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Oscillatory Solutions of a System of 2 Nonlinear Integro-Differential Equations
of Second Order with Deviating Arguments

I. FOLTYNSKA

Some conditions are established under which solutions of a system of nonlinear integro-diffe-
rential equations are oscillatory.

Key words: Nonlinear integro-differential equations, equations of second order, oscillatory

solutions

AMS subject classification: 45J05, 45M 99

1. Introduction

Consider the system of equations

t
yi(e) = ff;(t,s;y,(s), v Y8k y(&(s)), ... . y{&n(s)ds (i=1,..,n) 1)

where

£

1

RZxR?xR?” >R and g R,—>R, (k=1,..,n)
are continuous functions and
glt)stor glt)>t forallt and lim,,eglt) = (k=1,..,n).

Sufficient conditions under which every solution of the system (1) is oscillatory will be esta-
blished. Both cases of retarded and advanced arguments will be considered. A similar problem
for the system of n nonlinear integro-differential equations of the first order have been consi-
dered in {1] and [2]. We shall use a method of proofs similar to that given in [4] for the sy-
stem of n ordinary differential equations with delayed arguments.

2. Preliminaries

By a solution y = {y,, ..., ¥,,» of the system (1) we shall understand only a non-trivial solution
extended to the infinity. A solution y of the system (1) is called
a) oscillatory, if every component y, of y has an infinite sequence of zeros tending to in-
finity as the argument tends to infinity.
b) non-oscillatory, if every component y, of y has a constant sign for sufficiently large
values of the argument ¢, i.e. for t 2 T, forsome T 2 0.



420 I. FOLTYNSKA

We shall use the following Assumptions:

(D g, (k =1, ...,n) are continuous and non-decreasing functions.

(i) £i(t, S5 340 oo 1 Y Uy oy up)signue 2 a; (6, SNH (0, (=1, .0 ,n -1)
£S5 Vas oo v s Uy oo s Updsignu, S -ap(t, s)IHp(u)l
for all(t,s; ¥, -.. ,¥ni Ugs - )€ R xR x R, where H;: R -> R are continuous and
non-decreasing functions, H{u;.,)u;., > 0, u;,, e R(i=1,...,n), u ., =y, and a;: R,
x R,—> R are continuous functions, a;(t,s)> 0 for all (¢t,s)e R, x R, (i=1,...,n).

t z t z
(iii) () lim ffa,-(z,s) dsdz = (i=1,..,n-1) (B) lim J.!a"(z,s) dsdz = co.
t=>rr t—>or

T
(v) F :=ff}(',s:}"(s), o 1 Yal) 788D, oo\ vl gnls)) ds € L[a,®) (i=1,..,n)

for a constant a > 0, where |F;(¢)] s K; for some constants K; and F(¢)y;,,(t +¢,) > 0
(i=1,...,n 1), F(t)y,(t +t,) <0 for some t, > 0, t e R, (¥4, = 5).

In addition, we shall use the notations

M; = |IF(t)idt and N; = inf |H(u)|l forsome T, >0 (i=1,...,n).
[T, =)

3. Main results (the case gy(t) < t)

First we shall consider the system (1) with retarded arguments.

Lemma 1: Let the assumptions (i), (ii) and (iv) hold and let y be a solution of the system .
(1). If one of its components is non-oscillatory, then y itself is non-oscillatory and monotonic.

Proof: Let y; be a non-oscillatory component of y. For the proof let be y(t) > 0 for t21¢, 2
0 and y;(g;(t)) > O for t2 T, where T, 2 t,. From the system (1) and the assumptions (ii), (iv) it
follows (¥ = ¥peys to = tn)

t
yioke) = ff}_‘(t,s;y,(s), e V(S Y& LS, oo, ¥ 8($)) ds

T,
[ dt5: 708D, v yl) &Ny -\ 8 SV) ds

t
+ff,-_1(t,8;y,(S), v Yuls) v(gs), ..., v gals)) signy;(g;(s)) ds
%

t
2 F_y(t) + [a;_(t,9)|H;_,(y(s) ds > 0.
T
Hence y;_, and y;_, are monotonic functions and, for sufficiently large t (for example for t
2t, t, 2 t,), they have the constant sign. Now y;_, may be a positive or negative function.
Let be y;_,(t) <Ofor t 2 ¢t, and y;_,(g;_,(t))< 0 for t 2 T; 2¢,. Hence from the system (1) and
the assumptions (ii), (iv) we get
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T :
Yia(t) = [fia(tosiy(9), o 75k Tl&LSDs . s Vi &ols)) ds
t
-ff,--z(t,s;y,(s), e Yok 8) v 8L, oo, ¥l 8nls))signy; (g ,(s)) ds
I

t
s F_(t) - {a,-_zu, sIH; _(y;_ (s ds <0

orif y;_,(¢t) >0 for t2 t, and y;_(g;-,(t)) > 0 for t 2 T, then, from the system (1) and the as-
sumptions (ii), (iv), .
T
yis(t) = ffi_z(t,s;yl(s), e s V(S 7808, ..., L gn(s)) ds
- . -0 . - - .- - . -

t
=i o(tsi (), e ) T &N - YA 8(s))signyi- (- () ds
n _

t
2 F_(8) + [a;_j(t, ) H;_,(y;_(s)l ds > 0.
N
In both cases it follows that y;_, and y;_, are monotonic functions and for sufficiently large ¢
they have constant sign (for example for ¢ 2 t,). Proceeding in the same way we obtain y,, y;_,,
Yir s Vieg for t2T,2¢;(i=1, ... ,n) are monotonic and therefore non-oscillatory functions B

Corollary 1: Under the assumptions of Lemma 1, if one of the components of the solutuion
y of the system (1) is oscillatory, then the solution itself is oscillatory.

Theorem 1: If the conditions (i) - (iv) hold, then every bounded solution of the system (1)
is oscillatory.

Proof: Suppose that there exists a bounded and non-oscillatory solution y = {y,, ..., ¥,> of
the system (1). Let y;.,(t)> O for t2 t, 2 0 and | y(t)l s Qfor t2 t, (i =1, ... ,n),-Q being same
constant and y,,., = y,. Then y;.,(g;.,(t)) > 0 for t 2 T;, T, 2 t, being some constant. By sy-
stem (1) and the assumptions (ii), (iv) we have

T
yi(t) = ff,f(t,s;y,(s), w s V() 7(&(s), ..., 3 8n(s))) ds

t

"‘[G(&S:yx(s). oo Yols) (&N s Yol BnlsD) sign Yo &1 0 i(sD) ds
(o}

t
2 Ft) + Ia,(r,s)mxy,.ﬂ(s))l ds > 0.
[+]
Hence

t
yi(t) 2 E(t)+ ’[ai(t,s)lHi( Vief(s)l ds. 2

(]
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Integrating (2) from T, to t and using (iv) we obtain

t . t z
¥i(8) 2 y{(T) + [IF(s) ds +N; [ [adz,s)dsdz > 0.
% L%

If y;(t) > 0 and y;(t) > O, then y {t) > ® as t-> o, This is a contradiction with the suppositi-
on that the solution of the system (1) is bounded. Therefore every bounded solution of the sy-
stem (1) is oscillatory 8

Lemma 2: If the assumptions (i) - (iii)/(a) and (iv) are satisfied, then all components y;
(i =1, ... ,n) of a non-oscillatory solution y of the system (1) have the same sign for sufficient-
ly large t.

Proof: We shall consider the two cases a) i =nandb) i # n.

a) The case i=n. Then y, is a non- oscillatory component. Let for the proof y,(¢) > 0 for ¢
2t,_,- Then y, (g (t)>0for t> T, _, 2 ¢, . (t,_,,T,_, = const 2 0). We shall show that the
remaining components are positive. From system (1) and the assumptions (ii}, (iv) we have

t
Vi) 2 By ()% [an (t,9)H,_{yal(sDlds > 0. @A)
n-1
Hence y,, _, is an increasing function and for sufficiently large ¢ it has constant sign. Infegra-
ting (3) from T, _, to t we obtain

t t z
Yadt) 2y AT )+ I, (sNds + [ [a,_(z,5)H,_ (A(s)dzds
T, T, T,

n-1 n-1°‘n-1

¢tz
2 ¢ tM,_,+N,_, f fa,,_,(z,s)dzds, Co = Yp-T,-,) = const.

n—:Tn-x

Hence by assumption (iii)/(a) y,,_,(t) > 0. If y,7_(t) > 0 and y,,_(t) >0, then y,_(t)> ® as ¢
-> o, In this way we can prove that,for t 2 T, 2 ¢, 2 0, y(¢) > 0 (i =1, ... ,n). (If we suppose
that y,(t) <0, then y(t)<Ofori=1,..,n, t2T,21¢,20.)

b) The case i# n. Then y{t) > 0 for t2 t; 2 0 and y{g;{(t)) > O for t 2 T; 2 t;. We shall show
that y;,,(t) > 0 for t 2 t;. Suppose conversely that y;,,(t) < 0 for t 2 t;,, and y;.(g;+,(t)) <0
for t2 T,,, 2 t;,,. From the i-th equation of the system (1) and the assumptions (ii), (iv) we
have

t t .
yi(t) s F{t)- fa,(t,s)IH,(ym(S))I ds < F(t) - N; fa,(t,S) ds < 0. (4)
Tisq Tisa

Integrating (4) from T;,, to t we have

t ’ t z t z .
yi(t) s y{(T;,,) - fIF,(s)I ds - N; fai(z,s)ds dz = C, - M; - N; fa,{_z,s) ds dz.

it i+1 T4y iv+1T+1 -

Hence by (iii)/(a) y;(t) < 0. If y;(¢) < 0 and y;(¢t) < 0, then y;(¢) < 0 for sufficiently large ¢.
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This is a contradiction to the supposition y;(t)> 0. Proceeding in the same way we may show
that y;(¢t) >0 for i =1, ... ,n - 1 and for sufficiently large t.

Suppose that y,(t) <0 for t2 t,,_; and then y,(g,(t)) <Ofor t2 T,_, 2 t,_,. From the (n
- 1) -th equation of the system (1) and the assumptions (ii), (iv) we get

t
Yo (t) s E_(t) - fan_t(t,s)IH,,_,(y,,(s))l ds<0. (5)

Th-1
Integrating (S) from T,,_, to t we get

t . t
Vi) 8 yi Ty = [IF,(s)ds - Ny [
-1 T, -

n

z
fan_‘(z, s)dsdz .
7;1_ N

1 1

Hence by assumption (ii)/(a) ;_,(£) < 0. If y/_(¢) < 0 and y;(¢) < 0, then y, _(¢) < O for
sufficiently large ¢. This is a contradiction to y, _,(t) > 0, which was shown early. Therefore
Yo(t)>0and y(t)>0fori=1,..,n0

Theorem 2: Let the assumptions (i) - (iv) be satisfied and
t .
Ai)rgo ia,,(z, s)ds = o, : (6)

Then all solutions of the system (1) are oscillatory.

Proof: Suppose that y, is a non-oscillatory component of the solution y of (1) and let y,(t)
>0 for t 2 t,. Then y,(g,(t)) > 0 for t 2 T, 2 ¢,. By Lemma 1 ail components y; (i = 1, ... ,n) are
non-oscillatory and monotonic functions. Moreover by Lemma 2 it follows that all non-oscil-
latory components have the same sign for sufficiently large t. Suppose that all components are
positive. (In the case that all components. are negative - the proof is analogous.) Then by (6)
from the last equation of the system (1) and the assumptions (ii), (iv) it follows that

t

t
yilt) s E() - Jap(t.)H (s ds s K, - N, [an(t,s) ds,
7T,

Tn n

where K, is a constant (see (iv)). By assumption (6) y,(t) < 0. Moreover

¢
¥(t) s E(t) - N, ]a,(ts)ds. ¢)

n

Integrating (7) from T, to t and by assumption (iv) we have

t z
V) Sy T) +M,, - N, [ [ap(z,s)ds dz.
h Ty
By assumption (iii)/(B) y,(t) < 0. If y,;(t) < 0 and y,,(¢) < 0, then y,(t) < O for sufficiently large
t. This contradiction proves that the component y, is oscillatory. By Corollary 1, if y, is an os-
cillatory component, then all components of the solution y of the system (1) are oscillatory
functions B

29*
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4. Main results (the case ék(t) >t)

In the case of advanced arguments our lemmas and theorems have the following form.

Lemma 1': Let the assumptions (i) and (ii) be satisfied and let y be a solution of the sy-
stem (1). If one of its components is non-oscillatory, then y itself is non-oscillatory and mo-
notonic.

Lemma 2°: If the assumptions (i) - (iii)/(a) are satisfied, then all components y; (i =1, ...,
,n) of a non-oscillatory solution y of the system (1) have the same sign for sufficiently large t.

Theorem 1': If the assumptions (i) - (iii) are satisfied, then every bounded solution of the .
system (1) is oscillatory.

Theorem 2°: Let the assumptions (i) - (iii) and (6) be satisfied. Then all solutions of the
system (1) are oscillatory.

The proofs of these statements are similar as in the case g.(t) st.
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