· _

Oscillatory Solutions of a System of n Nonlinear Integro-Differential Equations of Second Order with Deviating Arguments

I. FOLTYŃSKA

Some conditions are established under which solutions of a system of nonlinear integro-differential equations are oscillatory. . . .

Key words: Nonlinear integro-differential equations, equations of second order, oscillatory solutions

AMS subject classification: 45J05, 45M99

1. Introduction

Consider the system of equations

$$y_i''(t) = \int_0^t f_i(t,s; y_i(s), \dots, y_n(s); y_i(g_i(s)), \dots, y_n(g_n(s))) \, ds \quad (i = 1, \dots, n)$$
(1)

where

$$f_i: \mathbb{R}^2_+ \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$
 and $g_k: \mathbb{R}_+ \to \mathbb{R}_+ (k = 1, ..., n)$

are continuous functions and

 $g_k(t) \le t$ or $g_k(t) > t$ for all t and $\lim_{t\to\infty} g_k(t) = \infty$ (k = 1, ..., n).

Sufficient conditions under which every solution of the system (1) is oscillatory will be established. Both cases of retarded and advanced arguments will be considered. A similar problem for the system of n nonlinear integro-differential equations of the first order have been considered in [1] and [2]. We shall use a method of proofs similar to that given in [4] for the system of *n* ordinary differential equations with delayed arguments.

2. Preliminaries

By a solution $y = \langle y_1, \dots, y_n \rangle$ of the system (1) we shall understand only a non-trivial solution extended to the infinity. A solution y of the system (1) is called

- a) oscillatory, if every component y_k of y has an infinite sequence of zeros tending to infinity as the argument tends to infinity.
- b) non-oscillatory, if every component y_k of y has a constant sign for sufficiently large values of the argument t, i.e. for $t \ge T$, for some $T \ge 0$.

We shall use the following Assumptions:

- (i) g_k (k = 1, ..., n) are continuous and non-decreasing functions.
 (ii) f_i(t, s; y₁, ..., y_n; u₁, ..., u_n)sign u_{i+1} ≥ a_i(t, s)|H_i(y_{i+1})| (i = 1, ..., n 1) f_n(t, s; y₁, ..., y_n; u₁, ..., u_n)sign u_i ≤ -a_n(t, s)|H_n(u₁)| for all (t, s; y₁, ..., y_n; u₁, ..., u_n) ∈ R₊ × R × R, where H_i: R → R are continuous and non-decreasing functions, H_i(u_{i+1})u_{i+1} > 0, u_{i+1} ∈ R (i = 1, ..., n), u_{n+1} = u_i and a_i: R₊ × R₊→ R are continuous functions, a_i(t, s) > 0 for all (t, s) ∈ R₊ × R₊ × R₊ (i = 1, ..., n).
- (iii) (a) $\lim_{t \to \infty} \int_{TT}^{t} \int_{T}^{z} a_{i}(z,s) ds dz = \infty (i = 1, ..., n 1) \qquad (\beta) \lim_{t \to \infty} \int_{T}^{t} \int_{T}^{z} a_{n}(z,s) ds dz = \infty.$ (iv) $F_{i} := \int_{T}^{T} f_{i}(\cdot, s; y_{i}(s), ..., y_{n}(s); y_{i}(g_{i}(s)), ..., y_{n}(g_{n}(s))) ds \in L_{1}[a, \infty) \quad (i = 1, ..., n)$

for a constant a > 0, where $|F_i(t)| \le K_i$ for some constants K_i and $F_i(t)y_{i+1}(t+t_0) > 0$ (*i* = 1,...,*n*-1), $F_n(t)y_1(t+t_0) < 0$ for some $t_0 > 0$, $t \in \mathbb{R}_+(y_{n+1} = y_1)$.

In addition, we shall use the notations

$$M_i = \int_T |F_i(t)| dt \quad \text{and} \quad N_i = \inf_{[T_i,\infty)} |H_i(u_i)| \text{ for some } T_i > 0 \quad (i = 1, ..., n).$$

3. Main results (the case $g_k(t) \le t$)

First we shall consider the system (1) with retarded arguments.

Lemma 1: Let the assumptions (i), (ii) and (iv) hold and let y be a solution of the system (1). If one of its components is non-oscillatory, then y itself is non-oscillatory and monotonic.

Proof: Let y_i be a non-oscillatory component of y. For the proof let be $y_i(t) > 0$ for $t \ge t_0 \ge 0$ and $y_i(g_i(t)) > 0$ for $t \ge T_0$, where $T_0 \ge t_0$. From the system (1) and the assumptions (ii), (iv) it follows $(y_0 = y_{n+1}, t_0 = t_n)$

$$\begin{aligned} y_{i-1}^{\prime\prime}(t) &= \int_{0}^{t} f_{i-1}(t,s;y_{1}(s),\ldots,y_{n}(s);y_{1}(g_{1}(s)),\ldots,y_{n}(g_{n}(s))) \, ds \\ &= \int_{0}^{T_{0}} f_{i-1}(t,s;y_{1}(s),\ldots,y_{n}(s);y_{1}(g_{1}(s)),\ldots,y_{n}(g_{n}(s))) \, ds \\ &= + \int_{T_{0}}^{t} f_{i-1}(t,s;y_{1}(s),\ldots,y_{n}(s);y_{1}(g_{1}(s)),\ldots,y_{n}(g_{n}(s))) \, \text{sign} \, y_{i}(g_{i}(s)) \, ds \\ &\geq F_{i-1}(t) + \int_{T_{0}}^{t} a_{i-1}(t,s) |H_{i-1}(y_{i}(s))| \, ds > 0. \end{aligned}$$

Hence y'_{i-1} and y_{i-1} are monotonic functions and, for sufficiently large t (for example for $t \ge t_1$, $t_1 \ge t_0$), they have the constant sign. Now y_{i-1} may be a positive or negative function. Let be $y_{i-1}(t) < 0$ for $t \ge t_1$ and $y_{i-1}(g_{i-1}(t)) < 0$ for $t \ge T_1 \ge t_1$. Hence from the system (1) and the assumptions (ii), (iv) we get

$$y_{i-2}''(t) = \int_{0}^{T_{1}} f_{i-2}(t,s; y_{1}(s), \dots, y_{n}(s); y_{1}(g_{1}(s)), \dots, y_{n}(g_{n}(s))) ds$$

-
$$\int_{T_{1}}^{t} f_{i-2}(t,s; y_{1}(s), \dots, y_{n}(s); y_{1}(g_{1}(s)), \dots, y_{n}(g_{n}(s))) sign y_{i-1}(g_{i-1}(s)) ds$$

$$\leq F_{i-2}(t) - \int_{T_{1}}^{t} a_{i-2}(t,s) |H_{i-2}(y_{i-1}(s))| ds < 0$$

or if $y_{i-1}(t) > 0$ for $t \ge t_1$ and $y_{i-1}(g_{i-1}(t)) > 0$ for $t \ge T_1$, then, from the system (1) and the assumptions (ii), (iv),

$$y_{i-2}^{"}(t) = \int_{0}^{T_{1}} f_{i-2}(t,s; y_{1}(s), \dots, y_{n}(s); y_{1}(g_{1}(s)), \dots, y_{n}(g_{n}(s))) ds$$

$$= + \int_{T_{1}}^{t} f_{i-2}(t,s; y_{1}(s), \dots, y_{n}(s); y_{1}(g_{1}(s)), \dots, y_{n}(g_{n}(s))) sign y_{i-1}(g_{i-1}(s)) ds$$

$$\geq F_{i-2}(t) + \int_{T_{1}}^{t} a_{i-2}(t,s) |H_{i-2}(y_{i-1}(s))| ds > 0.$$

In both cases it follows that y'_{i-2} and y_{i-2} are monotonic functions and for sufficiently large t they have constant sign (for example for $t \ge t_2$). Proceeding in the same way we obtain $y_i, y_{i-1}, y_1, \ldots, y_{i+1}$ for $t \ge T_i \ge t_i$ ($i = 1, \ldots, n$) are monotonic and therefore non-oscillatory functions

Corollary 1: Under the assumptions of Lemma 1, if one of the components of the solution y of the system (1) is oscillatory, then the solution itself is oscillatory.

Theorem 1: If the conditions (i) - (iv) hold, then every bounded solution of the system (1) is oscillatory.

Proof: Suppose that there exists a bounded and non-oscillatory solution $y = \langle y_1, ..., y_n \rangle$ of the system (1). Let $y_{i+1}(t) > 0$ for $t \ge t_0 \ge 0$ and $|y_i(t)| \le Q$ for $t \ge t_0$ (i = 1, ..., n), Q being same constant and $y_{n+1} = y_1$. Then $y_{i+1}(g_{i+1}(t)) > 0$ for $t \ge T_0$, $T_0 \ge t_0$ being some constant. By system (1) and the assumptions (ii), (iv) we have

$$y_{i}^{"}(t) = \int_{0}^{T_{0}} f_{i}(t,s; y_{1}(s), \dots, y_{n}(s); y_{1}(g_{1}(s)), \dots, y_{n}(g_{n}(s))) ds$$

$$+ \int_{T_{0}}^{t} f_{i}(t,s; y_{1}(s), \dots, y_{n}(s); y_{1}(g_{1}(s)), \dots, y_{n}(g_{n}(s))) \operatorname{sign} y_{i+1}(g_{i+1}(s)) ds$$

$$\geq F_{i}(t) + \int_{T_{0}}^{t} a_{i}(t,s) |H_{i}(y_{i+1}(s))| ds > 0.$$

Hence

$$y_i''(t) \ge F_i(t) + \int_{T_0}^t a_i(t,s) |H_i(y_{i+1}(s))| ds.$$

29 Analysis, Bd. 11, Heft 3 (1992)

(2)

Integrating (2) from T_0 to t and using (iv) we obtain

$$y'_i(t) \ge y'_i(T_0) + \int_{T_0}^t |F_i(s)| \, ds + N_i \int_{T_0}^t \int_{T_0}^z a_i(z,s) \, ds \, dz > 0.$$

If $y_i''(t) > 0$ and $y_i'(t) > 0$, then $y_i(t) \to \infty$ as $t \to \infty$. This is a contradiction with the supposition that the solution of the system (1) is bounded. Therefore every bounded solution of the system (1) is oscillatory

Lemma 2: If the assumptions (i) – (iii)/(α) and (iv) are satisfied, then all components y_i (i = 1, ..., n) of a non-oscillatory solution y of the system (1) have the same sign for sufficiently large t.

Proof: We shall consider the two cases a) i = n and b) $i \neq n$.

a) The case i = n. Then y_n is a non-oscillatory component. Let for the proof $y_n(t) > 0$ for $t \ge t_{n-1}$. Then $y_n(g_n(t)) > 0$ for $t > T_{n-1} \ge t_{n-1}$ ($t_{n-1}, T_{n-1} = \text{const} \ge 0$). We shall show that the remaining components are positive. From system (1) and the assumptions (ii), (iv) we have

$$y_{n-1}''(t) \ge F_{n-1}(t) + \int_{T_{n-1}}^{t} a_{n-1}(t,s) |H_{n-1}(y_n((s))| \, ds > 0.$$
(3)

Hence y'_{n-1} is an increasing function and for sufficiently large t it has constant sign. Integrating (3) from T_{n-1} to t we obtain

$$y'_{n-1}(t) \ge y'_{n-1}(T_{n-1}) + \int_{T_{n-1}}^{t} |F_{n-1}(s)| \, ds + \int_{T_{n-1}}^{t} \int_{T_{n-1}}^{z} a_{n-1}(z,s) |H_{n-1}(y(s))| \, dz \, ds$$

$$\ge c_0 + M_{n-1} + N_{n-1} \int_{T_{n-1}}^{t} \int_{T_{n-1}}^{z} a_{n-1}(z,s) \, dz \, ds, \quad c_0 = y'_{n-1}(T_{n-1}) = \text{const.}$$

Hence by assumption (iii)/(α) $y'_{n-i}(t) > 0$. If $y''_{n-i}(t) > 0$ and $y'_{n-i}(t) > 0$, then $y_{n-i}(t) \to \infty$ as $t \to \infty$. In this way we can prove that, for $t \ge T_n \ge t_n \ge 0$, $y_i(t) > 0$ (i = 1, ..., n). (If we suppose that $y_n(t) < 0$, then $y_i(t) < 0$ for i = 1, ..., n, $t \ge T_n \ge t_n \ge 0$.)

b) The case $i \neq n$. Then $y_i(t) > 0$ for $t \ge t_i \ge 0$ and $y_i(g_i(t)) > 0$ for $t \ge T_i \ge t_i$. We shall show that $y_{i+1}(t) > 0$ for $t \ge t_i$. Suppose conversely that $y_{i+1}(t) < 0$ for $t \ge t_{i+1}$ and $y_{i+1}(g_{i+1}(t)) < 0$ for $t \ge T_{i+1} \ge t_{i+1}$. From the i-th equation of the system (1) and the assumptions (ii), (iv) we have

$$y_{i}^{\prime\prime}(t) \leq F_{i}(t) - \int_{T_{i+1}}^{t} a_{i}(t,s) |H_{i}(y_{i+1}(s))| ds \leq F_{i}(t) - N_{i} \int_{T_{i+1}}^{t} a_{i}(t,s) ds < 0.$$
(4)

Integrating (4) from T_{i+1} to t we have

$$y'_i(t) \leq y'_i(T_{i+1}) - \int_{i+1}^t |F_i(s)| \, ds - N_i \int_{T_{i+1}}^t \int_{T_{i+1}}^z a_i(z,s) \, ds \, dz = C_0 - M_i - N_i \int_{T_{i+1}}^t \int_{T_{i+1}}^z a_i(z,s) \, ds \, dz.$$

Hence by (iii)/(α) $y'_i(t) < 0$. If $y''_i(t) < 0$ and $y'_i(t) < 0$, then $y_i(t) < 0$ for sufficiently large t.

This is a contradiction to the supposition $y_i(t) > 0$. Proceeding in the same way we may show that $y_i(t) > 0$ for i = 1, ..., n - 1 and for sufficiently large t.

Suppose that $y_n(t) < 0$ for $t \ge t_{n-1}$ and then $y_n(g_n(t)) < 0$ for $t \ge T_{n-1} \ge t_{n-1}$. From the (n - 1)-th equation of the system (1) and the assumptions (ii), (iv) we get

$$y_{n-1}''(t) \leq F_{n-1}(t) - \int_{t}^{t} a_{n-1}(t,s) |H_{n-1}(y_n(s))| \, ds < 0.$$
(5)

Integrating (5) from T_{n-1} to t we get

$$y'_{n-1}(t) \leq y'_{n-1}(T_{n-1}) - \int_{T_{n-1}}^{t} |F_{n-1}(s)| \, ds - N_{n-1} \int_{T_{n-1}}^{t} \int_{T_{n-1}}^{z} a_{n-1}(z,s) \, ds \, dz$$

Hence by assumption (iii)/(α) $y'_{n-1}(t) < 0$. If $y''_{n-1}(t) < 0$ and $y'_{n-1}(t) < 0$, then $y_{n-1}(t) < 0$ for sufficiently large t. This is a contradiction to $y_{n-1}(t) > 0$, which was shown early. Therefore $y_n(t) > 0$ and $y_i(t) > 0$ for i = 1, ..., n

Theorem 2: Let the assumptions (i) - (iv) be satisfied and

$$\lim_{t \to \infty} \int_{T} a_n(z,s) \, ds = \infty. \tag{6}$$

Then all solutions of the system (1) are oscillatory.

Proof: Suppose that y_i is a non-oscillatory component of the solution y of (1) and let $y_i(t) > 0$ for $t \ge t_0$. Then $y_i(g_i(t)) > 0$ for $t \ge T_0 \ge t_0$. By Lemma 1 all components y_i (i = 1, ..., n) are non-oscillatory and monotonic functions. Moreover by Lemma 2 it follows that all non-oscillatory components have the same sign for sufficiently large t. Suppose that all components are positive. (In the case that all components are negative - the proof is analogous.) Then by (6) from the last equation of the system (1) and the assumptions (ii), (iv) it follows that

$$y_n''(t) \leq F_n(t) - \int_{T_n}^t a_n(t,s) |H_n(y_1(g_1(s)))| ds \leq K_n - N_n \int_{T_n}^t a_n(t,s) ds,$$

where K_n is a constant (see (iv)). By assumption (6) $y_n''(t) < 0$. Moreover

$$y_n''(t) \le F_n(t) - N_n \int_{T_n}^t a_n(t,s) \, ds.$$
 (7)

Integrating (7) from T_n to t and by assumption (iv) we have

$$y'_{n}(t) \le y'_{n}(T_{n}) + M_{n} - N_{n} \int_{T_{n}}^{t} \int_{T_{n}}^{z} a_{n}(z,s) \, ds \, dz$$

By assumption (iii)/(β) $y'_n(t) < 0$. If $y''_n(t) < 0$ and $y'_n(t) < 0$, then $y_n(t) < 0$ for sufficiently large t. This contradiction proves that the component y_1 is oscillatory. By Corollary 1, if y_1 is an oscillatory component, then all components of the solution y of the system (1) are oscillatory functions

29*

4. Main results (the case $g_k(t) > t$)

In the case of advanced arguments our lemmas and theorems have the following form.

Lemma 1': Let the assumptions (i) and (ii) be satisfied and let y be a solution of the system (1). If one of its components is non-oscillatory, then y itself is non-oscillatory and monotonic.

Lemma 2': If the assumptions (i) - (iii)/(α) are satisfied, then all components y_i (i = 1, ..., n) of a non-oscillatory solution y of the system (1) have the same sign for sufficiently large t.

Theorem 1': If the assumptions (i) – (iii) are satisfied, then every bounded solution of the system (1) is oscillatory.

Theorem 2': Let the assumptions (i) - (iii) and (6) be satisfied. Then all solutions of the system (1) are oscillatory.

The proofs of these statements are similar as in the case $g_k(t) \le t$.

REFERENCES

- [1] FOLTYŃSKA, I.: Oscillatory solutions of the system of n integro-differential equations with deviating arguments. Funct. et Appr. 19 (1990), 97 105.
- [2] FOLTYŃSKA, I.: Oscillatory property for the system of n nonlinear integro-differential equations with deviating arguments. Submitted.
- FOLTYŃSKA, I.: Oscillation of solution to a system of nonlinear integro-differential equations. Demonstr. Math. 18 (1985), 763 - 775.
- [4] VARECH, N.V. and N.V. SHEVELO: On the conditions of the oscillation of the solutions to systems of differential equations with retarded arguments. In: The Qualitative Methods of the Theory of Differential Equations with Deviating Arguments. Inst. Math. Acad. Sci. USSR (Kiev) 1977, pp. 26 - 44 (in Russian).

Received 29.05.1990; in revised version 28.05.1992

Dr. Izabella Foltyńska Technical University of Poznań Institute of Mathematics ul. Piotrowo 3a 60-965 Poznań Poland