is known [7] that this system possesses for $c \ge 0$, $c \in I_1$ a non-negative solution which can be obtained approximately by truncation.

For numerical purposes it is of interest to know error bounds. Results in the case $\lambda_n = \lambda_n(t) \le \lambda(t)$, $\mu_n = \mu_n(t) \le \mu(t)$ are given in [10], whereas the case $A = (a_{ij})$ is any bounded operator on I_1 satisfying sup $\sum_{1 \leq i \leq n}^{\infty} |a_{ij}| \rightarrow 0$ or sup $\sum_{n+1}^{n} |a_{ij}| \to 0$ $(n \to \infty)$ is considered in [3]. In particular, if A is given by (1.2), then the latter conditions reduce to $\lambda_n \to 0$ or $\mu_n \to 0$, respectively. $28*$

In the present paper error bounds for Inhomogeneous systems without any restrictions on the growth of the non-negative coefficients λ_n , μ_n are derived. They crucially depend on the ratios of the coefficients. In particular, if $\lambda_n / \mu_n \rightarrow g$ ($0 \le g \le \infty$) as $n \rightarrow \infty$, then the bounds are the smaller, the closer g is to 0 or to ∞ . Remark that similar results for more general systems (A) is **a quadrodlagonal matrix** with non-negative column sums) are established in (8,9]. However, both the assumptions and the assertions are more complicated than in the present paper. x (*x*) as $n \to \infty$, then the bounds are the smaller, the closer g hark that similar results for more general systems (*A* is ix with non-negative column sums) are established in [8,9].

x with non-negative column sums) a

2. **Prelimlnailes .** We consider a countable system of linear differential equations of the form

$$
x'(t) = Ax(t) + f(t), x(0) = c \t(t \ge 0), \t(2.1)
$$

where $x = \{x_0, x_1, ... \}^T$, $f = \{f_0, f_1, ... \}^T$, $c = \{c_0, c_1, ... \}^T$ are infinite column vectors and *A* is the matrix defined by (1.2). The following conditions are assumed to be satisfied *C(O,w)* $\left\{ \begin{aligned}\n &\text{for all } t \in \mathbb{R} \text{ is } t \in \mathbb{R} \text{ and } t \in \mathbb{R} \text{ is } t \in \mathbb{R} \text{ is } t \in \mathbb{R} \text{ and } t \in \mathbb{R} \text{ is } t \in \mathbb{R} \text{ and } t \in \mathbb{R} \text{ is } t \in \mathbb{R} \text{ and } t \in \mathbb{R} \text$ *x'*(*t*) = $Ax(t) + f(t)$, $x(0) = c$ ($t \ge 0$), (2.1)
 f = { $f_0, f_1,...$ }*T*, $c = (c_0, c_1,...)$ *T* are infinite column vectors

lefined by (1.2). The following conditions are assumed to
 $f_n \in C[0,\infty)$ ($n = 0,1, 2,...$), (2.2)
 c , or a countable system of linear differential equations
 $A x(t) + f(t)$, $x(0) = c$ $(t \ge 0)$, (2.1)
 $(f_0, f_1,...)$ ^T, $c = (c_0, c_1,...)$ ^T are infinite column vectors

d by (1.2). The following conditions are assumed to
 $T(0,\infty)$

$$
f_n \in C[0,\infty) \qquad (n=0,1,2,...) , \qquad (2.2)
$$

$$
c, \ \{\int\limits_0^t |f_n(\tau)|d\tau\}_{n\geq 0} \in I_1 \ \text{for all } t\geq 0 \ , \tag{2.3}
$$

$$
\lambda_n \geq 0 \quad (n \geq 0) \quad , \quad \mu_n > 0 \quad (n \geq 1) \quad . \tag{2.4}
$$

Remark that we may assume $\mu_n > 0$ instead of $\mu_n \geq 0$ since in case $\mu_n = 0$ for finitely or infinitely many integers $n \geq 1$ the initial-value problem (2.1) can be reduced either to a finite system and a countable system satisfying (2.2) - (2.4) or to enumerabiy many finite systems, respectively. For convenience, we define d by (1.2). The

c [0, ∞) (n

t

f

(n x 0), μ

integers n x 1

stem and a con

systems, respe

0, $\alpha_n = \lambda_n + \mu$

ive integers n x 1

item and a con

systems, respe

0, $\alpha_n = \lambda_n + \mu$

ive in *(2.2)*

for all $t \ge 0$, (2.3)

($n \ge 1$). (2.3)

($n \ge 1$). (2.4)

of $\mu_n \ge 0$ since in case $\mu_n \approx 0$ for

initial-value problem (2.1) can be

ole system satisfying (2.2) - (2.4) or

ely. For convenience, we define

(finitely or infinitely many integers $n \ge 1$ the initial-value problem (2.1)
reduced either to a finite system and a countable system satisfying (2.2) -
to enumerably many finite systems, respectively. For convenience, we

$$
\mu_0 = 0 \quad , \quad \alpha_n = \lambda_n + \mu_n \quad (n \ge 0) \quad . \tag{2.5}
$$

Let *N* be any non-negative integer. Truncating all coordinates of the vectors x, *f, c* with indices greater than *N* as well as the corresponding columns and rows of the matrix *A* we obtain the finite Initial-value problem regative integer. Truncating all coordinates of the vectors

reater than N as well as the corresponding columns and

we obtain the finite initial-value problem
 $\frac{d}{dt}x^N(t) = A^Nx^N(t) + f^N(t)$, $x^N(0) = c^N$ ($t \ge 0$), (2.6)

$$
\frac{d}{dt}x^N(t) = A^N x^N(t) + f^N(t) \quad , \quad x^N(0) = c^N \quad (t \ge 0) \quad , \tag{2.6}
$$

It is well known that the solution of **the initial-value** problem (2.6) can be represented in the form

Error Bounds for the Truncation of Diff. Systems 409

\nwell known that the solution of the initial-value problem (2.6) can be

\nd in the form

\n
$$
x_n^N(t) = \sum_{m=0}^N \left\{ \int_0^t q_{nm}^N(r) f_m(t-r) dr + c_m q_{nm}^N(t) \right\} \qquad (n = 0, 1, ..., N; \ t \ge 0) \quad (2.7)
$$

where $(q_{0m}^N, q_{1m}^N, ..., q_{Nm}^N)^T$ for every fixed *m* $(0 \le m \le N)$ denotes the solution $x_n^N(t) = \sum_{m=0}^N \left\{ \int_0^t q_{nm}^N(\mathbf{r}) f_m(\mathbf{t}-\mathbf{r}) d\mathbf{r} + c_m q_{nm}^N(\mathbf{t}) \right\}$ ($n = 0, 1, ..., N; t \ge 0$) (2.7)
where $(q_{0m}^N, q_{1m}^N, ..., q_{Nm}^N)^T$ for every fixed $m (0 \le m \le N)$ denotes the solution
of the homogeneous system (1. Is shown in [7] that Error Bounds for the Truncation of Diff. Systems 409

known that the solution of the initial-value problem (2.6) can be

the form
 $\sum_{m=0}^{N} \left\{ \int_{q_{nm}^{N}}^{N} (r) f_{m}(t-r) dr + c_{m} q_{nm}^{N}(t) \right\}$ ($n = 0, 1, ..., N; t \ge 0$) (2.7)
 \int (1.1) with $q_{nm}^N(0) = \delta_{nm}$ (Kronecker symbol). It
 $r_1^1(t) \le 1$ (0 $\le m, n \le N$; $t \ge 0$). (2.8)

ence of the limits
 $r_n^1(t)$ ($m, n \ge 0$; $t \ge 0$), (2.9)

we the homogeneous system (1.1) with the initial

ell as the exi

$$
0 \le q_{nm}^N(t) \le q_{nm}^{N+1}(t) \le 1 \qquad (0 \le m, n \le N; t \ge 0) \; . \tag{2.8}
$$

Hence, there follows the existence of the limits

$$
q_{nm}(t) = \lim_{N \to \infty} q_{nm}^N(t) \qquad (m, n \ge 0; t \ge 0) ,
$$
 (2.9)

which for every fixed *m* solve the homogeneous system (1.1) with the initial conditions $q_{nm}(0) = \delta_{nm}$, as well as the existence of the Laplace transforms bllows the existence of the lip
 $q_{nm}(t) = \lim_{N \to \infty} q_{nm}^N(t)$ (m, if q_{nm}) (m, if $q_0 = \delta_{nm}$, as well as the exist
 $Q_{nm}^N(s) = \int_0^\infty e^{-st} q_{nm}^N(t) dt$ 1 that
 $0 \le q_{nm}^N(t) \le q_{nm}^{N+1}(t) \le 1$ ($0 \le m, n \le N; t \ge 0$). (2.8)

collows the existence of the limits
 $q_{nm}(t) = \lim_{N \to \infty} q_{nm}^N(t)$ ($m, n \ge 0; t \ge 0$), (2.9)

ry fixed *m* solve the homogeneous system (1.1) with the initia

$$
Q_{nm}^N(s) = \int_0^\infty e^{-st} q_{nm}^N(t) dt \qquad (s > 0).
$$
 (2.10)

Moreover, In [8] there are proved the Inequalities

$$
0 \leq \frac{d}{dt} \left[e^{\alpha_n t} q_{nm}^N(t) \right] \leq \frac{d}{dt} \left[e^{\alpha_n t} q_{nm}^{N+1}(t) \right] \qquad (0 \leq m, n \leq N; t \geq 0). \tag{2.11}
$$

Finally, we notice

$$
\mathbf{a} \int_{0}^{\infty} e^{-st} q_{nm}^{N}(t) dt \qquad (s>0).
$$
\n(2.10)\n
\n
$$
\mathbf{e} \text{ are proved the inequalities}
$$
\n
$$
\mathbf{e}^{\alpha} \left[e^{\alpha} q_{nm}^{N}(t) \right] \leq \frac{d}{dt} \left[e^{\alpha} q_{nm}^{N+1}(t) \right] \qquad (0 \leq m, n \leq N; t \geq 0).
$$
\n(2.11)\n
$$
\left[\begin{array}{c} Q_{00}^{N} & \cdots & Q_{0N}^{N} \\ \vdots & \vdots & \ddots & \vdots \\ Q_{N0}^{N} & \cdots & Q_{NN}^{N} \end{array} \right].
$$
\n(2.12)\n
\n11\n
\n12\n
\n13\n
\n14\n
\n15\n
\n16\n
\n17\n
\n18\n
\n19\n
\n10\n
\n10\n
\n11\n
\n12\n
\n13\n
\n14\n
\n15\n
\n16\n
\n17\n
\n18\n
\n19\n
\n10\n
\n10\n
\n11\n
\n12\n
\n13\n
\n14\n
\n15\n
\n16\n
\n17\n
\n18\n
\n19\n
\n10\n
\n10\n
\n11\n
\n12\n
\n13\n
\n14\n
\n15\n
\n16\n
\n17\n
\n18\n
\n19\n
\n10\n
\n10\n
\n11\n
\n19\n
\n10\n
\n10\n
\n11\n
\n12\n
\n13\n
\n14\n
\n15\n
\n16\n
\n17\n
\n18\n
\n19\n
\n19\n

where *E* denotes the unit matrix of order *N+1.* From (2.7)- (2.9) there follows

$$
(sE-A^N)^{-1} = \begin{bmatrix} Q_{00}^N \cdots Q_{0N}^N \\ \vdots \\ Q_{N0}^N \cdots Q_{NN}^N \end{bmatrix},
$$
(2.12)
there *E* denotes the unit matrix of order *N*+1. From (2.7)-(2.9) there follows

$$
|x_n^{N+P}(t) - x_n^N(t)| \le \sum_{m=0}^N \left\{ \int_{0}^t [q_{nm}(t) - q_{nm}^N(t)] |f_m(t-t)| dt + |c_m| [q_{nm}(t) - q_{nm}^N(t)] \right\} \quad (2.13)
$$

$$
+ \sum_{m=N+1}^{N+P} \left\{ \int_{0}^t [f_m(t)] |dt + |c_m| \right\} \qquad (0 \le m, n \le N; \ t \ge 0)
$$
or every integer $p \ge 1$. Hence, in order to prove the existence of *x*. (t) = $\lim_{m \to N} x^N(t)$

for every integer $p \ge 1$. Hence, in order to prove the existence of $x_n(t) = \lim_{N \to \infty} x_n^N(t)$ and to obtain error bounds for $|x_n(t)-x_n^N(t)|$ it suffices to know upper bounds for the non-negative differences $q_{nm}(t) - q_{nm}^{N}(t)$. In the following we will show bow these can be derived by means of the Laplace transformation. Thus, we first deal with certain principal minors of the matrix $sE - A^N$.

3. Some properties of principal minors of the matrix $sE - A^N$. Let

$$
\Delta_{i}^{j}(s) = \begin{cases}\n0 & \text{for } j < i-1 \\
1 & \text{for } j < i-1 \\
1 & \text{for } j = i-1 \\
-\lambda_{i} & s + \alpha_{i+1} \\
0 & -\lambda_{j-1} & s + \alpha_{j}\n\end{cases}
$$
\n(1 = 0, 1, 2,...).\n(3.1)

Every determinant Δ_i^f is a polynomial in *s* of degree $f-i+1$ with the leading coefficient 1. The other coefficients being sums of principal minors of the matrix $-A^N$ are non-negative, since the column sums of $-A^N$ are non-negative [1,6]. (Remark that $sE-A^N$ for $s>0$ is a non-singular M-matrix $[1]$.) Therefore, $\Delta_i^j(s) \geq s^{j-i+1} > 0$ for $s > 0$. *A* for so is a non-singular minors of the matrix
 A are non-negative [1,6].
 E-*AN* for s > 0 is a non-singular M-matrix [1].) Therefore,

(for s > 0.

urrence formula
 $A_i^j = (s + \alpha_j)A_i^{j-1} - \lambda_{j-1}\mu_jA_i^{j-2}$ (0 ≤ *i* gular M-matrix [1].) Therefore,

(0 \le j \le j) (3.2)

on. Using (3.2) and replacing in

duct by 1 the relations
 μ_v) (0 \le j \le j \le k+1) (3.3)

(0 \le j \le k+1) (3.4)

In particular, we have for j=0

Next, the recurrence formula

$$
\Delta_{i}^{j} = (s + \alpha_{j}) \Delta_{i}^{j-1} - \lambda_{j-1} \mu_{j} \Delta_{i}^{j-2} \qquad (0 \leq i \leq j)
$$
 (3.2)

can be verified immediately by Laplace expansion. Using (3.2) and replacing in *i*₁) $\Delta f^{-1} - \lambda_{j-1} \mu_j \Delta f^{-2}$ (0 ≤ *i* ≤ *j*) (3.2)

ly by Laplace expansion. Using (3.2) and replacing in

by 0 and an empty product by 1 the relations
 $\Delta f \Delta f^{k+1} = \Delta f^{-2} \prod_{v=j}^{k+1} (\lambda_{v-1} \mu_v)$ (0 ≤ *i* ≤ *j* ≤ k+1

usual way an empty sum by 0 and an empty product by 1 the relations
\n
$$
\Delta_f^k \Delta_f^{k+1} - \Delta_f^k \Delta_f^{k+1} = \Delta_f^{j-2} \prod_{v=j}^{k+1} (\lambda_{v-1} \mu_v) \qquad (0 \le i \le j \le k+1)
$$
\nand
\n
$$
\Delta_f^k(0) = \sum_{v=1}^{k+1} \left(\prod_{o=i}^{v-1} \mu_o \prod_{o=v}^k \lambda_o \right) \qquad (0 \le j \le k+1)
$$
\n(3.4)

and

$$
\Delta_{i}^{j} = (s + \alpha_{j}) \Delta_{i}^{j-1} - \lambda_{j-1} \mu_{j} \Delta_{i}^{j-2} \qquad (0 \leq i \leq j) \qquad (3.2)
$$

mmmediately by Laplace expansion. Using (3.2) and replacing in
pty sum by 0 and an empty product by 1 the relations

$$
\Delta_{i}^{k} \Delta_{j}^{k+1} - \Delta_{j}^{k} \Delta_{i}^{k+1} = \Delta_{j}^{j-2} \prod_{v=1}^{k+1} (\lambda_{v-1} \mu_{v}) \qquad (0 \leq i \leq j \leq k+1) \qquad (3.3)
$$

$$
\Delta_{j}^{k}(0) = \sum_{v=j}^{k+1} \left(\prod_{\rho=1}^{v-1} \mu_{\rho} \prod_{\rho=v}^{k} \lambda_{\rho} \right) \qquad (0 \leq j \leq k+1) \qquad (3.4)
$$

ty induction (i, j fixed; $k \geq j-1$). In particular, we have for $j=0$
), (2.5)

$$
\Delta_{0}^{k}(0) = \prod_{\rho=0}^{k} \lambda_{\rho} \geq 0 \qquad (k \geq -1) \qquad (3.5)
$$

$$
\Delta_{1}^{k}(0) = \sum_{v=1}^{k+1} \left(\prod_{\rho=1}^{v-1} \mu_{\rho} \prod_{\rho=v}^{k} \lambda_{\rho} \right) \geq \prod_{\rho=1}^{k} \mu_{\rho} \geq 0 \qquad (k \geq 0).
$$

(3.6)
ng (3.2), (3.5) and (3.6) the inequality

can be proved by induction $(i, j$ fixed; $k \geq j-1$). In particular, we have for $j=0$ and $j = 1$ by (2.4) , (2.5)

$$
\Delta_0^k(0) = \prod_{\rho=0}^k \lambda_\rho \ge 0 \qquad (k \ge -1)
$$
 (3.5)

and

$$
\Delta_{j}^{k}(0) = \sum_{v= j}^{\infty} \left(\prod_{\rho=1}^{\infty} \mu_{\rho} \prod_{\rho=v}^{\infty} \lambda_{\rho} \right) \qquad (0 \leq j \leq k+1)
$$
\n(3.4)

\n(3.4)

\n(3.5)

\n(2.5)

\n
$$
\Delta_{0}^{k}(0) = \prod_{\rho=0}^{k} \lambda_{\rho} \geq 0 \qquad (k \geq -1)
$$
\n
$$
\Delta_{1}^{k}(0) = \sum_{v=1}^{k+1} \left(\prod_{\rho=1}^{v-1} \mu_{\rho} \prod_{\rho=v}^{k} \lambda_{\rho} \right) \geq \prod_{\rho=1}^{k} \mu_{\rho} > 0 \qquad (k \geq 0).
$$
\n(3.6)

\n(3.2), (3.5) and (3.6) the inequality

\n
$$
\frac{k+1}{0} \cdot \left(\frac{\Delta_{0}^{k}(0) + \Delta_{1}^{k}(0)}{\Delta_{0}^{k}(0)} \right) \left[\frac{\Delta_{0}^{k+1}(0) + \Delta_{1}^{k+1}(0)}{\Delta_{0}^{k}(0)} \right] \qquad (k \geq 0, s > 0)
$$
\n(3.7)

Furthermore, using (3.2), (3.5) and (3.6) the inequality
\n
$$
\Delta_0^k(s)/\Delta_0^{k+1}(s) \langle [A_0^k(0)+s\Delta_1^k(0)]/[\Delta_0^{k+1}(0)+s\Delta_1^{k+1}(0)] \quad (k \ge 0, s > 0)
$$
\n(3.7)
\ncan be proved by induction. As an immediate consequence we obtain the estimate
\n
$$
\Delta_0^k(s)/\Delta_0^N(s) \langle [A_0^k(0)+s\Delta_1^k(0)]/[\Delta_0^N(0)+s\Delta_1^N(0)] \quad (0 \le k \le N, s > 0).
$$
\n(3.8)

can be proved by induction. As an Immediate consequence we obtain the estimate

$$
\Delta_{0}^{k}(s)/\Delta_{0}^{N}(s) \cdot [\Delta_{0}^{k}(0) + s\Delta_{1}^{k}(0)]/[\Delta_{0}^{N}(0) + s\Delta_{1}^{N}(0)] \qquad (0 \leq k \leq N, s > 0). \quad (3.8)
$$

4. Estimates of the differences $Q_{nm}^{N+p}(s) - Q_{nm}^{N}(s)$. The entries Q_{nm}^{N} of the matrix $(sE-A^N)^{-1}$ have the representations

$$
Q_{nm}^{N}(s) = \begin{cases} \frac{\Delta_0^{m-1}(s)\Delta_{n+1}^{N}(s)}{\Delta_0^{N}(s)} \prod_{\rho=m}^{n-1} \lambda_{\rho} & \text{for } 0 \leq m \leq n \leq N, \\ \frac{\Delta_0^{m-1}(s)\Delta_{m+1}^{N}(s)}{\Delta_0^{N}(s)} \prod_{\rho=n+1}^{m} \mu_{\rho} & \text{for } 0 \leq n \leq m \leq N, \end{cases}
$$
(4.1)

which can be obtained easily from (2.12) by Laplace expansion. From (4.1) there follows by means of (3.3)

$$
Q_{mm}^{N+1}(s) - Q_{nm}^{N}(s) = \frac{\Delta_0^{n-1}(s)\Delta_0^{m-1}(s)}{\Delta_0^{N}(s)\Delta_0^{N+1}(s)\cdots\rho = m^{\rho}} \prod_{\rho=n+1}^{N+1} \mu_\rho \qquad (0 \leq m, n \leq N; s > 0). \quad (4.2)
$$

Hence, by (2.8) and (3.8)

$$
0 \leq Q_{nm}^{N+1}(s) - Q_{nm}^{N}(s) \leq \frac{\left[A_0^{n-1}(0) + sA_1^{n-1}(0)\right]\left[\Delta_0^{n-1}(0) + sA_1^{n-1}(0)\right]}{\left[A_0^N(0) + sA_1^N(0)\right]\left[A_0^{N+1}(0) + sA_1^{N+1}(0)\right]} \xrightarrow{\rho = m} \rho_{\rho = n+1}^{N+1} \mu_{\rho} \quad (4.3)
$$
\n
$$
(0 \leq m, n \leq N; s > 0).
$$

Next, from (3.5) and (3.6)

$$
S \prod_{\rho=1}^{N+1} \mu_{\rho} = A_0^{N+1}(0) + sA_1^{N+1}(0) - \lambda_{N+1} \left[A_0^N(0) + sA_1^N(0) \right] \qquad (N \ge 0, s > 0).
$$
 (4.4)

Then the inequality (4.3) becomes

$$
0 \leq Q_{nm}^{N+1}(s) - Q_{nm}^{N}(s) \leq \frac{\delta_n(s)}{s} \Big[A_0^{m-1}(0) + s A_1^{m-1}(0) \Big] \times \qquad (4.5)
$$
\n
$$
\left[\frac{\prod_{\rho=m}^{N} \lambda_{\rho}}{A_0^{N}(0) + s A_1^{N}(0)} - \frac{\prod_{\rho=m}^{N+1} \lambda_{\rho}}{A_0^{N-1}(0) + s A_1^{N+1}(0)} \right],
$$

where $\delta_n(s)$ is defined by

$$
\delta_n(s) = \left[\Delta_0^{n-1}(0) + s \Delta_1^{n-1}(0) \right] / \prod_{\rho=1}^n \mu_\rho \quad (n \ge 0).
$$
 (4.6)

Therefore,

$$
0 \le Q_{nm}^{N+p}(s) - Q_{nm}^{N}(s) \le \frac{\delta_n(s)}{s} \left[\Delta_0^{m-1}(0) + s \Delta_1^{m-1}(0) \right] \prod_{\rho=m}^{N+p} \lambda_{\rho} \times \qquad (4.7)
$$
\n
$$
\left[\frac{1}{\Delta_0^{N}(0) + s \Delta_1^{N}(0)} - \frac{\prod_{\rho=N+1}^{N+p} \lambda_{\rho}}{\Delta_0^{N+p}(0) + s \Delta_1^{N+p}(0)} \right] \qquad (0 \le m, n \le N \le N+p; s>0) .
$$

In what follows it will be convenient to establish the numbers

it will be convenient to establish the numbers
\n
$$
D_i^j = \Delta_i^j(0) / \prod_{\rho \in i} \lambda_\rho \qquad (1 \le i \le j)
$$
\n(4.8)

whenever $\lambda_{\rho} > 0$ for each $\rho = 1$, $i+1, ..., j$. According to (3.1), let $D_i^{j-1} = 1$ and $D_i^j = 0$ for $j < i-1$. From (3.4) we obtain the representation it will be convenient to establish the numbers
 $D_l^j = \Delta_l^j(0) / \prod_{\rho=1}^j \lambda_\rho$ (1 ≤ j ≤ j) (4.8)

each $\rho = i, i+1, ..., j$. According to (3.1), let $D_l^{j-1} = 1$ and

om (3.4) we obtain the representation
 $D_l^j = \sum_{\nu=1}^{j+1} \sum_{$ *D*<sup>*j* = $\Delta f(0)/\prod_{p=1}^{\infty} \lambda_p$ (1 ≤ *i* s) (4.8)

each $\rho = 1$, *i* + 1, ..., *j*. According to (3.1), let $D_f^{f-1} = 1$ and

om (3.4) we obtain the representation
 $D_f^f = \sum_{\nu=1}^{f+1} \sum_{\rho=1}^{\nu-1} (\mu_\rho / \lambda_\rho)$ (4.9)

rs</sup>

$$
D_l^j = \sum_{\nu=1}^{j+1} \prod_{\rho=1}^{\nu-1} (\mu_\rho / \lambda_\rho)
$$
 (4.9)

holding for all integers $j \in I$, too.

Notice that, if $\lambda_{\alpha} > 0$ for every integer $\rho \geq i$ and any fixed $i \geq 1$, the sequence $(D_j^j)_{j \geq 1}$ is monotonically increasing. For these *I* we define

$$
D_j = \lim_{j \to \infty} D_j^j \tag{4.10}
$$

Notice that, if $\lambda_{\rho} > 0$ for $(D_f^I)_{J \ge 1}$ is monotonically inci
 $D_I = \lim_{J \to \infty}$

Obviously, we have $1 \le D_I \le \infty$

Therefore, $D_L \le \infty$ for some *i* Obviously, we have $1 \times D_i \le \infty$. Remark that $D_i^j = D_i^{k-1} + (D_i^k - D_i^{k-1}) D_{k+1}^j$ ($i \le k \le j$). $D_i = \lim_{j \to \infty} D_i^j$.
Obviously, we have $1 \leftarrow D_i \leftarrow \infty$. Remark that $D_i^j = D_i^{k-1} + (D_i^k - 1)$.
Therefore, $D_k \leftarrow \infty$ for some $k \geq i$ implies $D_k \leftarrow \infty$ for all $k \geq i$.
Now we distinguish two cases.

Now we distinguish two cases.

Case 1: Assume that $\lambda_{\alpha} > 0$ for all $\rho \ge 0$. Then (4.7) can be rewritten as

holding for all integers
$$
j < 1
$$
, too. Notice that, if $\lambda_{\rho} > 0$ for every integer $\rho \geq 1$ and any fixed $i \geq 1$, the sequence $|D_j^I|_{j \geq 1}$ is monotonically increasing. For these I we define $D_I = \lim_{J \to \infty} D_I^I$. (4.10) Obviously, we have $1 < D_I \leq \infty$. Remark that $D_I^J = D_I^{k-1} + (D_I^k - D_I^{k-1}) D_{k+1}^I$ $(1 \leq k \leq f)$. Therefore, $D_k < \infty$ for some $k \geq 1$ implies $D_k < \infty$ for all $k \geq 1$. Now we distinguish two cases. Case 1: Assume that $\lambda_{\rho} > 0$ for all $\rho \geq 0$. Then (4.7) can be rewritten as $0 \leq Q_{nm}^{N+p}(s) - Q_{nm}^{N}(s) \leq \delta_n(s)(\lambda_0 + sD_I^{m-1}) \frac{D_I^{N+p} - D_I^N}{(\lambda_0 + sD_I^{N+p})(\lambda_0 + sD_I^N)}$ (4.11) $(0 \leq m, n \leq N < N + p; s > 0)$. Case 2: Assume that finitely or infinitely many λ_{ρ} vanish. Let $\rho = \min(\rho \geq 0; \lambda_{\rho} = 0)$, $\bar{\rho} = \sup\{\rho \geq 0 : \lambda_{\rho} = 0\}$. Evidently, $0 \leq \rho \leq \bar{\rho} \leq \infty$. Then (4.7) for $N < \rho$ implies $0 \leq Q_{nm}^{N+p}(s) - Q_{nm}^{N}(s) \leq \frac{1}{s} \delta_n(s) \frac{\lambda_0 + sD_I^{m-1}}{\lambda_0 + sD_I^N}$ $(0 \leq m, n \leq N < N + p; s > 0)$ (4.12) For

Case 2: Assume that finitely or infinitely many λ_{α} vanish. Let $\rho = \min\{\rho \ge 0: \lambda_{\alpha} = 0\}$,

$$
(0 \le m, n \le N \le N + p ; s > 0).
$$

\n2: Assume that finitely or infinitely many λ_{ρ} vanish. Let $\rho = \min\{\rho \ge 0 : \lambda_{\rho} = 0\}$,
\n $p\{\rho \ge 0 : \lambda_{\rho} = 0\}$. Evidently, $0 \le \rho \le \bar{\rho} \le \infty$. Then (4.7) for $N \le \rho$ implies
\n $0 \le Q_{nm}^{N+p}(s) - Q_{nm}^{N}(s) \le \frac{1}{s} \delta_n(s) \frac{\lambda_0 + sD_1^{m-1}}{\lambda_0 + sD_1^{N}}$ $(0 \le m, n \le N \le N + p; s > 0)$ (4.12)

For $N \ge \rho$ we immediately obtain by (4.7)

$$
Q_{nm}^{N+p}(s) = Q_{nm}^{N}(s) \qquad (0 \leq m \leq \rho_N, \ 0 \leq n \leq N \leq N+p; \ s>0), \qquad (4.13)
$$

where $\rho_N = \max\{ \rho \le N: \ \lambda_\rho = 0 \}$; moreover, if $\rho_N \le N$ (i.e. $\lambda_N > 0$), then (4.7) yields

$$
Q_{nm}^{N+p}(s) = Q_{nm}^{N}(s) \quad (0 \leq m \leq \rho_N, 0 \leq n \leq N \leq N+p; s>0), \tag{4.13}
$$

\n
$$
P_N = \max \{ \rho \leq N: \lambda_{\rho} = 0 \}; \text{ moreover, if } \rho_N \leq N \text{ (i.e. } \lambda_N > 0), \text{ then (4.7) yields}
$$

\n
$$
0 \leq Q_{nm}^{N+p}(s) - Q_{nm}^{N}(s) \leq \frac{1}{s} \delta_n(s) D_{\rho_N+1}^{m-1} \left[1/D_{\rho_N}^N + 1 - \frac{P_{N+p}}{\rho} (\lambda_{\rho} / \mu_{\rho}) / D_{\rho_{N+p}+1}^{N+p} \right] \tag{4.14}
$$

\n
$$
(\rho \leq \rho_N \leq m \leq N; 0 \leq n \leq N \leq N+p; s>0),
$$

PN

because $\Delta_0^m(0) = 0$ for $\rho_N \le m$ and $\Delta_1^m(0) = D_{\rho_N+1}^m \prod_{\rho=1}^{\rho_N} \mu_{\rho} \prod_{\rho= \rho_N \sim 1}^m \lambda_{\rho}$ for $\rho_N \le m \le N$

by (3.5), (3.6) and (4.9). The estimate (4.14) can be reduced to

Error Bounds for the Truncation of Diff. Systems 413

\n
$$
0 \leq Q_{nm}^{N+p}(s) - Q_{nm}^{N}(s) \leq \frac{1}{s} \delta_n(s) D_{\rho_N+1}^{m-1} / D_{\rho_N+1}^{N}
$$
\n(4.15)

\n
$$
(\rho \leq \rho_N \cdot m \leq N; 0 \leq n \leq N \cdot (N+p; s > 0)
$$
\nwith the upper bounds in (4.14) and (4.15) are equal when $N \leq 5$ and n is

Remark that the upper bounds in (4.14) and (4.15) are equal, when $N \triangleleft p$ and p is sufficiently large. If $\bar{p} \le \infty$ (i.e., only a finite number of the coefficients λ_p vanishes), then for every $N > \bar{\rho}$ we have $\rho_N = \rho_{N+p} = \bar{\rho}$ and therefore (4.14) reduces to Error Bounds for the Tr

0 $\leq Q_{nm}^{N+p}(s) - Q_{nm}^{N}(s) \leq \frac{1}{s} \delta_n(s) D_{p_N+1}^{m-1} / D_{p_N+1}^{N}$
 $(\rho \leq \rho_N \cdot m \leq N; 0 \leq$

c that the upper bounds in (4.14) and (4.15) as

ently large. If $\bar{\rho} \leq \infty$ (i.e., only a finite numb *I A i* $\frac{1}{P}$ *f* $\frac{1}{P}$ *f m* **f** *f i f i f i f i f i f i f i f* ($\rho \le \rho_N$, $m \le N$; $0 \le n \le N$, $N+p$; $s > 0$)

at the upper bounds in (4.14) and (4.15) are equal, when $N \le \bar{\rho}$ and ρ is

^{*'*} large. If $\bar{\rho} \le \infty$ (i.e., only a finite number of the coefficients λ_{ρ} va-

en

$$
0 \leq Q_{nm}^{N+p}(s) - Q_{nm}^{N}(s) \leq \frac{1}{s} \delta_n(s) D_{\bar{\rho}+1}^{m-1} [1/D_{\bar{\rho}+1}^{N} - 1/D_{\bar{\rho}+1}^{N+p}]
$$
(4.16)
 $(\bar{\rho} \langle m \leq N, 0 \leq n \leq N \langle N+p; s \rangle 0).$

S. Reaults . Using the **above estimates we** are **in position to derive explicit** error bounds for the approximation of the limits q_{nm}^- defined by (2.9). For conve**nience, we** Introduce **the abbreviations** *i* (*time the coefficients* λ_p va-
 the $\rho_N = \rho_{N+p} = \bar{\rho}$ and therefore (4.14) reduces to
 s) $D_{\bar{\rho}+1}^{m-1} [1/D_{\bar{\rho}+1}^N - 1/D_{\bar{\rho}+1}^{N+p}]$ (4.16)

($\bar{\rho} < m \le N$, $0 \le n \le N \le N+p$; $s > 0$).
 tes we are in posit $Q_{nm}^{N+p}(s) - Q_{nm}^{N}(s) \leq \frac{1}{s} \delta_n(s) D_{\beta+1}^{m-1} [1/D_{\beta+1}^{N} - 1/D_{\beta+1}^{N+p}]$ (4.16)

($\bar{\rho} \langle m \leq N, 0 \leq n \leq N \langle N+p; s \rangle 0$).
 alts . Using the above estimates we are in position to derive explicit er-

unds for the approx

$$
K_n(s,t) = \frac{1}{s} \delta_n(s)(s + \alpha_n) e^{st}, \quad k_n(t) = \inf_{s > 0} K_n(s,t) \quad (n \ge 0, \ t \ge 0) \; . \tag{5.1}
$$

Theorem 1: Assume (2.4). Then for every fixed integer $N \ge 0$ and $m, n = 0, 1, ..., N$

$$
0 \le q_{nm}(t) - q_{nm}^N(t) \le \min\left\{1 - q_{nm}^N(t), \ A_{nm}^N(t)\right\} \qquad (t \ge 0) \tag{5.2}
$$

where either

$$
0 \leq q_{nm}(t) - q_{nm}^{N}(t) \leq \min\left\{1 - q_{nm}^{N}(t), A_{nm}^{N}(t)\right\} \qquad (t \geq 0) , \qquad (5.2)
$$
\n
$$
e^{i\theta t}
$$
\n
$$
A_{nm}^{N} = \begin{cases} \frac{1}{\lambda_0} \alpha_n \delta_n(0) (D_1 - D_1^{N}) & \text{in case } 1 \text{ if } D_1 < \infty \\ \frac{1}{\lambda_0} \left\{K_n(s, t) \frac{\lambda_0 + s D_1^{m-1}}{\lambda_0 + s D_1^{N}}\right\} & \text{in case } 1 \text{ if } D_1 = \infty \\ \text{and in case } 2 \text{ for } N < \rho, \end{cases} (5.3)
$$
\n
$$
case 2 \text{ for } N \geq \rho,
$$

or, in case 2 for $N \ge \rho$,

e either
\n
$$
A_{nm}^N = \begin{cases}\n\frac{1}{\lambda_0} \alpha_n \delta_n(0) (D_1 - D_1^N) & \text{in case 1 if } D_1 \leq \infty, \\
\inf_{\alpha > 0} \left\{ K_n(s, t) \frac{\lambda_0 + sD_1^{m-1}}{\lambda_0 + sD_1^N} \right\} & \text{in case 1 if } D_1 = \infty\n\end{cases}
$$
\n(5.3)
\n
$$
t \text{ case 2 for } N \geq \rho,
$$
\n
$$
t \text{ case 2 for } N \geq \rho,
$$
\n
$$
A_{nm}^N = \begin{cases}\n0 & \text{for } 0 \leq m \leq \rho_N \ (s \bar{\rho} \leq \infty), \\
k_n(t) D_{\rho_N+1}^{m-1} / D_{\rho_N+1}^N & \text{for } \rho_N \leq m \leq N \leq \bar{\rho} \ (s \infty), \\
k_n(t) D_{\rho+1}^{m-1} / D_{\rho+1}^N & \text{for } \bar{\rho} = \rho_N \leq m \leq N \ \text{if } D_{\bar{\rho}+1} = \infty,\n\end{cases}
$$
\n(5.4)
\n
$$
k_n(t) D_{\rho+1}^{m-1} [1/D_{\rho+1}^N - 1/D_{\bar{\rho}+1}] \text{ for } \bar{\rho} = \rho_N \leq m \leq N \ \text{if } D_{\bar{\rho}+1} \leq \infty.
$$
\ne, for fixed $m, n \geq 0$, $q_{nm}^N(t)$ converges uniformly in t on every bounded interval.
\n
$$
\frac{\alpha_n \delta_n(0)}{\lambda_0} = \begin{cases}\n1 & \text{for } n = 0, \\
(1 + \lambda_n / \mu_n) \prod_{\rho=1}^{m-1} (\lambda_\rho / \mu_\rho) \kappa (1 + \lambda_n / \mu_n) [D_1^{m-1} - D_1^{m-2}) \ \text{for } n \geq 1.\n\end{cases}
$$
\n(5.5)

Hence, for fixed m,n ≥ 0 , $q_{nm}^N(t)$ *converges uniformly in t on every bounded interval.*

R.mrk., 1. It is easy to show that In **case 1**

marks: 1. It is easy to show that in case 1
\n
$$
\frac{\alpha_n \hat{\zeta}_n(0)}{\lambda_0} = \begin{cases}\n1 & \text{for } n = 0, \\
(1 + \lambda_n / \mu_n) \prod_{\rho=1}^n (\lambda_\rho / \mu_\rho) \kappa (1 + \lambda_n / \mu_n) (D_1^{n-1} - D_1^{n-2}) & \text{for } n \ge 1.\n\end{cases}
$$
\n(5.5)

2. In case 2 we have for $n > p$

E. WAGNER

\n**case 2 we have for**
$$
n \cdot \rho
$$

\n
$$
k_n = (1 + \lambda_n / \mu_n) \sum_{v = \rho_{n-1} + 1}^n \left(\prod_{\rho = v}^{n-1} \lambda_\rho / \mu_\rho \right) = (1 + \lambda_n / \mu_n) \sum_{v = \rho_{n-1} + 1}^n \left(D_v^{n-1} - D_v^{n-2} \right)^{-1}
$$
\n(6.6)

\n**See** $A_0^{n-1}(0) = 0$ implies $k_n(t) = K_n(+0, t)$. **3.** In case 2 there follows directly

\n(1.1) with $c = \delta$, that a^N (t) = 0 for 0 is $m \leq a$ (n \leq N, t \geq 0). Thus,

because $A_0^{n-1}(0) = 0$ implies $k_n(t) = K_n(*0,t)$. **3.** In case 2 there follows directly from (1.1) with $c_n = \delta_{nm}$ that $q_{nm}^N(t) = 0$ for $0 \le m \le p \le n \le N$, $t \ge 0$. Thus, $\int_{0}^{1} \frac{1}{\lambda_{p}} \lambda_{p} \mu_{p} = (1 + \lambda_{n} \lambda_{n}) \sum_{v=0}^{n} (D_{v}^{n-1} - D_{v}^{n-2})^{-1}$ (5.6)
 $\int_{0}^{1} (t) = K_{n}(\cdot 0, t)$. S. In case 2 there follows directly
 $\int_{0}^{N} f(t) dt = 0$ for $0 \le m \le p \le n \le N$, $t \ge 0$. Thus,

for $0 \le m \le p \le n$,

$$
q_{nm}(t) = 0 \quad \text{for} \quad 0 \leq m \leq \rho \leq n, \quad t \geq 0 \tag{5.7}
$$

4. The infima in (5.3) can be approached by setting $a = 1/t$ $(t > 0)$, because e^{st}/s has a minimum at $s = 1/t$.

Proof of Theorem 1: Obviously, by (2.8) 0 $\leq q_{nm}(t) - q_{nm}^N(t) \leq 1 - q_{nm}^N(t)$. From (2.10) there follows

1) with
$$
c_n = \delta_{nm}
$$
 that $q_{nm}^N(t) = 0$ for $0 \leq m \leq p < n \leq N$, $t \geq 0$. Thus,

\n $q_{nm}(t) = 0$ for $0 \leq m \leq p < n$, $t \geq 0$. (5.7)

\ninflma in (5.3) can be approached by setting $s = 1/t$ (t) 0), because

\nas a minimum at $s = 1/t$.

\nof Theorem 1: Obviously, by (2.8) $0 \leq q_{nm}(t) - q_{nm}^N(t) \leq 1 - q_{nm}^N(t)$.

\nObserve that the following conditions are given by:

\n $Q_{nm}^{N+p}(s) - Q_{nm}^N(s) = \int_0^\infty e^{-s} \left[q_{nm}^{N+p}(t) - q_{nm}^N(t) \right] dr$ (s) 0.

\nNow, properties of the Laplace transformation, we obtain

Using known properties of the Laplace transformation we obtain

$$
t_{\ell,s}
$$
 has a minimum at $s = 1/t$.
\nProof of Theorem 1: Obviously, by (2.8) $0 \le q_{nm}(t) - q_{nm}^{N}(t) \le 1 - q_{nm}^{N}(t)$.
\nom (2.10) there follows
\n $Q_{nm}^{N+p}(s) - Q_{nm}^{N}(s) = \int_{0}^{\infty} e^{-st} [q_{nm}^{N+p}(r) - q_{nm}^{N}(r)] dr$ (s) 0). (5.8)
\nsing known properties of the Laplace transformation we obtain
\n $s[Q_{nm}^{N+p}(s-\alpha_n) - Q_{nm}^{N}(s-\alpha_n)] = \int_{0}^{\infty} e^{-st} \frac{d}{dt} \{e^{\alpha_n t} [q_{nm}^{N+p}(r) - q_{nm}^{N}(r)]\} d\tau$ (s) α_n). (5.9)
\nnce the integrand on the right-hand side is non-negative (see (2.11)),
\n $s[Q_{nm}^{N+p}(s-\alpha_n) - Q_{nm}^{N}(s-\alpha_n)] \ge e^{(\alpha_n - s)t} [q_{nm}^{N+p}(t) - q_{nm}^{N}(t)]$ (s) $\alpha_n, t \ge 0$). (5.10)
\nence
\n $q_{nm}^{N+p}(t) - q_{nm}^{N}(t) \le (s+\alpha_n) e^{st} [Q_{nm}^{N+p}(s) - Q_{nm}^{N}(s)]$ (s) 0, $t \ge 0$). (5.11)
\nfollows from (5.8) by using (4.13) and the estimates (4.11), (4.12), (4.15) and

Since the integrand on the right-hand side is non-negative (see (2.11)),

$$
s\big[Q_{nm}^{N+p}(s-\alpha_n) - Q_{nm}^N(s-\alpha_n)\big] \geq e^{(\alpha_n - s)t} \big[q_{nm}^{N+p}(t) - q_{nm}^N(t)\big] \quad (s \geq \alpha_n, t \geq 0) \,.
$$
 (5.10)

Hence

$$
q_{nm}^{N\ast p}(t) - q_{nm}^N(t) \le (s+\alpha_n) e^{st} \left[Q_{nm}^{N\ast p}(s) - Q_{nm}^N(s)\right] \qquad (s>0, t>0). \tag{5.11}
$$

It follows from (5.8) by using (4.13) and the estimates (4.11), (4.12), (4.15) and (4.16) that, for fixed $m, n \ge 0$, $q_{nm}^N(t) \rightharpoonup q_{nm}(t)$ as $N \rightharpoonup \infty$, uniformly in t on every bounded interval. Furthermore, letting $p \rightarrow \infty$ and moreover, if $D_1 \leftarrow \infty$ in case 1, $s \rightarrow 0$, we obtain the upper bounds A_{nm}^N .

Now, it is easy to prove that the solutions $x^N = (x_0^N, x_1^N, ..., x_N^N)^T$ of the finite **initial-value** problems (2.6) converge componentwise to a solution of the infinite initial-value problem (2.1) as well as to determine explicit error bounds, provided the conditions (2.2) - (2.4) are satisfied. We use the abbreviations initial-value problems (2.6) converge componentwise

ie initial-value problem (2.1) as well as to determine

ied the conditions (2.2) - (2.4) are satisfied. We use t
 $R_N = R_N(t) = \sum_{m=0}^{N} \left\{ \int_{0}^{t} [f_m(\tau)|d\tau + |c_m| \right\}$, R moreover, if $D_1 \, \cdot \, \infty$ in
 $x_0^N, x_1^N, \ldots, x_N^N$ of the
 $\pm \infty$ to a solution of the

explicit error bounds,

the abbreviations
 $\lim_{t \to \infty} R_N(t)$. (5.12)

than N.

$$
R_N = R_N(t) = \sum_{m=0}^{N} \left\{ \int_{0}^{t} f_m(\tau) \, d\tau + |c_m| \right\} , \quad R = R(t) = \lim_{N \to \infty} R_N(t) . \tag{5.12}
$$

Let *M* denote *any* fixed non-negative integer not greater than *N.*

Theorem **21** *Assume (2.2)-(2.4). Then the Initial-value problem (2.1) has a* **Theorem 2:** Assume

solution $x = \{x_0, x_1, ...$
 $x_n = x_0$ *)T where* **Error Bounds for the Truncation of Diff.** Systems 415
 ssume (2.2) - (2.4). Then the initial-value problem (2.1) has a
 $x_1, ..., Y$, where
 $x_n = x_n(t) = \lim_{N \to \infty} x_n^N(t)$ (n= 0,1,2,...; t > 0), (5.13)

i every bounded interva

$$
x_n = x_n(t) = \lim_{N \to \infty} x_n^N(t) \qquad (n = 0, 1, 2, \dots; t \ge 0), \tag{5.13}
$$

uniformly In t on every bounded interval, with the following error bounds:

Exercise 115

\nTheorem 2: Assume (2.2) - (2.4). Then the initial-value problem (2.1) has a

\nition
$$
x = \{x_0, x_1, \ldots\}^T
$$
, where

\n
$$
x_n = x_n(t) = \lim_{N \to \infty} x_n^N(t) \quad (n = 0, 1, 2, \ldots; t \ge 0),
$$
\nSimilarly in t on every bounded interval, with the following error bounds:

\n
$$
|x_n(t) - x_n^N(t)|
$$
\n
$$
\begin{cases}\n\min\{1, \frac{1}{\lambda_0} \alpha_n \delta_n(0) (D_1 - D_1^N)\} R_N + R - R_N & \text{in case 1 if } D_1 < \infty, \\
m \min\{1, A_{nM}^N\} R_M + R - R_M & \text{in case 2 for } N < \rho,\n\end{cases}
$$
\n
$$
R - R_N
$$
\n
$$
\begin{cases}\nR - R_{\rho_N} & \text{in case 2 for } \rho \le N \le \bar{\rho} \le \infty, -(5.14) \\
\min\{1, A_{nM}^N\} (R_M - R_{\rho}) + R - R_M & \text{in case 2 for } \rho \le N \le \bar{\rho} \le \infty, -(5.14) \\
\min\{1, A_{nM}^N\} (R_M - R_{\rho}) + R - R_M & \text{in case 2 for } \bar{\rho} \le N \le \bar{\rho} \le \infty, -(5.14) \\
\min\{1, k_n[1 - D_{\rho+1}^N / D_{\rho+1}]\} (R_N - R_{\rho}) + R - R_N & \text{in case 2 for } \bar{\rho} \le N \text{ if } D_{\rho+1} < \infty \\
0 \le n \le N, t \ge 0).\n\end{cases}
$$

Proof: Using the error bounds given in (5.3), (5.4) and noting that $A_{nm}^N(\tau) \leq A_{nm}^N(t)$ $\begin{cases}\n\min\{1, A_{nM}^N\} \left(R_M - R_{\tilde{\rho}}\right) + R - R_M & \text{in case 2 for } \tilde{\rho} \cdot M \leq N \text{ if } D_{\tilde{\rho}+1} = \infty, \\
\min\{1, k_n\{1 - D_{\tilde{\rho}+1}^N / D_{\tilde{\rho}+1}\}\} \left(R_N - R_{\tilde{\rho}}\right) + R - R_N & \text{in case 2 for } \tilde{\rho} \cdot N \text{ if } D_{\tilde{\rho}+1} < \infty \\
& (0 \leq n \leq N, t \geq 0).\n\end{cases}$
 Proo Proof: Using the error bounds given in (5.3), (5.4) and noting that $A_{nm}^N(\tau) \le A_{nm}^N(t)$
for $0 \le \tau \le t$, $m \le M$ and that $q_{nm}^N(t) \le 1$, the uniform convergence $x_n^N \to x_n$ as
 $N \to \infty$ and the error bounds (5.14) can be for $0 \le n \le N$, $t \ge 0$).
 Froof: Using the error bounds given in (5.3), (5.4) and noting that $A_{nm}^N(\tau) \le A_{nm}^N(t)$

for $0 \le \tau \le t$, $m \le M$ and that $q_{nm}^N(t) \le 1$, the uniform convergence $x_n^N \rightarrow x_n$ as
 $N \rightarrow \infty$ and th equation of the system (2.6) we see that the limits x_n solve the infinite initialvalue problem (2.1). $\frac{d}{dt} x_n^N(t) \rightarrow \frac{d}{dt} x_n(t)$ as $N \rightarrow$
ry bounded interval. Thereform
if (2.6) we see that the limits x
les. 1. If $c_m \ge 0$, $f_m \ge 0$ ($m \ge 0$,
 $c_n^N(t) \le x_n^{N+1}(t)$ ($0 \le n \le N$, $t \ge 0$). T
5.14) are valid for $x_n(t) - x_n^N(t)$

6. Remarks and examples. 1. If $c_m \ge 0$, $f_m \ge 0$ $(m \ge 0, t \ge 0)$, then from (2.7) and (2.8) there follows $0 \le x_n^{N}(t) \le x_n^{N+1}(t)$ ($0 \le n \le N$, $t \ge 0$). Therefore, $x_n^{N}(t) \le x_n(t)$ and the upper bounds in (5.14) are valid for $x_n(t) - x_n^{\mathcal{N}}(t)$. Furthermore, by (2.6) and examples. 1. If c_m ²

follows $0 \le x_n^{N}(t) \le x_n^{N+1}(t)$

bounds in (5.14) are valid
 $\frac{d}{dt} \left(\sum_{v=0}^N x_v^N \right) =$

from 0 to t, we obtain
 $\sum_{v=0}^N x_v^N(t) \le \sum_{v=0}^N$

there follows $x \in I_1$ and \parallel

it is shown t

$$
\frac{d}{dt}\Big(\sum_{v=0}^{N}x_{v}^{N}\Big) = -\lambda_{N}x_{N}^{N} + \sum_{v=0}^{N}f_{v} \leq \sum_{v=0}^{N}f_{v}.
$$

Integrating from 0 to t, we obtain

$$
\sum_{v=0}^N x_v^N(t) \leq \sum_{v=0}^N \Big\{ c_v + \int_0^t f_v(\tau) d\tau \Big\}.
$$

From this there follows $x \in I_1$ and $||x|| \le R$.

2. In (7) it is shown that the following conditions are sufficient In order that 5. Remarks and examp
(2.8) there follows $0 \le t$
the upper bounds in
integrating from 0 to
integrating from 0 to
 $\frac{8}{10}$
2. In (7) it is shown
2. In (7) it is shown
 $\frac{6}{10}$
 $q_{nm}(t) = 1$ and the
(1.1) with $c_n = \delta_{nm}$ ($i \infty$ + $\int_{0}^{1} f_{v}(t) dt$ }.
 $x \parallel \le R$.

wing conditions are sufficient in order the

... }^T is the only non-negative solution of (2.8) there follows $0 \le x_n^N(t) \le x_n^{N+1}$
the upper bounds in (5.14) are v_i
 $\frac{d}{dt} \left(\sum_{v=0}^N x_v^N \right)$
Integrating from 0 to t, we obte
 $\sum_{v=0}^N x_v^N(t) \le \sum_{v=0}^N x_v^N(t) \le$
From this there follows $x \cdot l_1$ an
2. In [7]

(i) $m \leq \bar{p}$ in case 2,

(i) $m \leq \bar{p}$ in case 2,
 (ii) $D_m \leq \bar{p}$ in case 2,
 In particular, (i) is satisfied for every $m \geq 0$ **if** $\bar{p} = \infty$ **and (ii) is satisfied if** D_m **.

In particular, (i) is satisfied for every** $m \geq 0$ **if \bar{p or** $\sum_{p=1}^{\infty} D_{p+1} / \lambda_p = \infty$ both in case 1 and in case 2 with $\bar{\rho} \leftarrow \infty$ for $m \cdot \bar{\rho}$.

In particular, (i) is satisfied for every $m \ge 0$ if $\bar{\rho} = \infty$ and (ii) is satisfied if $D_m = \infty$

or $\sum_{p=m}^{\infty} \frac{1}{p}$ **responding uniqueness have also been proved In (7).**

3. Suppose that $c_m = f_m = 0$ for $m > m_0 \ge 0$, $t \ge 0$. Then $R = R_m = R_{m_0}$ for $m \ge m_0$ and $N \ge \rho_N \ge m_0$. In other words: If m_0 (ii) $D_m + \sum_{r=1}^{\infty} D_{\rho+1}/\lambda_{\rho} = \infty$ both in case 1 and in case 2 with $\bar{\rho} \cdot \infty$ for $m > \bar{\rho}$.

In particular, (i) is satisfied for every $m \ge 0$ if $\bar{\rho} = \infty$ and (ii) is satisfied if $D_m = \infty$

or $\sum_{\rho=m}^{\infty} \frac$ (2.6) it is immediately seen that $x_n^N = 0$ for $\rho^* \rightarrow 1 \le n \le N$. Hence, $x_n = 0$ for $n \ge \rho^* \rightarrow 1$ **and (2.1) can be reduced to a finite initial-value problem.**

4. The upper bounds A_{nm}^N defined by (5.3) tend to zero as $N \rightarrow \infty$ of the same order as either $D_1 - D_1^N$ if $D_1 \leftarrow \infty$ or $1/D_1^N$ if $D_1 = \infty$. The behaviour of D_1^N as $N \rightarrow \infty$ is determined by the ratios $\mu_{\rho}/\lambda_{\rho}$ for large ρ . In particular, putting $\mu_p/\lambda_p = \omega_p$ ($\rho \ge 1$) one can obtain easily from (4.9) that $D_1 - D_1^N = O(1/(N+1))$ If $\omega_p = 1/p$, $D_1 - D_1^N = O(c^N)$ if $\omega_p = c(1, 1/D_1^N = O(1/N)$ if $\omega_p = 1$, $1/D_1^N = O(c^{-N})$ if $\omega_o = c \times 1$ and $1/D_1^N = O(1/N!)$ if $\omega_o = \rho$. This shows that the more different the behaviour of λ_{ρ} , μ_{ρ} for large ρ is the faster the upper bounds $A_{nm}^N(t)$ for fixed n, m, t tend to zero as $N \rightarrow \infty$. Similar observations can be made in case 2. **c** and the set of $\lambda_p = \omega_p$ ($\rho \ge 1$)
 $\omega_p = 1/\rho$, $D_1 - 1$
 $\omega_p = c \cdot 1$ and

behaviour of

d *n*, *m*, *t* tend

ample 1. In the on reactions

where $\lambda_n = \frac{1}{\rho}$
 $\frac{1}{\rho}$
 $\frac{1}{\rho}$

($\frac{1}{\rho}$ (μ/λ)
 \rightarrow

(

Example 1: In the theory of kinetics of compartmentalized free-radical polymeri**zation reactions one was led to consider the homogeneous initial-value problem** if $\omega_{\rho} = c \times 1$ and $1/D_1^N = O(1/N!)$ if $\omega_{\rho} = \rho$. This shows that the more different
the behaviour of λ_{ρ} , μ_{ρ} for large ρ is the faster the upper bounds $A_{nm}^N(t)$ for
fixed n, m, t tend to zero as $N \rightarrow \in$ $=\sum_{n=-\infty}^{N} v!(\mu/\lambda)^{v}$ + ∞ as $N \rightarrow \infty$. Similar observations can be made in case 2.

heory of kinetics of compartmentalized free-radical polymericus intervals and to consider the homogeneous initial-value problem
 $\mu_n = n\mu$ ($\mu > 0$, $n \ge 0$), c_0 *V =* $\int_{\sqrt{20}}^{\sqrt{2}} \sqrt{f(\mu/\lambda)^2} \to \infty$ as $N \to \infty$ (see (4.9)), it has (cf. Remark 2) the unique non-

negative solution $(q_{00}, q_{10}, ...)^T$. (Remark that q_{n0} is the concentration of loci of

reaction system which contain *n* **reaction system which contain** *n* **propagating radicals.) Using (3.S),(3.6),(4.6) ,(S.1) and (5.3) we obtain the upper bounds** solution $\{q_{00}, q_{10}\}$
system which contains the upper b
obtain the upper b
 $A_{n0}^N = \inf_{s>0} \left\{ \left(1 + \frac{\lambda^2}{s} \right) \right\}$

$$
A_{n0}^N = \inf_{s>0} \left\{ \left(1 + \frac{\lambda + n\mu}{s} \right) \frac{(\lambda/\mu)^n}{n!} e^{st} \frac{\lambda + sD_1^{n-1}}{\lambda + sD_1^N} \right\} = O\left(\frac{(\lambda/\mu)^N}{N!} \right) \qquad (N \to \infty) .
$$

Remark that the estimates given in (8,9) fail since the assumption $\sum_{i=1}^{\infty} 1/\alpha_n < \infty$ **Is violated.**

Example 2. Let $\lambda_n=1$, $\mu_n=n$, $c_n=1/n!$, $f_n=0$ (n=0,1,2,...; t o). Since $D_1^n=\sum_{i=0}^n y_i$, we have case 1 with $D_1 = \infty$. Therefore, by (5.14) and in view of Remark 1, $\lambda * sD_i^{\infty}$

i fail since the assumption $\sum_{n=1}^{\infty}$
 $\frac{1}{n^2} = 0$ ($n = 0, 1, 2, ...$; $t \ge 0$). Since k
 $\frac{1}{t}$ (5.14) and in view of Remark
 $k = R_M$.
 $\frac{1}{t} = 1$
 $\frac{1}{t}$ $\left(1 + \frac{n+1}{s}\right)\left(1 + \frac{n-1}{s} \frac{1}{\sqrt$

$$
0 \le x_n(t) - x_n^N(t) \le \min\{1, A_{nM}^N\} R_M + R - R_M.
$$

where by (5.3) (cf. Example 1 with $\lambda \approx \mu = 1$)

$$
x_{n}(t) - x_{n}^{N}(t) \le \min\{1, A_{nM}^{N}\} R_{M} + R - R_{M}
$$

by (5.3) (cf. Example 1 with $\lambda \propto \mu = 1$)

$$
A_{nM}^{N} = \inf_{s>0} \left\{ K_{n}(s,t) \frac{1 + sD_{1}^{M-1}}{1 + sD_{1}^{N}} \right\} = \inf_{s>0} \left\{ \left(1 + \frac{n+1}{s} \right) \left(1 + \frac{n-1}{s} \right) + \frac{s}{n!} \frac{1 + sD_{1}^{M-1}}{1 + sD_{1}^{N}} \right\}
$$

and by (5.12) $R_M = \sum_{m=0}^{M}$
(i) $A_{M}^{N}(t) \leq (n+2)^{2}$ $\sum_{m=0}^{M} 1/m! \rightarrow R = e \ (M \rightarrow \infty)$. Obviously,

(i)
$$
A_{nM}^N(t) \le (n+2)(1+D_1^{n+1}) \frac{e^t}{n!} (1+D_1^{M-1})/(1+D_1^N)
$$

for $t \geq 0$ (putting $s = 1$)

,
【 】

$$
A_{nM}(t) \le (n+2)(1+D_1^-) \frac{1}{n!} (1+D_1^-) / (1+D_1^-)
$$

for $t \ge 0$ (putting $s = 1$),
(ii) $A_{nM}^N(t) \le [1 + (n+1)t] (t + D_1^{n-1}) \frac{e}{n!} (t + D_1^{M-1}) / (t + D_1^N)$

for $t>0$ (putting $s=1/t$) and

$$
R - R_M = \sum_{m=M+1}^{\infty} 1/m! \leftarrow \frac{M+2}{(M+1)(M+1)!}
$$

R
 R $A_{nM}^{N}(t) \leq (n+2)(1+D_{1}^{n-1})\frac{e^{t}}{n!}(1+D_{1}^{M-1})/(1+D_{1}^{N})$
 r $t \geq 0$ (putting $s = 1$).
 R $A_{nM}^{N}(t) \leq [1+(n+1)t][t+D_{1}^{n-1}]\frac{e}{n!t}(t+D_{1}^{M-1})/(t+D_{1}^{N})$
 r $t \geq 0$ (putting $s = 1/t$) and
 R $-R_{M}$ **for some** *n.* **L. We start from the sufficient condition** $A_{nM}^N(t) \leq (n+2)$

(putting $s=1$)
 $A_{nM}^N(t) \leq [1+(n+1)k]$

putting $s=1/t$)
 $R - R_M = \sum_{m=M+1}^{\infty} 1$
 $R - R_M = \sum_{m=M+1}^{\infty} 1$ $(1 + D_1^{T-1}) \frac{e^t}{n!}$
 $+1) t \left[\left(t + D_1^{T-1} \right) \right]$

and
 $\sqrt{m!} \leftarrow \frac{M+2}{(M+1)!}$

to find an

from the aufi $\frac{M+2}{(M+1)!}$ < 10

baing $M = 6$.

$$
A_{IM}^N(t) = + \frac{M+2}{(M+1)(M+1)!} \cdot 10^{-3} \qquad (0 \le n, M \le N; t \ge 0)
$$

which yields $\dot{M} \ge 6$. Choosing $\dot{M} = 6$, the inequality is satisfied for e.g. $n=0$ if (ii) $A_{nM}^N(t) \leq [1+(n+1)t] (t+l)$

for $t>0$ (putting $s=1/t$) and
 $R - R_M = \sum_{m=M+1}^{\infty} 1/m! \leq \overline{M}$

Suppose that we wish to fin

for some *n*, *t*. We start from the
 $A_{nM}^N(t) = \frac{M \cdot 2}{(M+1)(M+1)!}$

which yields $M \geq 6$ **i** 0^{-3} **b** $0 \le n, M \le N$; $t \ge 0$
 if $D_1^N = \sum_{\nu=0}^N v!$ > $\left[10^4 e(t+1)(t+154) - t\right] / 2,8$ Since the right-hand side is a monotone increasing function of t $(t \ge 0)$ we obtain $N \ge 10$ for $0 \le t \le 1$, $N \ge 11$ for $0 \le t \le 10$ and $N \ge 12$ for $0 \le t \le 100$. Choosing $N = 12$. $N \ge 10$ for $0 \le t$
we have A_{R6}^{12} or, in view of (ii), if $D_1^N = \sum_{v=0}^{12} v!$
 $+$ hand side is a monotone increasing f
 ≤ 1 , $N \ge 11$ for $0 \le t \le 10$ and $N \ge 12$ for
 $\le 2.8 \cdot 10^{-4}$ for $n = 1, 2, ..., 12$ if (see (ii))
 $\therefore N = \frac{n-11}{2}$, $\le 1.6 \le t \le$

 $[1+(n+1)t](t+D_1^{n-1}) \frac{e}{n!t}(t+154)/(t+D_1^{12})$ \in 2,8.10⁻⁴.

For $n=1$ few computations give the unessentially stronger inequality $2t^3 \div 311$ we have $A_{B}^{12} \times 2.8 \cdot 10^{-4}$ for $n=1, 2, ..., 12$ if (see (ii))
 $\left[1 + (n+1)t\right](t + D_1^{n-1}) \frac{e}{n!t}(t + 154)/(t + D_1^{12}) \times 2.8 \cdot 10^{-4}$.

For $n=1$ few computations give the unessentially stronger inequality $2t^3 + 311t^2$
 $-$ **16 lying between both positive zeros of the polynomial on the left-hand side, at least for 0.003** $\le t \le 103$. For $0 \le t \le 0.003$ we use (i) to show that $A_{16}^{12} \cdot 2.8 \cdot 10^{-4}$. **FILM 4.53404** $t \cdot 154 \cdot 0$, so that $A_{16}^{12} \cdot 2.8 \cdot 10^{-4}$ and, consequently, $x_1 - x_1^{12} \cdot 10^{-3}$ for all lying between both positive zeros of the polynomial on the left-hand side at least for $0.003 \le t \le 103$. For ceed for $n=2,3,...,12$. For example, $0 \le x_5 - x_5^{12} \cdot 10^{-3}$ holds at least for $0 \le t \le 945$. $[1+(n+1)\epsilon](t+D_1^{n-1}) \frac{a}{n! \epsilon}(t+154)/(t+D_1^{12})$ < 2.8.10⁻⁴.

For $n=1$ few computations give the unesaentially stronger inequality $2t^3 + 311 \epsilon^2$
 $-53404 t + 154 \cdot 0$, so that $A_{16}^{12} \cdot 2.8 \cdot 10^{-4}$ and, consequently,

On the other side, in order to determine an integer *N* **being as small as possi**start from the inequality $(1+6t)(t+34)(t+154) \le 0.012t(t+\sum_{v=0}^{N} v!)$ implying (ii) with $n = 5$, $M = 6$. If we put $t = 100$ we obtain $N \ge 11$. Choosing $N = 11$. in fact the inequality is satisfied at least for $0.02 \le t \le 208$. By using (i) it can be shown as above that $0 \le x_5 - x_5^{11} \le 10^{-3}$ for $0 \le t \le 0.02$. too. Remark that the present example has the constant solution $x_n = 1/n!$ $(n=0,1,...)$. By numerical computations one can obtain real upper bounds δ_n for $x_n - x_n^{12}(t)$ (0 $\le n \le 12$) holding in the intervall **1** $0 \le t \le 10^3$. They and the corresponding relative errors $\delta_n / x_n = \delta_n n!$ are exhibited for some *n* in the following table. **for some n in the following table.**

REFERENCES

- $f11$ BERMAN, A. and R.J. PLEMMONS : Nonnegative matrices in the mathematical aciences. New York-San Francisco-London: Academic Press 1979.
- [2] BLACKLEY, D.C.: Theorie of Kinetics of Compartmentalized Free-Radical Polymerization Reactions. In: Emulsion polymerization (ed.: I. Parma). New York-London-San Francisco: Academic Press 1982, 145-190.
- 131 CHEW, K.H., SHIVAKUMAR, P.N. and J.J. WILLIAMS: Error Bounds for the Truncation of Infinite Linear Differential Systems. J. Inst. Math. Appl. 25 $(1980), 37 - 51.$
- [4] FELLER, W.: An Introduction to Probability Theory and its Applications, Vol.1. New York: John Wiley 1950.
- [5] MARINOV, C.: Truncation errors for infinite linear systems. IMA J. Num. Anal. 6 (1986), 51 - 63.
- [6] OSTROWSKI, A.: Über die Determinanten mit überwiegender Hauptdiagonale. Comment Math. Helv. 10 (1937-1938), 69-96.
- [7] REUTER, G.E.H. and W. LEDERMANN: On the differential equations for the transition probabilities of Markov processes with enumerably many states. Proc. Cambridge Philos. Soc. 49 (1953), 247-262.
- [8] WAGNER, E.: Lösungsapproximation und Fehlerabschätzungen für ein unendliches System linearer, gewöhnlicher Differentialgleichungen mit konstanter Bandmatrix. Z. Anal. Anw. 8 (1989), 445-461.
- [9] WAGNER, E.: Uber ein abzählbares System gewöhnlicher linearer Differentialgleichungen von Bandstruktur. Demonstratio Math. 23 (1990), 753-757.
- [10] ZEJFMAN, A.I.: On the error of truncation of a birth and death system. Zh. Vychisl. Mat. Fiz. 28 (1988), 1906 - 1907 (in Russian).

Received 04. 07. 1991

Dr. rer. nat. habil. EBERHARD WAGNER Fachbereich Mathematik und Informatik Martin-Luther-Universität Halle-Wittenberg $D - O - 4010$ Halle (S.)