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8. Loops, global phases and the holonomy group (discrete case )

With this section the second part of the paper starts. The first part [11, consists of
Sections O to 7 and the Appendix of technical tools. In all what follows it will be tacitly
understood that by quotations in the text like Section 3, Theorem 5.1/(iv), (6.10) or
Appendix 4 on refers to [1: Section 3], [1: Theorem 5.1/(iv)1, (1: Formula (6.10)1, and (t:
Appendix 4], respectively, provided no other references have been mentioned explicitely.
Throughout this section we suppose that A = M is a vN -algebra acting over some
Hilbert space H, and that the positive linear forms considered are normal ones. For
convenience let us also adopt all the suppositions and notations from the Sections 4
and S and the Appendix. Especially M is thought to act in standard form on H, with a
cyclic and separating vector 2 and associated to { M, 2} a natural positive cone Pys.
Let us consider finite sequences of normal positive linear forms over M of the fol-
lowing type. If n e NUJ{O} and ¥ ={w;:j=0,1,2,...,n} is the sequence in question, then
in case n+0 it is required that, for any A¢ R,, w; *# Aw;_y and {w), w;_() is «-minimal for
any j=1,2,..., n. A sequence v of this specification will be referred to as a path ¢(within
M.,). The case n=0 is referred to as a trivial path. Thus, each element of M., can also
be considered as constituting a trivial path. For a path y (with n #+0) also the notation
Y W@, ..., will be in use. In this situation, the linear form «w, is referred to
as the initial form of y whereas w,,is said to be the final form of y. Let w,0¢ M,,. In
case that there exists a path y with initial form w and final form o, this will be notified
by w~ 0, and v in this situation is referred to as a path connecting w and o. Note that by
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~ an equivalence relation on M,.is established. In fact, reflexivity follows from our
definition of a trivial path, and symmetry is'a consequence of the fact that for a path
Y: W= w,— w,~ ... — w, =0 connecting w and o we have the inverse path y~% g,—0,—
.. =0, with oy =w, 4, for any k = 0,1,..., n. That y~lis a path in our sense follows
from the fact that if {w), @} is «-minimal, then {w;_, &;}is «-minimal, too. Transiti-
vity arises from the fact that paths y: 0 =w, 2 ©,— ... "w,=0and v: 6 =0,—0, ...
—0,,=u can be joined together resulting in another path y" =y y:w=w, 2w, ...
—w with w,.;=0;for j=0,1,..,m.The s -equivalence class of a normal positi-
ve linear form w will be called the w-component, for short. A path v in M, connecting

nem=H,

wand o is said to be an w-/loop or a closed path at  if @ = 0. Note that the only path
containing the linear form O is the trivial path at 0. This follows since for a path
Y: o= ;= ... = w,, such that w; =0 for some j ¢(0,1,...,n}, by the definition of the
term path also the next neighbouring forms in the sequence had to vanish. This is so
because {0, v} is «-minimal if and only if v=0. In the sequel this trivial case will be
excluded from all considerations and the term path should be understood tacitely as
connecting non-vanishing forms. We further note that for a path v: w, 2w, = ...
—w, and given reals 1,,..., A, ¢ R\{O) also v dow, 2,0, ... 2,0, is a path.
This follows since for a non-trivial «-minimal pair {w,0) and given ,u ¢ R,\{O} the
pair { Aw, po) is non-trivial and «-minimal, too, and the arising forms are positive
multiples of each other if and only if this is the case for the original forms. Especially,
if A; =a)}(e)'1 is chosen for all j, we will arrive at a path y'in the normal state space
So( M) of M. In all what follows it will be sufficient to consider only paths in So(M).
The results and effects which will be proved and discussed in case of paths in So(M)
will then persist to hold for arbitrary paths in M... )

Let vbe a normal state on M, and let S(v) be the set of all vectors of H such that @
e S(v) implies v(x)=< xp, >, for all x ¢ M. By our suppositions S(v) is a non-void and
uniformly closed subset of the urit sphere of H. Thus S(v) is a complete metric space
when considered under the metric d(®, ¢)=llp - ¢|. Now, the structure of S(v) will be
analyzed from a more algebraic -geometrical point of view.

To start with, let us look on a path yin Sg( M),with initial state w and final state o.
We are-going to associate with y a one-to-one mapping @, from S(w) onto S(o). The
map @, is constructed as follows. In case w = o and if yis the trivial path we define @,
= id, where id denotes the identity map in S(w). In the non - trivial case let y be given as
y: @ = iy — @,—...—> @, =0 and suppose that ¢ ¢ S(w). Since {w, ®,} is «-minimal, ac-
cording to Theorem 5.1/(iv) there is a unique vector @;e S(w,) with ¢, Il p. By the same
argument applied to the «-minimal pair {w,,w,} and the vector p,¢ S(w,) we provide
ourselves with a vector @, ¢ S(w,), with @, llp,. This vector is ‘uniquely determined by
its predecessor ¢, ¢ S(w,). Proceeding further in this way we finally arrive at a finite
sequence @, @,, P,,---» P, Of vectors which are constructed according to the rule that
fromp;_, € S( w;_,) we get a successor @; € S(w;) as the unique vector in S(w;) obeying
®; l@;_,. By our definition of the term path and by Theorem 5.1/(iv) this successive
construction procedure works well. We define &, (p)=¢,. For the image of ¢ € S(w)
under the map .. the abbreviation ¢(y) will be in use. About @, we get the following

Proposition 8.1: For any path y connecting w and o within So(M) the map @, is a
homeomorphism between S(w) and S(o). For the inverse path vy'=y~! one has’ o,
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=0, ~1. Suppose y" is another path within So{ M), with initial state ¢ and final state v.
Then for the composite path § =y y"of y and y"connecting w and v one has O5=0...- 0.,
Suppose p € S(w) and w e M'is a partial isometry with w*w = p'(p). Then for any path Y
connecting w and o within So(M) the map @, fulfils @ (wp)=wd ().

Proof': For w =0 and y being the trivial path the assertions are valid. Suppose v is a
non-trivial path given as above, i.e. y: w=w, 2 w,—..—w©,, =0, for some n¢ N. First
of all we remark that @, is injective due to the symmetry of Il (cf. Remark 5.2/(1)). In
fact, assume that @, (p)= @ L¢) for vectors @, ¢ S(w). Let ¢, ¢, 9,,..., ¢, and ¢. ¢,
$2.:.... ¥, be the uniquely determined sequences of vectors with ¢;, ¢; ¢ S(w;) con-
structed according to the above defining procedure for @, starting out of ¢ and ¢, re-
spectively. By our assumption we have ®;, = ¢ . Since ¢ llp,_,and ¢,il¢,_,, by sym-
metry and uniqueness (cf. Theorem 5.1/(iv)) for Il we get p,,_,=4¢,,_,. Now, this con-
clusion can-be-applied repeatedly and finally gives @ = ¢. This proves injectivity. .

Let ¢ ¢S(o) be given and look on the inverse path y' =y~ !, Then ¢(y')e S(w). Sup-
pose that ¢ =¢,, ¢, ¢y, ..., ¢, = ¢(7’) is the sequence of vectors ¢; e Slw,_;) constructed '
according to the defining procedure for @, . starting out of ¢. Then gy, for any j.
By symmetry of Il we have gy, for any j. In defining ®j = ¢n-;.forall j, we get a se-
quence @, = ¢(7'), @,,..., ¢, = ¢ of vectors with :p]eS(mj) and ¢, llg;_,, for any j, and the
sequence in question belongs to the path y. Hence, ¢ =0 (¢(y')) = @ (D .(¢)). Since ¢
e¢S(o) could have been chosen at will, id=d)7 ¢Y- on S(o) has to be followed. It is now
evident that @, has to be surjective.

Analogously, one obtains id = @, 0. .on Slw), with r’ =y~1. These conclusions can
be drawn for each path y within So(M), with w being the initial state of y and ¢ being
the final state of y. Thus, .. with y'= v~ !has to be the inverse of o,.

From this also follows that, for a proof @, to be a homeomorphism, we may con-
tent with showing that @, is continuous for any path y. We will do this. Let v: w = «,
—w,—..—w,=0 be a path, and suppose that ¢ =@,, @,, ®,,..., ¢, is a sequence with
pje Slw;) and ¢l ®;-, for all j. Assume that ¢p“=<pg‘, q:{‘, ¢2"¢,‘,‘ for k ¢ N, are se-
quences with ¢;“¢ S(w;) and qajk i q:/‘f, for all j. Suppose that lim, #¥=9in S(w). What
we have to prove is that also limy X = @,.. The latter is certainly valid if we succeed in
proving that for a « - minimal pair {v,¢t } of normal states and given sequences {£¥} and
{n¥}, with ke S(v), nkeS(y) and r)kllgk for all k eN, from lim; gk=¢ and ¢ S(u)
with 7 Il £ always follows lim; p¥=75 We are going to derive the last mentioned. Let
wi € M' be the partial isometry with w.*w, =p'(£) and E¥=w £ For any x ¢ M we then
see that lim, wyx{ =limg xwi & =x(limg wif )= x (limg §k) =x§ =p1E)xE Since
wip'(E)=wy, and because { x£: x ¢ M } is uniformly dense in p(£)H and {w, )} is a uni-
formly bounded (by one) sequence in M", st-lim, w; = p(£) follows. Therefore we also
have lim; wy 7 =p'(£)7. By the assumption 5 i £ and according to the definition of Il {cf.
(5.1)) we have p'(£)=p(y). Hence lim, wyn =1 Note that w,n eS(u). But then, by
Theorem 5.1/ (iii) from 7 I it follows that w7 Il wi£, i.e. winll £, From our as-
sumption 7]k|| f“ and the uniqueness statement, Theorem 5.1/(iv), we then get pk =
win, and thus limy pk= lim, wy 5 =7 is seen. By our preliminary considerations this
result then yields continuity of @, when applied successively to the pairs zpj“ i :pl'f,.
keN,and g;lig;_, , for all j, i.e. in this situation lim d)Y(q:“) =lim, pk = Pn= O Ap).

Finally, the validity of the last parts of the assertion follows from the constructi-
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on procedure for the homeomorphisms in question. This construction for a given path
Y guarantees that the defining sequence of vectors in the procedure is uniquely deter-
mined by the initial vector. As yet mentioned, this is a consequence of Theorem
5.1/(iii) and (iv). But then, by the construction two such sequences of vectors with the
property that the final vector of the first is the initial vector of the second can be
glued together and yield the unique defining sequence of the composite path, with ini-
tial vector of the first and ending with the final vector of the second sequence. This
proves the composition property.

To see the last assertion, if w ¢ M’ is a partial isometry with w*w =p'(p) and if ¢
= @) Pyr Par-r Py is the unique sequence with initial vector ¢ and Py eS(wl) and
pjllp;_,. for all j, for the path v: @ =@, = w,—...— @, = oin question, by the above rea-
soning w@, we,, wp, , ..., wp, has to be the uniquely determined sequence we = ¢, ¢,,
Gar oo ¥ With ¢ € S(w;) and ¢l ,, for all j, which starts from weg. Hence,
O (wp)=wd (p) 1l

Let us now suppose that v is a loop at some state w ¢ So(M). Then @, is anelement
of the group of homeomorphisms I, of the metric space S(w). Since any two loops at w
can be joined together resulting in another loop at w, in view to Proposition 8.1 we may
conclude that Go(w)={ @ e I',,;: 3 w-loop ¥ with @ = @_ } is a subgroup of I,,. In the se-
quel the group Golw) will be referred to as the (restricted ) holonomy group of the
« in the setof
all w-loops by the requirement that y ~_ v’ if and only if @(y)=¢@(y’) for any peS(w).
The set of equivalence classes [y] of w-loops with respect to ~_, in a natural way is a
group if we define [y1{y'J=[y7r']. Note that this group by Proposition 8.1 proves to be
anti-isomorphic with Go(w).

state w. Note that we can also introduce an equivalence relation ~

Remark: The notions and notations introduced and used in this section seem to
suggest some analogy with well-known and important notions and notations of geo-
metry and topology. This is not at all an accident. As an example, Il could be interpreted
as giving a connection in the manifold Sg(M)(or in the unit sphere in H) and could be
used for giving a law of parallel transport for some objects interpreted as tangent
vectors etc. These interpretations of course are worth being discussed separetely. But
such analogies and their consequences require to be handled with some care. We have
to do there with dimensionally infinite and non-commutative phenomena which are in-
trinsically more complicated, both referring to C'—algebraic as well as to topological
and differential - geometrical aspects and reflecting their (attractive and desirable)
common occurrence in one and the same context. For the case of finite-dimensional
algebras (at least in the factor case) the problems are less difficult and the transport:
problem has been discussed by A. Uhlmann in [6] and (5] in terms of a naturally asso-
ciated manifold. For some interesting differential-geometric problems related to this
cf. also [3.4]. In this paper we want to avoid to enter into a more principal and formal
discussion of the global questions around non-commutative geometry. Instead we
mainly want to elaborate on our approach of stating facts on the effects essentially
caused by non-commutativity of the underlying mathematical objects and categories.

Suppose now @ ¢ Golw) and fix a vector ¢ € S(w). Let M_, be the vN-algebra M’ =
ple)M’'p'(p), and let U(M’,) be the unitary group of M’,,. Since p(®(p))= p'(¢) and
also O(p)e S(w) is fulfilled, there has to exist a unique unitary w(®)e U(M'q,)
such that @ (@) =w_(®)p. We can associate such a unitary wq,( @) to any vector p € S(w)
and any @ € Go(w). According to the last result of Proposition 8.1, for any v e M' with
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v*v=pi(p) one has vP(p)=0(vp) =w, (P)vp. Thus, we find the transformation law
wo(@)=viw, (P)y (8.1)

for any p ¢ S{w), ve M’ with v"v = p'(p), and all ® ¢ Gglw). Assume @’'is another element
of Gplw). Let @ =@ @°. Then, inserting v = w_(®’) into (8.1) we can conclude as fol-
lows :

W (0")p = 07(9) = (@ 0 ) (@) = Dlw (0)p) = w,(Plvp

=vrtw,  (Plvp = vw (Do =w (D) w (D)p.

From this w (@ @) =w(0") =w (P Iw_(P) is obtained. Obviously, w,(id)=p(e),
and p(g@) is the unit of the group U(M",). Assume that w,(®)=p'(p) for some @
€ Go(w). By definition of w,, the latter means ®(p)=p. Argueing by means of the last
part of Proposition-8.1 we get ®(vp)=vp, for any ve M’ with v*v =p'(p). For each fixed
p eS(w) we have

Slw) = {(peH: ¢ =vep for some ve M’ with v'v=p'(<p)}.

Hence, ®(¢)=¢ holds for any ¢ eS(w), i.e. ®(p)=9p implies @ =id. We take together
these steps and arrive at the following result.

Lemma 8.2: The map w,: Golw) 30— w (@) cU(M',) provides a group anti-iso-
morphism from the (restricted) holonomy group Ggo{w) of the state w onto some sub-
group Ug(m ) =imw,, of the unitary group U(M"}).

The unitary group Ug(w)' is referred to as the (restricted) w-phase-group at o ¢
S(w). By (8.1) we see that Ug( ) and Ug(w) are mutually isomorphic for any two vec-
tors @¢,¢ eS(w). For an w-loop 7 in So{ M) the element w(®.) is called phase of the
w-loop y (to the initial vector @). Note that the group of ~_,-equivalence classes of
w-loops is isomorphic to Ug(w) for any ¢ e S(w). This follows from Proposition 8.1 and
Lemma 8.2 since the map [y} w(®,) can be composed of the two maps [y]1— O,
and @, — w(@.) which both are anti-isomophisms from the group of ~_-equivalence
classes of w-loops onto Ggl(w) and from Gglw) onto Ug(w), respectively.

In the next step we want to establish the connections between relative phases as
introduced in Section 6 and the elements of the w-phase-group. Assume that y: w = w,
—w,—...—~w,=wis an w-loop, and suppose that ¢, ¢ S(wy ), for £k=0,1,2,...,n-1, are
given vectors. Let p € S(w), and suppose that ¢, = . We are going to construct from the
given sequence ¢, ¢, ..., ¢,= ¢ the uniquely determined sequence @,=¢. @,,..., ¢, of
vectors with @, € S(w; ) and gy ., ll@, ., for all k. By Proposition 6.12 we get @, =8(@, ¢, )¢,
and, for k >1, @3 =8(@p_,, ¥x )y . This is a recursive system which can be solved by
means of successive application of Lemma 6.13 as follows:

P = P iV = 8y, Gre-y Yz Y1V i
g o bpy )Wz Py Vi

5(8¢ Pi-3r ‘pk-z )‘pk-z ’ ¢k—1 ) 8(¢k—2 ’ ¢’k )‘pk
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S Ppz Pr-2) S pmgy Pper ) § (peg s B Vi

$dor 1) 50 ) - Sy Y Ve -

The last member, i.e. for k = n, yields ¢(y). Hence,

P(Y) = 8 ) 8y ) 5Py, b)) e
Since ¢, = ¢ holds, we get

W¢,( 07)‘? =@l(y) = 5(‘/1079{’1 )5(‘1’11 4’2)"' 8(¢'n—v¢’n)¢"

Because both §(¢g, ¢, ) 6(dy, ¢, ) 8(¢p_y, ¢,) and w (D) are partial isometries with
the same initial projection p'(¢) we finally conclude to

wo (D) =8¢, g ) S b ) Sy ).

Note that according to our invariant definition of w(®, ) we have also proved that the
product §(dy, ¢, ) 5(¢y, ¢, ) 5(¢p,_,, ¢p) of the relative phases does not depend on the
special choice of the representatives ¢, €S(w; ), provided ¢,=® and ¢,,= ¢ have been
fixed. Having this structure in mind, we shall refer to the operator w »(P,) as the
global ¢ - phase of the w-1oop y. Summarizing we get

T
v

Theorem 8.3: Let v: w=w, D w,— ...~ w, = w be an w-loop in M, . For given fixed
pe S(w) the product

n
J 5 (Wpmr i), with §o=¢,= o,
is independent of the special choice of {y eS(w, ) for k=1,2,. -1. One has

WD) = nsw»k o)

We remark that in this sense the global ¢ -phase w.(®.) is the operator-valued
generalization of the invariant of V. Bargmann (2] .

Next we want to analyze the behavior of @, in case that the path y undergoes cer-
tain continuous deformations. We start with the following result on pairs of « - mini-
mal positive linear forms.

Lemma 8.4: Let {w), o)} be a sequence of «-minimal pairs with w;— w and ;= o.
Suppose also that {w, o} is «-minimal, that {p,} is a sequence of vectors with p; €Slw))
and p;—¢, ¢ € S(w) and that §; ¢ S(o) is chosen such that & W@, , for any j. Then the
sequence {{;} converges towards the uniquely determined £eS(o) obeying £l p.

Proof': Let ¢, € S(o;) and ¢ S(o) be defined such that ¢, ¢ ¢ P, for any j. Then we
have ¢; — ¢. Let us define forms h, h; e M' by hl-)=<(-)¢,@> and hf-) =< )¢, ;>
Let h=R,|h| and h; =R,,j|h]| be the polar decompositions of h and hj, respectively.
Since both {w;,0;} and {w, o} are « - minimal, by Theorem 5.1/(iv) and Proposition 6.12
we have ¢, = V;([Ij and £ = v*¢. Exactly the same arguments as those what we used in the
proof of Theorem 4.6 apply in the situation at hand and show that {;— {. (Note that
the assumption @; ¢ P, in the proof of Theorem 4.6 had been made there only in order
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to provide at least one example of a sequence {g;} with @; ¢S(w;) and ¢;—peS(w).
Also, for the arguments used subsequently there and showing v;*¢; — v°¢, the special
nature of the p;as elements of P was of no relevance; only the fact [Tk 4 proved to
be important there.) il

Proposition 8.5: Let v : w, — w, — ... = w, be a path. Suppose that y™: w, —

W™= .. w7 are paths with lim,, w;"" = w;, for any j, and that ¢'™¢ S(wy™), for any

m, with ™™ —peSlw,). Then'lim,, &, m(p™) =0 (p).

Proof: Let ¢™ =9, 9/, ... ,/7 =d m(p™) and ¢ = Pos Pys oo P =D (@) be the
uniquely determined sequences of vectors relating to y™ and y, respectively, with
starting points ¢ and ¢, and let ®;"llp; ™ as well as pj Il p;_1 be fulfilled for any j.
Since ™ —¢ holds by assumption, the result now follows by successively applying
-Lemma 8.4 to the pairs of vectors lo; ™, @; ™) and {@;, pj_1}, from.j=1 upwards | B

In case of w,=w,and w, =w,J" both y and y™ are loops. In this case, let us define
w=w (0,) and w,, =w, m(D,, m) Then we have 0 («p)-ww and @, m(p™) =w_ o™
By Propostlon 8.5 we lnfer Ilmm wmq: = wo. Since T — ¢, and’ because {w,,}is a
uniformly bounded sequence, llmm w,,® = we can be followed. From this, in using our
standard conclusions we deduce that st-lim,, w,,p(¢)=w. Assume in Proposition 8.5
the special situation with w = w, =w,™, for all m. We can choose ¢ = @, for all m. Then
lim,, @, m(p)=0,(p). By the last part of Proposition 8.1 we then infer that

sup {10, m () - D ()l peS(w)}
=sup {I|@, m(wp) -0 (wo)ll:weM', w*w=p'(p)}
= sup{llw(d’Ym(q:)-di,,(qO)}llz{ve'M‘,w"w=g‘(¢>)}
o, m(p) -0 (o)l

Let us agree in using the abbreviation y™ —7y for the situation described in the
assumptions of Proposition 8.5 . We will take together the previously derived results.

Lemma 8.6 : Let { v/} be a sequence of paths with y/ —vy and let wbe the initial
form of all that paths. Then

lim; 07’,/ =@, uniformly on S(w). (8.2)

In case that v/ and vy are w/- resp. w-loops
st-limi we @, Np(p)=w (D) (8.3)

is valid. In this case /¢ S(w/), for any j, with 9/ — ¢ S(w) is supposed. Especially, for
v/and y being w-loops for any j one has

st~ lim/ wo (0, ) =w, (D)), (8.4)

for any ¢ eS(w).
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Let now {w, o) be a «-minimal pair of normal positive linear forms. In case that o
=Awfor some Ae R, it is clear that Golw) 2= Gy(o), cf. the discussion at the beginning
of this section and the meaning of the elements of the holonomy group. Assume that
we are not in this trivial case. Let ¥ be an w-~loop. We associate with y a ¢ -loop 7, in
defining v,: 60— y— 0. Let ¢ € S(w) be given, and suppose ¢ and ¢’'to be the p-relative
and the @(y)-relative representatives of o, respectively. Then we easily see that ¢’
=glrg) = wyl (Dyd)zp. On the other hand we have @(y)=w_(® )p, and because ¢ llp
and ¢’ ll (v) holds, according to Proposition 8.1 and the definition of the elements of
the w-phase group at @ we get for the special path y: w— o the conclusion

Wl @, = §7= D (@(7)) = O (W (0)9) = We( D) D, (@) = Wi (D).

Due to p(@)=p'(¢) we have M',=M’,. Hence, w¢(0ya),w¢(¢7)e Uu(M-,) and the
equation w4,(d) V¢ = wo(@,)¢ implies w¢(d> ) =wg(®,). Since v could have been
chosen arbltrarnly in the set of w-loops we have to follow that Uo(w)c uQlo).
symmetry ({0, w} is « - minimal since !l is symmetric) we conclude that Uo(w) >U9Q (a)
too. Hence we proved Uo(w) =U%(0). By Lemma 8.2 we then have Go(w) =~ Golo) for
any «-minimal pair {w, o }. Fmally, let now w'™ w, i.e. let the normal positive linear form
' belong to the w-component. By the definition of ~ we have a path y connecting
wwith o. Let y: w =w,—w,— ...~ w,=0. Since neighbouring forms in the sequence
yield «-minimal pairs, we may conclude that Gplwy )= Golwy.,). Hence, Golw)=
Golo), and we can formulate

Theorem 8.7: The (restricted) holonomy groups of two normal positive linear
forms that can be joined by a path are mutually isomorhic.

Let GL(M) be the group of invertible elements of the vN-algebra M. For a given
positive normal form w we define U,(w) as follows :

U(w) = {xe GL(M): 3neN,a,,..a,eM,, invertible }

with x=a, a,, W¥=x"-)x)=w

It is easy to see that U,(w) is a subgroup of GL(M) and that U,(w) =U,(Aw),for any
A e¢R\{O}, is fulfilled. Therefore, and with view to our remarks from the beginning of
this section, in all what follows we shall suppose all the linear forms considered to be
states. We are going to define a map ¢,: U, (w)>x ¢, (x)eGolw) by the following
instructions. Let ¢ ¢S(w) be given, and assume x eU,(w), x =a,, - a,, with invertible
a; e M, . We inductively define a finite sequence {w,, w,, ..., w;,) of positive linear forms
w; by the settings w, =w, and wy =(wy_,)?k otherwise. We also define operators by as
follows:

e in case wy =Aw,_, for some A e R\{0},
k { wi-(e)/ wle)}2a,  otherwise.

.Note that, in case that wy = A, wy._, occurs, {wy, wi_,} in a trivial way is «~minimal (cf.,
e.g., Lemma 6.1). According to Example 6.2/(1) we must have both

A%y _rap Nag_ o ap and ajag.,-apllag ap.
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By Theorem 5.1/(4) then ajay_, a,p =1,12a;_, a,p has to be followed, with A,
= wile)/wi_,(e). Also in the other remaining cases we let 1, be defined by A=
wile)/w,_,(e). Suppose (i), with i, <i,<...<i.,,is the set of all subscripts j such that
w;# Aw;_, for any 1eR\{0). Then taking into account the preceding facts and using the
definition of the by's we see that

Xp =a,ap-= (n[tik All/z)alm'"ai‘w = (n] AII/Z) blm... bl‘?’ . : (8.5)
Let us define operators ck=b,k, for k =1,2,...,m. Then the sequence
Yiay: @ =0y = 0, ... =0, =0 with gy =(0;_,)°k for k21, and ¢, =w,

is a path which even is an w -loop in So(M). For, if we define x'= Cm' 6. then x'e U, (w)
since xp = x'p is fulfilled. The latter follows from (8.5) together with the fact that
HI.A,‘/ZEI . Thus x'p ¢ S(w).On the othér hand x'p ¢ S(o) by definition of the sequence
Yiay- This proves w =o. Note that by successively applying Example 6.2/(1 ) we get
?(7(ay) = x"@. Hence, also p(y(,) =x ¢ is fulfilled. We put now ¢ (x)= Py(ay This is a
well defined setting. Because, for another possibly existing factorization of x, say
x =a,~-a\, as above we arrive at a reduced element x” = c’;- ¢, by means of which the
corresponding w-1oop y(,-) had to be defined. As above we have ¢ (7, Y =X"p = xp, and
?(r(ay) = @(r(4)) had to be followed. From this we obtain ®riay= Priay Thus, the
definition of ¢,(x) actually proves to be independent from the factorization of x into
finitely many positive operators (a, } of M. Moreover, for x,y ¢ U,(w) from the above
construction of the mapping¢,, it is easily inferred that ¢ (xy)= &, holds, provided
tofXx)=@, and ¢ (y) =@, .are fulfilled. By Proposition 8.1 we ‘then have ¢ (xy) =0,
=0, P,-=¢,(x)e,(y). The relation ¢ (e) =id is obviously valid. Hence, we can summa-
rize the following result.

Theorem 8.8: For any state w the map t,: U(w)>sx — t(x)eGolw) is a group
homomorphism from U,(w) onto some subgroup of the (restricted ) holonomy group.

The group U.(w) will be analyzed in some important special cases. Assume that M
admits tracial states. We are going to consider a situation where w=r is such a tracial
state. Let x e U, (7). Hence, (- ) =1(x"(-)x) =t(xx"(-)), the relation r{(e-xx")}(-))=0
holds, and r((e-xx")2)=0 follows. Let x =u|x| be the polar decomposition of x. Since
U,(w) consists of invertible elements, u ¢ U(M). Hence, and by unitary invariance of t
we also see that

tx (X" = e Ux XD = el x DI x D) = e (u®l ¥ u (| ¥ u)
oI lu CYu*lx* D = (a1 2u (D u®) = clxx"u (D u®) =t (¥ u (Y u®x)
se(u (- )u*)=c(-),

- i.e. with x ¢ U;(r ) also x*e U, (1 ) follows. Especially, for xel.(t) we see that the
relation r((e-x"x)?) =0 is valid, too. Hence,

s(t)=xx"s(r)=x"xs(rt)=s(t)xx"s(r)=s(t)x*xs(r).
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Let us associate with each x of U,(1) the element v,.=xs(t). Then, what we have seen
is that v, is unitary in Ms(r), i.e. U, (t)s(r)C U(Ms(r)) has to be fulfilled. On the
other. hand, let a,,...,a,e¢ Ms(tr), be invertible positive operators in Ms(t) and let
a, " a, =ula, " a,| be the polar decomposition of a,:a,. In defining a,=la, a,| ™! we
get a unitary u which is the productu =a, - a, of finitely many positive, invertible oper-
ators of the vN-algebra Ms(t) (considered over the Hilbert space s(t)H ). We define
by=a,+s(t)* forany k. Then x =b,,---b,=u +s(7)* is a unitary in M, and x e U,(r) due
to unitary invariance of 7. Hence, we have proved that '

U,(r)s(r) ={ue UW(Ms(c)): u=a, - a, forinvertible, positive a;e Ms(r), neN}. (8.6)

For a moment let us come back to the case of a general state w. Since ¢, is a group
homomorphism, ker ¢, is a normal subgroup of U,(w). By the construction of ¢, we see
that ker ¢, = {x e U.(w): xp =@}, with peS(w). Hence, x eker ¢, if and only if xs(w)=
s(w) holds. Let [y] € U,(w)/ker ¢,, where [y] is the equivalence class of y modulo ker
{, in the factor group U,(w)/ker ¢,,. From the definition of the group U,(w) there fol-
lows that xs(w) =s(w)xs{w) for any x elU,(w). Hence, for x,z ¢lU,(w) we have
(xst @))(ys(w)) = xys{w). The latter implies that U (w)s(w) is a subgroup of the group
GL(s(w)Ms(w)). Since x e[y] implies x™'y s(w) =s(w), we have ys(w) = xs(w). There-
fore, by ’ ’ ’ ’

p:-U(w)/ ker ¢, byd — plly]) = ys(w) e U(w)s(w)

we have given a well-defined surjective map. Since ys(w)=xs(w) implies [y1=[x], we
see injectivity of n . Since » is a homomorphism, we finally get

U (w)s(w) = Uy(w)/ker ¢, T X

In case of a tracial state r, according to (8.6) and (8.7) we may now conclude -that
U.(t)s(7)QU(Ms(1)) (G,4G, indicates that G, is a normal subgroup of G,) and

Golw) D ¢ (U, (1))
(8.8)

> {u eUMs(t) :u= é,,m a, for invertible, positive a; ¢ Ms( r)}.

Let us now look on a r-loop vy which is given by y: 1 =g, = 0, = ... 20, = t .By
Theorem 5.1/(1) and Definition 5.0 (cf. (5.1)) we know that s(o;)~ s(o,_,)for all k.
Thus, s(oy )~ s(t) for any k. Since s(t) is a central orthoprojection, from this also
s(o,)ss(t ) follows. Since the support of a tracial state is a finite projection,
slog)ss(t) and s(oy )~ s(t) imply s(oy)=s(1), for any k. Let a be an invertible, po-
sitive element of M, and suppose that w € Sg(M) with s(w)=s(r) is given. Then also
s(t®)=s(r)=s(w). From Lemma 6.1 we infer that {t? w} is «-minimal. Let £ >0 be a
real. Then there exists an invertible b ¢ M, such that ||2P-w |, s¢. This follows either
from a special case of Theorem 6.4 or, more simply, is a consequence of elementary
facts about finite vN- algebras. According to this, we provide ourselves successively
by positive, invertible elements a,, ... , a,,_, of M such that [[t®k %1 - ¢, |, s ¢, for k s
n-1. Let us define a,, as a,=|a, a,_,|7!. Then, u.=a, " a, a, is a unitary (the adjoint of
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the unitary from the polar decomposition of a,-- a,,_, ), and therefore r = r*e = 19n"" &1,

Let v, be defined as the sequence y,: 1= 1 — ... — %% "% — — 1% "% =7 . This
is a t-loop for all ¢ which are sufficiently small. According to Example 6.2/(1),
ply)=a,aap-= b,_.zp, for any @ € S(r). By the definition of U,(r), u e U, (7). Hence,
by Theorem 8.8 (Dn_= t{lu.). Note that, in the notations from Lemma 8.6, v, — 7y provi-
ded ¢ —0. Thus, Lemma 8.6 gives lim, (D.,c= @, , uniformly on S(r). This shows that
AU (1)) is a dense subgroup of Gp(r). With view to (8.8) we may now summarize.

Theorem 8.9 : Let r be a tracial state on M. .Then the normal subgroup SU(M 7)d
U(Ms(t)) given by

SUM, 1) = {7u e U(Ms(t)): u=a, a, forinvertible, positive a; eMs(t); ne N}

is isomorphic to.some dense subgroup of the (restricted) holonomy group Ggl(1).

We remark that Theorem 8.9 is a key tool in order to accomplish the task of iden-
tifying the holonomy groups. What one has to do essentially is to identify the group
SU(M, t) of all unitaries which are finite products of positive, invertible operators in
the vN- algebra Ms(r). Especially, the situation is clear if M is a finite -dimensional al-
gebra. In this case, for a tracial state r and any other state w with s(w)=s(t), we find
w=t? for some invertible, positive a ¢ M. Let o be another state with s{o)=s(r) and
suppose that ¢ =r®, with invertible, positive be M.Let an invertible positive element ¢
be defined as c'=a~!| bala™!. Then o = w<. Now, if v is a r-loop y: T =0, — 0, = ...
—0,,= 1, due to our above discussion s(oy) = s(r), for any k. Hence, there are positi-
ve, invertible ¢y suchthat gy =(gy.,) “k, for any k. According to Example 6.2/(1) we
obtain ¢(y)=cpcp-, .9 for peS(r). Since u=cp,c,,,—, - ¢, eU,(1), the construction
of ¢, shows that @ =¢.(u) has to hold. Hence, ¢, is surjectlve in this case. Also, since
on a finite —dlmensmnal vN-algebra a faithful tracial state r, exists and therefore
{75, w}is «-minimal for any other faithful state w on M, by means of Theorems 8.7 and
8.9 and the facts about the structure of SU(M, r) from above, we finally can conclude
as follows. '

Corollary 8.10 : For a tracial state t on a finite -dimensional vN —algébra M we have
Golt) 22 SU(M,t). For every faithful state w over M one has

-1

Golw) = {u eM:u=a,ala,a| "' withinvertible, positive a, ¢M, n¢ N}.

The next simplest case is a normal positive linear form w which is given as w=7 P,
with a normal tracial state r and some projection p ¢ M. We will suppose that s(t) is
the central support of p (the remaining cases can be reduced to such situation). Under
these suppositions the following result holds. '

Proposition 8.11 : For given @ e Golw) and every € >0 there is @, € Golt) such that,
for any @ € S(1), the limit ®(pp)=lim, p O (p) exists. Moreover, &, can be chosen as
D, e (U (1))
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Proof: Suppose that @ = @, with the w-loop 7: w=w, = w, —... =w,=w. Then,
s{wy) s{w,) for any k ( cf. Definition 5.0, formula (5.1 ) and Theorem 5.1/(i)) and since
slw,) =p ss(r) and s(r)eM (M’ is fulfilled, also s(wy)ss(r) holds. Let us define
qi=s(t)-slw). For any £ >0 and k we put w;lel=wy +e19. Then, for ail ¢ suffi-
ciently small, we get an w,[¢1-loop v, given as 7,: wlel = wlel D w,le]l ... — w,le]
= wlel. We note that s(wy[£]) =s(t), for any k, and that y.— yin the sense of Lemma
8.6 as ¢ —0. Let us define ¥,.= @, .- The arguments raised below (8.8) assure that some
invertible ¢y € M, exist such that w; [£)k+1 = wy ,,[£], for all k. We may suppose that
cg s{t)* = s(z)*in this context. We define v, =¢,,* ¢, .Then ¥ ¢ U,( wle]1). By definition
of wle] it follows that m2=v_m2v>, with m, given as m.=p +¢/2p *. We define
u.=m.'v.m_ . Then u, is unitary and u_elU,(t) because u, is the product of finitely
many positive invertible operators of M. Let ¢ ¢S(t). Then ¢,.= m_p eS(wle)), and @,
— ppe S(w)as e 0. From Lemma 8.6 and (8.3), st-lim, W‘P:( Y p'(pp) =wy (D)=
w,o( @) can be followed. Therefore we get

lim, wy, (¥.)pp =w, (P)pp . (8.8)

From the definiton of m, we follow that pp =p_-£!/2p*p. We thus can transfer rela-
tion (8.8) into the form

lim, Wo (¥ )o. =w o (O)pp . (8.9)

Remind that Wo (¥ lp=¥elp)=v,p.=m u, m,Yp_=m_u.p.Since m,— p as £ 0,
from (8.9) we finally infer

O(p) 2w, (®)pp =lim, pu, @, with uclU, (1), forany e>0. (8.10)

We now define @.= ¢ (u). Then @.¢ Golt), and as we know in this situation, for any
£>0 we have ®.(p)=u_gp. Relation (8.10) now yields the result ®(pp)=lim_pd ()1

Corollary 8.12 : Suppose that U,(t)s(t) is compact. Then Golw)is isomorphic to
some subgroup of Gg(t). Especially, to each ® ¢ Go{w) there exists a unique @, € Go(r)
such that @(pp)=p @, (o).

Proof: According to (8.10) ®(pp) Fwoel @) pp=lim, pu, @, with u_eU,(1), for all
£ >0. By compactness of U,(r)s(r) the net {u.s(r)} has a cluster point us(t), with
- uel, (7). Let @ e Golr) be given by @, =t (u). Then Oy(p)=upand ®(pp)=lim, pu,p =
pu @ =p®,(p). This proves the last assertion. On the other hand, we can write ®(pp)=
Wool @) pp =pd>9( P)=pw (@) p=w (D, )pp. Since w,( P, )" wo(®P)=p'(p) and p'(pp)=
Woel® > W5l @) hold, due to pTpp) = ple) (which is a consequence of our supposition
that s(r) should be the central support of p ) the relation Wool®P) = wi(d,) can be
inferred from w,(®)pp = w (&d,)pp. According to Lemma 8.2, for ® ¢ G,(r) from
Woel @) =w (d,) we can draw the conclusion that @, ¢ Go(t) is the unique solution @°
within Go(t) of the equation w, (@) =w_(®’). On the other hand, by the same result
we also see that the map @ — @, obtained in this way has to be a group homomorphism
from Go(w) into Go()
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9. Continuous loops

In this section the notions introduced previously will find a very natural extension. We
will start in explaining what continuous paths and continuous loops in Sg(M ) could be.
To this sake we have to place at our disposal some auxiliary arrangements.

Let /= s, t]CR, be an interval of the non- negative reals. A partition t of the interval
Iis a finite-ordered subset of reals r ={¢,,¢,,...,¢,}), neNU{0}, such that to=s, t,=t,
and ¢t; > ¢;_,, for any j. The set of all partitions of I willbe notified as A; or Ag,. The
set of all partitions A;in a natural manner becomes a directed set if for two partitions
rand r"we define the notation r 2r'indicating that the set of points of the partion r'is
contained in the set of points of the partition . Also, for two partitions r and r’ there is
a third partition rVr'such that tVr'2rand tVr' 21, where t Vr'is the partition which
contains only those reals which belong to at least one of the sets of points of r or "
Suppose now, we are given two neighbouring intervals /and J, with I = [s, t] and J=[¢t, u]
For partitions t €eArand t'eA; we define 1 @1’ €A, ; as the partntlon of 1'UJ which
contains all the points of both r and r". We note that

{t@r'eA,UJ: VteA;, t'eA_,} = {r"e Ap,p:Veiz to},

with 1, €4, ; being the partition which contains exactly the endpoints s, ¢, u of all the
intervals. It should be clear how this generalizes to more than two “summands"”.

Let I=[ a,8 ] be some non-trivial interval, and suppose v: I3t w, €Sg(M) is a
continuous map from /into the normal state space. Let § ¢/, and let be defined I5 =[ «, 5].
Suppose that 1 =(¢,, ¢, ..., t,}, neNU{0}, is a partition of Az = Arg - Then y(7) is defined
as the sequence y(1): to We, T @

Deflnition 9.1: The continuous map v : I3t+ w, €¢So( M) is said to be a continuous
path in So{ M), with initial state w = w, and final state o = wg , if for any S e/ the follow-
ing conditions are fulfilled :

(1) there exists ts € Ag such that, for t 215, v(t) is a path;

(2) there exists @ ¢S(w) such that lim r21, plirt))=ps(7y) exists ;

(3) ple)= p(qo,;(y))

We will discuss some consequences of this definition. Let y be a continuous path
in the sense of our definition (the existence of non-trivial continuous paths will be
shown below), and fix a § /. First of all we remark that ( in the notations from above)
whenever the limit

hert i) =ps(y) .

exists for one peS(w ) (see (2)), then this limit has to exist for any @ €S(w). In fact,
let ¢ be another vector of S(w), and let w ¢ M" be the partial isometry with w*w =p(p)
and ¢ =wg. As a consequence of Proposition 8.1 we have (wo)(y(t)=we(y(r)). Hence,
from Iithtsp(r(t)):’q:s(y) we may conclude to lim 215 ¢lr(t))=wes(y), ie. the
limit exists. Moreover, we even infer that the relation Ps(y) = (wels(¥) =waps(y)
between the corresponding limits exists, from which also p*(¢) = p*( ¢s) follows.

Let now @ be the map from S(w) into S(wg) which is given by ¢ &(¢)= ¢s(y). As
yet mentioned we have ¢s(y)=wes(y) for any ¢ ¢ S(wy) and w e M with ww=p'(p) and
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¢ =wp. This shows that @ is a surjective map.
Since both @(y(t)) and ¢s(y) belong to S(ws), for any t 215 we find a partial
isometry w_ eM' with w'w_=p(p), p(y(1))=w_ps(y). Therefore, for any x e M we get

Hp(e)-wixes (Pl =lIx{p(e)-whes (V) = I x{ps(¥)- @y},

where we used that p'(@)=p'(ps(y)). Since w, p(p)= W,. for all r 2145, and the set of
all these w_is uniformly bounded, from lim_ zfr):p(r( t)) =z (y) we obtain the relation
st-lim t2t W= p(p). Let £ be an arbitrary element of H. We are considering the ex-
pression

flwr>e - p'(g:).fllz = KW WIEE> + PP E> - KEw pI@)E> - w p(@)E ED.

By our assumptions and Definition 9.1/(3), ww!=p(ps{y))=plp). Then from w_ p(@)
=w, and st-lim, 215 WS p'(@) we conclude that |[w>& - p()élI2— 0 in t 2175 Hence
we see that

St_“errS w,'=st-lim12r8w,=p'(<p). (9.1)

It is easy to see from above and by means of Proposition 8.1 that, for a partial isometry
weM' with w"w=p'(p), we get

(we)s(r ) y(0™) = (wos(r) )y ()7 = w(ps(y Ny () )

w(w,"tp(y(r)))( ()M =wwle(l (o)™ D =wwre.

By (9.1) then
Iimter(w<p)5(7)(y(r)’1)=w<p

is obtained. Sincé any ¢ ¢ S(w) can be represented in the form ¢ =wgp for some w ¢ M~
with w"w = p'(@), we have arrived at the result

limr2r8¢5(7)(y(r)")=¢». V geSlw).
In other.words we have

lim PPNy ()Y =g, V¥ ¢eSlw). (9.2)

21y .
Suppose ¢, y'e S(w) are such that ¢(¢)=D(¢’). Then from (9.2) ¢ = ¢’ follows. Hence,
the map @ from S(w) onto S(wg) which is given by ¢ @(¢)=¢s(y) has also to be in-
jective. But @ is also a continous map. To see this assume ¢,¢ S(w), for any neN, with
Pa— @ . Let v eM’' with v v, =p'(g), and such that ¢, = v, @ for any neN. Arguments
like those which we used in order to show that w_— p'(¢) strongly in r, also apply in
our situation and show that st-lim,v,= p'(p). Because of @(p,)=(v,p)s(y)
=v,ps(r) and since p(@)=p(ps(y)) we see that lim,@(p,)=lim,v,ps(y) =ps(y)=
@(p). Let now ¢, ¢ S(wg), for neN, with ¢,,'— @°. There are partial isometries vje M’
with v, )*v,’ =p(@s(y ) =p'(p) and such that @, =v, ¢ for any n ¢eN. The relation
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st-lim, v, =p'(p) follows. Suppose that ¢’ = d(p)=ps(y). From above we infer that
Pr=Vn® =v,es(y)=(v,@)s(y)=0(v, @). Hence v,;p = 0~ !(p,,), for all neN, and lim,,
oY o) =lim,v p=p=0"g"), with ®, € Slwg) such that @,"— ¢'. This proves ¢!
to be a continuous map, too. Thus, @ is a homeomorphism between S(w) and S(w;).

The properties of the continuous path y derived so far have been obtained in using
a fixed, but arbitrarily chosen § ¢I. The previously analyzed homeomorphism from
S(w) onto S(wg) will be denoted by @%. Then for our continuous path Yy we have a whole
family { @%. SeI) of homeomorphisms. Let J =[s,u] be a non-trivial subinterval of I.
We are going to show that the restriction 7’ =7U of y to the subinterval J is a
continuous path on its own rights. To see this, let us fix § ¢J. First we note that there
exists 1,5 €AS5 such that for any r, € A 5 with 1, 2 1,5 the sequence y'(1) is a path.In
fact, let us take rs supplemented with the point s. Let us call this new partition r5°'. We
then have t5" = 15,@® 15, ., with 15 €A,,, t5,€A,5 . Because of r5° 2 t5 for any r 2 ts' the
sequence_y(r) is a path, and y(r) = y(7,)y'(z,) holds if 7 =t,@ 1, with 1, €Aos, T,€A 5 IS
supposed. If r 2 75", then also t, 2 5, has to hold. Hence y'(r,) has to be a path when-
ever r, 2 15,. We show that

“mfzzfzs Py Ny () =psy). (9.3)

Assume that this were not the case. Then we could find £ >0 such that to any t, with
T, 2 15, there were 1,°2 r, with

les(y) - oy ¥y, D>e. : (9.4)
From lim 21, #{r(1)) =ps(y) we infer the existence of t, with 1,215 such that
les(y)-@(y(c)) < e/2, (9.5)

for any r with r 2 r,. Let r.=7,@® 1, , with r,, €Ays and r,eA. 5. Let t," be chosen to
given r., such that r," 2 7., and with (9.4) fulfilled. Assume r,2 r,,. We know that the
relation y(1,®7,")=1(r,)y(1,) is true. Hence we have

Py, @1,") = oy (1) v, ) = ly ()N y'(r,) = 07~(,2-,(7(r,)).

By the continuity of(DY(, -y (cf. Proposition 8. l) and since limg ar, Plrin)) = (y)
holds, we find 7, 217, such that le(x(z, &1z, ) 07(,2,(¢s(7))ll< e/2 is fulfilled.
With other words, for t ‘=1, Br, € Ag ’

’

TetrteN-p (rHy(e; N < e/2 : (9.6)

has to be fulfilled. By construction r'2 7...Thus (9.5) and (9.6) have to be valid simul-
taneously and result in the inequality llps(y)- @ (¥ My, ) ]i<e. By the choice of T,
this were in contradiction with (9.4). Consequently, (9.3) has to be true. A repetition
of the arguments from the start of our discussion below Definition 9.1 makes clear that
(9.3) can be extended to see that

lim o s Gy (g)) = gs(y), V¥ §eSlw). (9.7)

We know that p(¢)=p (¢ y))=p'(Ys(¥)) and ¢sly) = d(d) covers thewhole S(wy)

32 Analysis, Bd. 11, Heft 4 (1992)
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when ¢ is running through S(w). Hence, all the requirements of Definiton 9.1 with v’
instead of y have been verified. A submap y’ of a continuous map y over the interval 7
will be referred to as a connected submap of 7y if it is the restriction of y to some
subinterval J of I -

Hence, what we have shown so far is that our definition of the term continuous
path is selfconsistent in the sense that any connected submap of a continuous path
gives rise to a continuous subpath. This has some important consequences.

To discuss this more in detail, let {®'%: 5¢J } be the family of homeomorphisms be-
tween S(w.) and S(wg) corresponding to y'. Then by (9.7) it is evident that &’ $=
@3(®*=)! for any § ¢J. This suggests to introduce the following notion: in case of a
continuous path v in Sg( M), with initial state w and final state o, we define @, to be
the homeomorphism acting from S(w) onto S(c ) which is given by @, = @8 ( the nota-
tions of our discussion have been adopted tacitly). In this way we get a map v+ O,
from the set of continuous paths into the homeomorphisms between the spaces of
vectors realizing the respective endpoints of y. By our approximation procedure of the
continuous path y through discrete paths y(r) relating to partitions r which get finer
and finer, we are now able to rewrite Definition 9.1 /(1) also into the following form:

lim o o, (9.8)

T Zt.), rit) =

where . is a partition such that 7217, always implies y(7) to be a path in the sense of
Section 8. In fact, from Definition 9.1 /(1) we learn that, for some ¢ eS(w),

limeae Opeol@)=lim ;. @(y(0)=ga(r) =0, (p). (9.9)

T2t

Let ¢ be another vector arbitrarily chosen from S(w). Take the partial isometry weM",
with w*w =p(¢) and ¢ =wep. According to the last part of Proposition 8.1 and due to
our discussion below Definition 9.1 we know that @, (,(¢)=0 ((we)=wd, (@) as
well as @, (wp)=w@_ (@). From (9.9) then lim, 2r, O 0= (§)is followed. The
latter is true for any ¢ € S(w), which means that (9.8) holds.

In all what follows we want to agree in using the convention that a continuous path
is a continuous map from an interval I C R,, with left endpoint 0, into So( M) obeying the
conditions of Definition 9.1. Let us denote by I, the interval [0,a]. Let y,v" bea
continuous paths, with y: [, 3¢ w.and 7': Ig >t o, . Suppose that y has the initial
state w and the final state o, whereas 7' has the initial state o and final state v. Then let
us define the composition y" =y v’ of the two given continuous paths by setting v": I,.
3¢ w,, with o, defined for te[ a, 8] by w,=0,_,. Clearly y"is a continuous map. We
are going to deduce that y”is a continuous path. Let us interpret y and v’ as submaps
of the map y". By assumption there are partitions r,€ A, and r,e A,5 such that y(t') as
well as y'(t”) are paths for r"2 1, and r” 2 1,, respectively. Assume that p ¢S(w) and @
=@, P,. Suppose that re Ay, and r=t°@t". Then we have

P(r (o) = oy () (e = (pr(rN)(r (™)
20, ey (VEN) 2Dy P ).

Since @,(,-)(@) and @ (p) belong to Sto), we find partial isometries w_.e M’ with
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w,-‘w,.=p'(zp)=p'(d).,(¢2))=p'(d),,(,-)(‘p)) and O . (p)=w,. D (p).

By standard arguments (remind the derivation of (9.1) in an analoguous situation) we
will get

st-lim.., . we = ple). ) (9.10)
In using the last part of Proposition 8.1 we get
Plr™(e)) =@ . () Doy (@) = 07»(,»-)(»',407(@)) Fwe Op(py (O, (p)).

By (9.9) we have lim,--z,2 Doz { P (@) =0 . D (@), and if we take into account the
relation (9.10) and p'(p) = PP (p))=p O, D (p)), we finally obtain

lim @, P ()= 0, 0 (p) . ’ (9.11)

Therefore, all the conditions of Definition 9.1 are satiesfied by the map v”, i.e. v"is a
continuous path. It is now evident from (9.11) that

O .=0_. 0 (9.12)

holds for the corresponding homeomorphisms. Finally we note that, for a given con-
tinuous path y: I, >t w,,we could define y™!: [, >¢— O, , with o, = w,_, . It comes
out that y~!is a continuous path, and 0 -1=0, “lis satisfied. This follows easily from
(9.12) and (9.8) together with the fact that d)Y-x( =0 (n)” ! (cf. Proposition 8.1) holds
for all teA sufficiently fine. The path ¥y~ will be referred to as the inverse of the con-
tinuous path 7. Let us summarize in the following

Theorem 9.2: Let y be a continuous path in So(M).y~! and let every connected
submap v’ of y be a continuous path in its own. Each continuous path y connecting w
and o determines a homeomorphism 0., between S(w) and S(o) such that @ -1 = (DY"
and, if y =y'y" is a continuous map that is the composition of two contmuous paths v’
and v", then v is also a continuous path and 0,=0, 0, holds. Let p ¢ S(w). Whenever
weM’ is a partial isometry with w*w =p'(p), then O (wp)= wd).’,( P).

It remains to show that sufficiently many non - trivial continuous paths exist.

Lemma 9.3 : Let y be a (discrete) path, with initial form w and final form o. There
exists a differentiable, continuous path y' connecting the endpoints of y such that
O, =0 ..

v~ Yy

Proof: For the trivial path the assertion is true. Let y: w=w, = w, — ... — w, =0 be
a path, and suppose 0=t <t <t,< ... <t,=a to be a given sequence of reals. Let ®
PP 1P p(y)=0,(p) be the sequence of vectors with p; €S(w;), e lp;_,, for
any j, WhICh is uniquely determined by the initial vector . We defme non-negative
real -valued functions over R, as follows :

32+
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() = 1/2+ (1/2) cos (nle-t M-t ,)7)

(j=1,2,...,n).
2;(8) = = 5(6) Paglay o 2+ (1= 502 (1= Ppglay, ;. ))) 12
Look on the map I3t — @,¢ H which is given as follows :
if tele,_,,¢;), then @, =g() e+ p(e)p; . (9.13)

If we take into account that < ¢;_,, ;> =Ppsl w; mi_,)l/z, then since for the derivatives
of {;and 75; at the points ¢; the right "boundary” conditions

c](tl_l)=)§/(tl_l) =éj(t/)= ;/l(tj)=0 . V/,

are fulfilled (the dot indicates the derivative), it is easily verified that [lp ll=1, for any te
I,.and that @, is differentiable in the whole interval . Let us define w (- )=<(-)p,, >
over M. Then y": I, >t w, ¢ So( M) is a differentiable map. Since {; and 7; are non-ne-
gative functions which do not vanish simultaneously, Example 6.9 applies and shows
that, for any j, - ' =

eellpg, Vs teltp, t;]. (9.12)

We have .=, , for any j. Hence, the partition 7,={¢,, t,, t,, ..., t,,} belongs to a path
v'(1,) from the very beginning, and y'(r) for r 217, is a path due to (9.14). Moreover,
(9.14) tells us also that for r 27, we have p(y'(1)) = ¢, = @(y) =P (p). Hence the limit
lim, 21 ply(1)) = @, (@) exists in a trivial way. Since for the path y we have p'(¢) =
p'(@.,(@)), all the properties of Definition 9.1 are satisfied for the map y'. This proves
that y’is a continuous path and shows, at the same time, that @, (¢)=®,.(p) has to be
valid. Since, by Theorem 9.2, we know that d’Y( we) = wd),,(<p) as well as (Dyo(wcp)=
w®. (@) is fulfilled for any partial isometry w e M’ with w"w=plp), we get that @, =
®@,-has to hold 8 ’

Let @, 0 ¢ Sg{ M). In case that there exists a continuous path y with initial state «
and final state o, this will be notified by w ~ o, and v in this situationis referredtoas a
continuous path connecting » and o. Note that due to Definition 9.1/(1) and Lemma 9.3.
by this definition of ~ exactly the same equivalence relation on Sg( M) arises as that one
introduced in the preceding section and referring to (discrete) paths.Hence, the w-
component of a normal state w is the set of all normal states that can be connected
with © through some path. A continuous path v in So{ M) connecting wand o is referred
to as a continuous w -loop or a continuous closed pathat w if w = 0. Note that Theorem
9.2 is in complete analogy to Proposition 8.1 if the term continuous path is substituted .
for the term path. Thus, all the facts introduced and deduced in consequence of Pro-
position 8.1 are of relevance in case of continuous paths, too, and they can be literally
taken over and then compared. Especially, for a state weSg( M) the subgroup G(w) of
the group of homeomorphisms I',, of the metric space S(w) given by

Glw)={ ®el,:3 continuous w-loop y with @ = 07}

contains Gplw) as a dense subgroup. This is a consequence of Lemma 9.3 and (9.8).
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G(w) will be called holonomy group of w. Also if we introduce the equivalence relation

. in the the set of all continuous w-loops by the requirement that y ~,,r" if and only if
e(y)=9(y’') for any ¢ €S(w), then the set of equivalence classes [yl of continuous
w-loops withrespect to ~_, is a groupin a natural way if we define [y] [y 1=[yy’). This
group is anti-isomorphic with G(w) via the map [y1— @, (cf. Theorem 9.2).

Note that in this continuous case the class [y] contains many elements that are
equivalent in a very trivial sense, they differ only by their respective parametrization.
By this notion the following will be meant. We will say the continuous paths y: I >t
© €So(M) and 7': Ig>t > o,eSo( M) differ only by their respective parametrization if
there exists an order preserving homeomorphism f from I, onto Iz such that og) = w,,
for any tel,. This can be used to attribute to the term continuous path the more
improved understanding as a c/ass up to a certain kind of parametrization (in.our case
only continuity is considered). Also note that in the set of all continuous paths
connecting some normal state  with some normal state ¢ an equivalence relation ~
can be introduced by requiring that y ~ y'if ¢(y)=¢(y’) for some (and therefore any)
@ eS(w). Also in this case the class of y will be abbreviated by [y1.

Suppose now that @ ¢Glw) and fix a vector ¢ €S(w). Let M', be the vN-algebra
M, =p(@)M’'p’(p), and let U(M’,) be the unitary group of M",, Slnce p(dlp))=p ('zp)
and also O(p)eS(w) is fulfllled there has to exists a unique unltary wo(P)eU(M',)
such that @(@)=w_(®)p. We can associate such a unitary w(®) to any vector peS( w)
and to any ®eGl(w). Then the result for continuous paths corresponding Lemma 8.2
reads as follows: 4

wo G(w) 3O w (@)eUIM',) is a group anti-isomorphism from the holo-
nomy group G(w) of the state w onto some subgroup Ufw) =im w,, of the
unitary group U(M').

The unitary group Ug(w) will be called w-phase-group at geS(w). By (9.8) and since
O nle)= wq,(wy(,))qa holds, we obtain

lim o W P ple=lim . O y(@) =P (p)=w (Oy)p.

From this by standard conclusions st- lim s WolPy(n) = we(Py) follows. This, to-
gether with Golw) C Glw), implies that the restricted w- phase group Uo(w) at peS(w)
is a strongly dense subgroup of the w-phase-group U Hw) at peS(w). Slnce (8.1) re-
mains also valid in the case of continuous paths, U, ((.)) and Uy(w) are mutually iso-
morphlc for any two vectors @, ¢ ¢ S(w). The term global p-phase for an element
wol( ) is extended to the case of a continuous w-loop.

Let us assume now that y: I, >t w, is a continuous w-loop. Fix peS(w). Suppose
¢eeS(w,) to be choosen such that ¢,=¢ and ¢,=. Let t eA, be a partition of the
interval I, . Assume that 7 ={0=¢t,,¢t,,t,, ... .t ,_,, t,=a ), with £, <¢t,,,, for all k. Then,
1&(de, ¢,-) will be used as an abbrevnatlon for the ordered product of the relative
phases (cf.Section 6, below Propostion 6.12) 5(p, 4’: S(:/J, ({:t mé‘(gbc ,<p) Since we
know that st~ lim, 2, Weo (@) 2w (D), accordlng to Theorem 8.3 we can take for
estab]ushed the following result.

Theorem 9.4 : Suppose that y: I, >t w, is a continuous w-loop. For any map ¥:
I3t Y, e H such that ¢, e S(w,) and §,= @ = §,, the limit st ~lim 2t 11 8(d,, ') exists
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and depends only on ¢ and y. The limit is the global p - phase of the loop :

Wl @) =st-lim , o T 8(de gio). (9.15)

Remark 9.5: The formula (9.15) is of some practical importance. In fact, suppose
that we are given a continuous map ¥: I, >t = ¢, ¢ H such that ¢,= wy, for some weM’
with w'w = P (). If

vest-lim ., 0l S(p heI W

exists and is unitary in p'({, )M’ p'(J,) we can be sure that the map v : I3t — w,, with
w, defined by the condition ¢, ¢S(w,), is a continuous w-loop. This follows from Defi-
nition 9.1 and from the discussions below the definition together with Lemma 6.13.
Note that according to the assertion on independence in Theorem 9.4 the products
111 S(es dlt-)w. do not depend from the special nature of the map in the inner of the in-
terval ( provided the expectation values remain unaffected ).

Finally, also the classes of continuous w-loops are isomorpic to U (w) for any
p eS(w). This follows since the map [y]— w_(®.) can be composed of the two maps
tyl1 — &, and @, — w_(d,) which both are anti-isomophisms from the group of
classes of continuous w-loops onto G{w) and from G(w) onto U (w), respectively. Also
note that due to the last part of the assertion of Theorem 9.2, which is a continuous
equivalent of the last part of the assertion of Propoition 8.1, the idea of the proof of
Theorem 8.7 also works in the continuous case, i.e. Glw)2 Gl(o) for w,0e¢M,, provided
there is a continuous path y with initial form w and final form o.

We also note that according to our definition of the term continuous path it is of
no relevance whether the corresponding map v has its range in So(M) or in M,,. This
follows since a continuous path with range in M, contains the 0- form if and only if it
is the trivial map into O (see Definition 9.1/(2) and our discussions of the analogous
question for the case of paths in Section8).This case will always be excluded. But then,
for a continuous map y: I3t w, ¢ M, with the properties (1)-(3) of Definition 9.1 ful-
filled (and M, instead of So(M)), we can be assured to find some 7 >0 with [w,|l, 2
for any tel. Hence, I3t J w, |, is a strictly positive continuous function on I. But then
the map v Iat— llw, i w, € So( M) is a continuous path in the sense discussed above.
Let y connect w with o. Then it is not hard to see that &,(-)=ll¢ li, 22 Q. Uell22¢-))
is the corresponding homeomorphismus. Hence, if w ¢Sg(M) and y is a continuous
w-loopin M,,, then y'is a continuous w-loop in Sg{ M) such that 07': 07' . Therefore,
both the holonomy group at w and the w-phase group do not depend of whether or not
the loops or continuous loops arising from and ending in the state w are staying
inSp(M), exclusively. This independence can simplify further discussions and will be
referred to tacitly if by the situation this will be allowed.

Let y be a continuous map v: It w, € M, . Suppose that there is another conti-
nuous map ¥: Int > ¢,e H with ¢,.eS(w, ), for any tel Assume that ¥ is of bounded
variation, i.e. U ¥') = sup {Zc 5, l 4:‘]— 4:5,”"; teAy } <. Then vis said to be of bounded

variation and Wly)=infy V(¥) is called variation of v if the infimum extends over all ¥
which refer to the same map v. Suppose that /= [0,a] »¢,sand t >s . Then by Ves( ¥)
and V, (7) the variation of the restriction of the map ¥ resp. y onto the interval [ s, ¢]
is denoted. We also use the abbreviations V (.¥) =V, o(¥) and V,(y)=Voly). It is evi-
dent that both V.(¥) and V, () are increasing functions of tand V (¥)=V (¥)-V _(¥)
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holds. As in the classical calculus of the functions of bounded variation from the con-
tinuity of ¥ also continuity of V (¥) in ¢t follows. Suppose that w =w, and let p ¢S(w)
be chosen. Let us assume that y is a continuous path. We are going to look for continu-
ity properties of the map @: >t @, (y)e H.

Lemma 9.6 : Suppose that vy is a continuous path of bounded variation. For any ¢
eS(w), @: It p,(y)e His a continuous map, and forany t,sel, t2s, we have

V(@) =V, (y)=infy V  (¥)=infy VI¥), (9.16)

where ¥ extends over all continuous maps with ¥: Istv— ¢, ¢ H such that ¢, ¢ S(w,)
for any tel, and ¥ extends over all continuous maps with ¥': [ s,t] sr— ¢', ¢ H such
that ¢’ ¢ Slw,.) foranyre(s.t].

Proof: Let ¥y’ be a continuous path of bounded variation with initial form w’. We
firstly show that, for any ¢’e¢S(w’) and any continuous map ¥ : I'>t— ', ¢ H with ¢’ ¢
S(w’, ), the following inequality is true:

N (y)-@'ll s Viy) sV(¥). (9.17)

Let us assume ¢” and @~ to be vectors in H such that ¢"eS(w"”) and ¢"eS(c™ for
certain normal positive linear forms over M. Assume that @’ eS(w”) and ¢",eS(o")
fulfil ¢, le", (ie. {w" 0"} is «-minimal, by Theorem 5.1/(i)). Following Remark
5.2/(2) we have < ¢y, 9> = Ppslw”, 0")1/2, By definition of Py, we also see that

Prlw” o™ 722 < ¢, "D 2Re < ¢", ">,
Hence - Re <¢",p"> 2-< ¢",,®"s>, and we can conclude as follows :
197 = 0ol = 197612+ 19712 -2 ¢, 075
s g2+ @ I2-2Re <™ 07> = g - 9" I,

Let r ={¢, } be a partition of I' such that y'(r) is a path. Assume that ¢, eS(w'ck) and
@ I @'_, for any k, with starting vector ¢, =" Then the final vector of the sequence
isp(y'(1)), and we have e (y(r)) -9’ lIs I, @4 - ®%-,ll. Because of ¢y llgy_, . and
since @, ¢, € S(“":k)- Pr-1> $ep € S(w'ck_x) is fulfilled, we are in a situation as
described above with ¢", ", ¢",, @', . The conclusion is that, for all k, @ - @%_, lls
|I¢'tk— $e,_, . Hence

ety (e =9l s 5, 9%k - oy 12, N9 diep s V¥,

Taking the t-limit yields @ '(y’) @[l sV(¥'). This has to hold for any continuous vec-
tor-valued map ¥ referring to y’'(cf. above). Therefore also || (y") - @’ |l sinfy. V(¥")
s V(¥") holds true. This proves (9.17). For given t,sel, t 25, we put Y=y 5 .. By
Theorem 9.2 we know that y'is a continuous path and ¢ (7)= @ ,(y)(y'). Moreover, v’ is
of bounded variation if vy is supposed to be of bounded variation. For a given continuous
vector-valued map ¥ referring to vy the restriction ¥ of ¥ to [s,t] is a corresponding
map for y' It is evident that V, (¥)=W¥’). As we remarked V, (¥)=V (¥)-V (¥ )
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holds in case that ¥is of bounded variation. We can specify "= ¢ _(y) in (9.17) and ob-
tain in this case @ {y) - y) s V (¥)-V (¥ ). Continuity of V(¥) then implies
continuity of @,(y). Note also that the inequality @ (v) - (y) s V(¥)- V (¥), for
t.s el with t >s and for any admissible ¥, implies that the continuous map @ : I>¢t —
p.(y)eH is of bounded variation, with the property that VI®)sV(¥). Hence, V(®)s
infy V(¥)=V(y). On the other hand, by definition of W(y) we have V(y)sW(@). Hence,
equality has to be followed. What we have proved is that Vi®)=infy VI¥)=Wy). This
holds for any continuous path of bounded variation. Especially we may apply the con-
clusion to a subpath of a given path v. If the subpath refers to the subinterval [s,¢],
we get in this way (@) =infy (¥ )=V, (y), where ¥:[s,t]sr— ¢’ ¢His such that
¢'re Slw.) for any rels,t], and @ is the map @ [s,t]>r == ¢ ' (y') eH. If we choose
®’s= s(7r), by Theorem 9.2 we have ¢"{y')= @ v).Hence, ® I{s, e]=9@ . Therefore VID’)
=V (@), and thus V, (@) =V(D)=infy. ¥ )=infy V, (¥)=V, (v 1

Remark 9.7: (1) Lemma 9.6 also proves that, for a continuous path of bounded vari-
ation, Vi (y) =V (y)-Vy) is fulfilled for any t 2 s, and Vi(v) depends continuously
on t.

(2) Suppose that the map ¥: It ¢, H is continuously differentiable. Then ¥
obeys some Lipschitz condition on I, i.e. for some ¢ >0 we have || Ye-dglls cle-sl, for
any t,scl. From this V(¥) <> follows. Moreover, the map r: I>e—wee My, with wel(-)=
< (). ¢ > is continuous. Therefore, in case that v is a continuous path, it pro{vides an
example of a continuous path of bounded variation.

(3) The class of continuous paths described in the proof of Lemma 9.3 obeys the
requirements of (2). It is also not hard to see that any continuous map v: I » t = w, ¢
M ... with the property that, for some To€Af. T 215 always implies y(7r) to be a path
(cf. Definition 9.1/(1)), can be uniformly (over I) approximated by continuous paths of
this class. Hence, the set of continuous paths of bounded variation is uniformly dense
in the set of all continuous maps obeying Definition 9.1 /(1) and mapping from closed
bounded intervals into M,,.

Let {w, 0 } be a «-minimal pair of normal states. Then according to a special case
of Lemma 9.3 we find a continuous path 7 in So(M) with initial state w and final state
o such that, for any given peS(w), p(y) is the p-relative representative of o. By the
special construction of the example in the proof of Lemma 9.3 (cf. also Remark 9.7/(3))
we can be sure that such y with V(y) < ® exists. Let us associate with the «- minimal
pair {w, 0 ) of normal states a positive real Vlw, o) which is defined as

V(w,0) = inf{ Viy): y< So(M) with p(y)eS(o) for peS(w) such that p(y)ie}).

By the above we know that V(w,0)< ®. Let y be a continuous path with initial state
wand final state o such that V(y)< o and @(y)ll ¢. Let us fix peS(w), and suppose for
definiteness of the discussion that y refers to the parameter interval / =[0,1]. Then,
by Lemma 9.6, & : Iat— o (y)eH is a continuous map with wo=pand p(y)=p(y)=y¢,
where ¢ is the p-relative representative of 0. We then have V(w, o) sV ®). In any case
there are many of such paths. We are going to give an estimation of V(w, o) from above
by continuous paths of the following construction. Let f: I 3¢~ Alt)elbe a continuous
map from Jonto I with A0)=1and A1)=0. We define for t ¢/ unit vectors e.[fleHby

PelF1 = At)p +{-At)Py (0,072 +( AE)2Py (e, 0) + (1 -AL)2))/2} g (9.18)
M M
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We associate to fthe map ®p: I>t— @, [f 1¢H, and require the state w,[f ] to obey
P [f1eS(w, [F1). Then, according to Example 6.9, v¢: I3t w,[f1is a continuous path
with initial state w and final state o. In fact, @, [F1llp [f ] holds for all ¢, s ¢ . The latter
implies @(7¢(7))=@,[f] for any finite partition t of /. Hence, according to Definition
9.1 and Theorem 5.1 /{i), p{yf) = @, [f] exists and @, (vr) =@, [f], tel In our situation we
see ¢(yr) = ¢, and in view of Lemma 9.6 we have (@) =V (y,) and we get the estimate

Vlw,0) s inf VI®p) = inf Viyg), (9.19)

where the infimum extends over all functions f of the class which was admitted in the
construction of the family of vectors given in (9.18). Let f be one of these functions.
Suppose for the moment, we had inner points ¢, s €/, t <s, such that At)=As). We
define another function £ by f(u)=Au) for ust, and Flu)=ARau +B) for uzt, with o
and B given by a=(1-s)1- t)" L B=(s-¢t)(1-¢)"!. Then also f belongs to the class of
continuous functions admitted in (9.18). Also we have W TE) =V (ye) + Vye) -V (ye) =
Vire) - Volrp), ie. Viyp)sViyge). Hence, in order to calculate (9.19) we may content
with extending the infimum over all monotoneously decreasing functions of the class
in question. In line with this, let f be such a continuous, positive function which also
decreases monotoneously from one to zero. Then by means of a little calculation from
(9.18) we get ( Stieltjes integral) '

Vi) =Vidp) = (1 - Ppgla, 0032 [ {1-(1- Ppglw, 0))F2 }- 172 1df] .
1
The result is
Wiye) = V((Dﬁ)=§- arccos [1- Py (w,0)1V2,

This establishes a relation between the Bures distance dpg(w,0) =201 - Ppslw,0)1 172
(cf. formula (1.2)) between the states w, o of our minimal pair {w, o} and the total vari-
ation V(r;) of the special class of paths p'arametrized according to (9.18) by any con-
tinuous, positive function which decreases monotoneously from one to zero. The rela-
tion reads as ‘

W ye) + arccos ;—dM(m,o)=§, for all £. (9.20)
On the other hand we get the upper bound for Vlw, d) we were aiming at:
Vw,0)s 3 - arccos [1-Ppglw,0)1172 = T - arccos £ dpg(w.0). (9.21)

Let us now introduce a unit vector @' =l ¢ - Ppglew, 0) 2 " H{ ¢ - Pprlw,0)1 20 }. Then
@' L @, and the vector ¢ can be written as ¢ = Py(w,0)2p + [1 - Ppolw,0)11 2p"
Substituting ¢ within (9.18) yields P LFl=g(t)p +(1 -g(t)?)2p°, with a continuous
function g which depends on f and obeys the boundary conditions g(0)=1, g(1)=
Pprglw,0)172. Note that in all what follows we will fix some function f which is mono-
toneously decreasing. Then (9.20) is fulfilled and the function g proves to be mono-
toneously decreasingly, too. Let now y be another continuous path connecting w with o
within Sg(M) such that p(y}llp, for a given peS(w). Suppose that v is of bounded
variation. By Lemma 9.6 we then know that ¢,(r) is continuously depending on t (we
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will assume that t extends over the unit interval; this special choice of parametrization
has no effect on the value of the variation). We will analyze the behavior of V{y). Since
Poly) =@ and @,(y)=¢ = Ppglw,0) 29 + [1 - Paglw,0)1'2 9", wefind a representation
of @,(y) in the form

P (Y)=f(t)p +flt)p + &, (9.22)

with f,, f, eC{)and £,(0)=0, f(1)= U1 - Pylw,0)1Y72, £(0)=1, f,(1)= Py le,0)' 2
Note that t+ £, is a continuous map into Hwith £, L ¢, §, L ¢°, for any ¢, and {,=¢£,=0.
Let ¢~ be an auxiliary unit vector of H such that ¢~ 1 @, " L @' Let us associate with
{@.{y)} another family {¢,} of unit vectors which is defined as a map

¥:Ist = ¢ =1 F()]e +| Fl)le +11Elle” . (9.23)

Since, for all ¢, s €,

hpe=dall2 = (16,0 =1 £()1 )2+ (1 £CON - 1A )2+ TIEN - N2
s (FU0)-F())2 + (FO)-F(s))2+ £, - £, 112
= p(r)-oy)2

holds, we have to conclude that V(¥)sV(y) < o holds. Let us consider the unit sphere
S2in R2The map ¥ Ist+— {| £,(e)],| £,(¢)], £, I} € S gives a continuous one-parameter
curve connecting the points {1,0,0} and {PM(w, o)72 1-Pprelw, 0)] 1/2,0}. Obviously,
this curve is rectificable and for their Euclidean length /(¥’) we have I(¥")=V(¥).
On the other hand, also @: Ist+ {g(¢t),(1-g(¢£)?)!/2, 0}eS? gives a continuous
one-parameter curve on S ? connecting the same two points. According to (9.20) their
Euclidean length I(d°) is given by (®')=V(d) = -125 - arccos ;—dM(m,o).By our assump-
_ tions on @ the latter curve is order homeomorphic to the set of points which comple-
tely fills the smaller one of the arcs of the great circle on §2 which passes through the
points {1,0,0) and { Pps(w,0)'2,[1-Pp,(w,0)1'72,0}. From Euclidean geometry, how-
ever, we then have to follow that /(®’)s /(¥’), necessarily. Hence, we may draw the
conclusion that V(y) 2 %- arccos ;—dM(w, o), and by the definition of Vlw, o) we have to

follow that Viw,0)2 %— arccos ;—dM(w,o). From (9.21) we then obtain as an exact value
V(w,0) =3 - arccos §dps(w,0). (9.24)

Note that (9.24) establishes a relation between a seemingly global quantity, namely
the Bures distance between the states of a «-minimal pair, and the locally determined
quantity of the total variation along some path connecting these two states. We can
even learn more from the facts demonstrated above. Suppose we had a continuous path
connecting w with o within Sg( M) such that ¢(y) llp, for a given ¢ ¢S(w). Then @, (y)
has a form as given in (9.22). Assume W(y)=WV(w,0). To obey this, the corresponding
¥ has to satisfy I(@")=KY¥’). The latter can occure if and only if [ £.11=0, for any ¢,
and | £, | is a monotoneously decreasing function such that £,(0) =1, £,(1) = Ppy,(w, 0)172.
For the function | f,| we then have | f,|? +| £, |>=1. Let us now look on the map

¥ . Ise = {Re f,(t), Re f(t), Im f(t), Im f(¢t)}eS3
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into the unit sphere of R*. Then ¥" gives a continuous one-parameter curve on S con-
necting the two points {1,0,0,0} and { Pps(w, 0)'2,[1- Pps(w,0)] "2,0,0}. By assump-
tion this curve has Euclidean length /(¥*) = %- arccos ;—dM(w, 0)=I '), with the curve
@’ defined as above and supplemented by 0 in the fourth coordinate. Since the curve @’
gives the shortest connection between the two points mentioned above, we have to
conclude from I(¥”) =/(®’) that Im f,(¢t)=Im £f,(t)=0, tel Hence, both f, and f; are real
functions and f, is monotoneously decreasing from 1 to Py,(w,¢)'/2. This proves that
the infimum considered is attained exactly for those continuous paths y, which belong
to the class y, with monotoneously decreasing, continuous f obeying the boundary
values A0)=1, A1)=0(cf.(9.18)).

Theorem 9.8 : Let {w, 0} be a « -minimal pair of normal states over M and ¢ ¢S(w).
Let ¢ be the ¢ -relative representative of o. For any continuous path y within Sg(M),
with initial state w and final state o; such that ¢ = p(y) we have for the variation-of v.

Niy) 2 %—arccos [1-Ppglw, 0012 = %-arccos ;—dM(w,a).

Equality is attained if and only if v : It ¥ w, eSo(M) is of the following form : there
exist a positive, continuous decreasing function p, with p(0)=1 and p(1)=0, and an-
other positive continuous function q such that

we=pltlw +qlt)o +2{p(t) q(t)}2 Re {w,0), (9.25)

with the skew form I(w,0) of {w, 0 ).

Proof: The previous discussion shows that the infimum is attained, and by (9.24)
the exact value is given. We have also shown that in order to get the infimum for a
continuous path 7, the family @,(y) necessarily is of the shape

Pely) = At)g +{- Rt)IPp(w, 0024 (RE)12Ppglw,0) + (1-RE)2)) 2} g,

with fbeing a continuous, decreasing function with f10) =1 and fI1)=0. We now define
p=f? and find out g as the solution of the equation 1=p + g+ 2{ pq }'"2Pp,(w,0)*/2.
Then

q=(‘pl/2PM((.),o)V2 + [pPM(wyG) +(1_p)]1/2 )2_

and since ¢ Il @ holds, by Theorem S5.1/(ii) we get J(w,0)=<{(-)¢,p>. The form (9.25)
now follows by inserting the expression of @, (7) into w () =< (), (7), p,(¥)>. Let us
assume that (9.25) holds. Then, by Lemma 4.1/(i), v: I»t — w, is a state-valued, con-
tinuous map, with w,=w and w,=0. Let peS(w) and suppose that ¢ is the @ -relative
representative of 0. By Theorem S5.1/(ii) then I{w,0) = <(- )¢, ¢> holds. From this on
gets ¢, = p(t)2p + q(¢)2¢ ¢ S(w,), for any t. Since p and q are positive functions,
according to Example 6.9 ¢, Il ¢, , for t,secl, and ¢, =, ¢, =¢. From Definition 9.1
®.(7v)=¢, follows. This shows that y is a continuous path connecting w and o such
that @(y)lie. Since ¢, (7)= ¢, has the form as asserted in (9.18), according to (9.24)
Wy)is the infimum il
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10. Relative representatives and the skew phase

All what we have proved up to now can be considered also for the vN-algebra M’ in-
stead of M. Especially, two vectors ¢, ¢ ¢ H can be considered in context of both the
vN-algebras Mor M'. If the latter situation occurs, then g, ¢ will be considered as re-
presenting vectors for two normal positive linear forms w’,0’ over M '. Suppose that ¢
eS(w'), ¢ eS(o’). It can happen that ¢ is the uniquely determined vector of S(¢’) that is
p-associated with respect to M'. Then the pair (w',_o') is «-minimal over M'. In order
to avoid confusion with the li-relation on M, the notation ¢ II'g will be used if the
vectors are considered in context of M'. There is an interesting relationship between II
and II' the consequences of which will be analyzed subsequently.

Proposition 10.1: Let ¢, ¢ € H, and assume ¢ |l . Suppose w,0 e M, ,and w',0'¢e M',, are
normal positive linear forms over M and M', respectively, such that @ e S(w), ¢ ¢ S(o)
and peS(w’), ¢eS(o’), respectively. Let u(w, o) be the w,0-skew phase. Then {w,0') is
«-minimal over M' and u(w, o)y I’ p.

Proof: Due to our assumptions and according to {5.1), p(@)=p(¢). Hence s(w’) =
s(o’) in the vN-algebra M'. Hence, by Lemma 6.1, {w’, 0"} is «-minimalover M'. Let h ¢
M,=(M’), be defined by h(-)=<(-)¢, ¢>, and let be h=R,,| k| the polar decomposition
of h. By assumptions ¢l and pe S(w), $€S(o). Thus, Theorem S.1/(ii) applies and gives
h = I{w, 0). By definition of the w, o - skew phase in Section 3, h=1{(w,0) =R, | I{w, o)| with
u=u(w,o0)*. The assertion now follows from Proposition 6.12 in application to the vN-
algebra M' B

Remark 10.2: Note that the result of Proposition10.1 can be considered as an appro~
priate generalization of the characterization of the w,0-skew phase in Lemma 6.3. In
fact, let us adopt the situation o = wa, with ac M, such that {w, o0} is « - minimal. Assume
that ¢l and peS(w), geS(0). According to Example 6.2, ¢ = ap, necessarily. Hence, on
M’ we have o'(-)=<(Jag,ap>sllall?w(-), with w(-)=<(-)p,@>. Let tcM', be Sakai's
uniquely determined Radon- Nikodym operator such that o’ = w"’ t By Proposition 10.1 we
know that {w’, 0’} is «-minimal. This and Example 6.2, but the last now applying over
M’, yields ¢°'= tp as the uniquely determined vector in S(o’) such that ¢’ II' . According
to Proposition 10.1 and respecting the uniqueness result of Theorem 5.1 /(iv) we get in
the situation at hand over M’ that u(w,0)ap =u(w, o)y =¢ =te. This is the assertion of
Lemma 6.3, exactly.

The result of Proposition 10.1 can be extended from pairs of «-minimal, normal
positive linear forms to paths. To explain this suppose that v: w=w,—w,— ... D w,=0
is a path in So( M) and that ¢ € S(w) is fixed. We are going to associate to the pair {y, ¢}
another path vy, within Sg(M') as follows. Let ¢ =@,, @,...,¢,,= @ (7) be the uniquely
determined sequence of vectors of H to the initial vector ¢ such that ¢ ¢ S(w;) and
Pl @y, , for all k. We choose wy ' €Sol M’} such that ¢, eS(w), for any k. By the same
argument as this one used to see that {w’, ¢’} is «-minimal in the proof of Proposition
10.1 we get that also {wy ', wy_, } is «-minimal for any k. The path y,, arises from the
sequence ' = w, = w, = ... — w,; =o' through omitting all muitiple (neighbouring) oc-
curences of states in the sequence (this reduction is necessary due to our definition of
the term path and because we know that {w; ', w,_, } is «-minimal, indeed, but this does
not exclude at all that wy’ =wy_,' could happen for some k). The resulting path in
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So( M} then fulfils

Lemma10.3: Let v: w=w,— w,— ... 2w, =0 be a path over M, pcS(w), and let Te
be the path over M' associated with{y, ¢ }. Then

Plry) mulw, w)lule, w,) ~ulw,_,,0)elr). (10.1)

Proof: In the above notations and in using Proposition 10.1, from @, llg,_,, for all
k, ulwg_,, wp )@ I oy, follows for any k. Moreover, for a given kandany ue M ={M’'}’
with u”u=slwy_,) we have v ulwy_,, vy V@, Nup,_, . This is a consequence of Theorem
S.1/(iii) in application to the M'-context. From Definition 5.0, cf. especially (5.1), we
know that

ulwy, wpe_, S ulog, wp_ ) =slwg_,)  and  ulwg, wp_ ) uloyg, wg_ ) =slwg,_ ).
l-ler;cé, i}-l__chosi_n-g u=ulow w)ulo,, w,) <t (Wyop, Wi_,) we have u*u = s(wk_l),"and';
e, w)ule,, w,) ulwg_;, 0 )pg Nulo, o)ule, w,) Ul Wp_ )P,
can be followed. Let us define, for k=1,2, ... , n,
G = 4, 0) 4w, W) -t g g gy U Wpeyr O ) P (10.2)

and ¢, =@. Then ¢, ¢,, ... . ¢, is a sequence of vectors such that ¢ e S{wy’) and ¢y
I'gp—,. Suppose the case wy'=wy_, for some subscript k. By the uniqueness assertion
of Theorem 5.1/(iv), in this case ¢ = ¢_, has to be followed from ¢ I ¢,._;. By the
way, using (10.2) we see that this case occurs if and only if ulwg_,, wx)px =i, Hence,
up to possibly multiple occurences of vectors, the vectors of the sequence ¢, ¢,, ... , ¢,
are exactly those which also constitute the defining sequence for the path y, with
starting vector @. Especially, the last vector of this sequence has to equal ¢,,. Since
plry,)=¢, and p(y) =g, the equation (10.1) now follows from (10.2) for k =n i

Let y: w=w,—w,— ... @ w,=0 be a path in Sg(M). We define a partial isometry
uly)in M by u(y)=ulw v)ulw,w,) ulw,_,, o). Due to Lemma 10.3, the final state of
Ye is given by o’(+) =< (- o (7), p(r)> = 0w Twl O (- )w, (D). Thus, evenif v is an w-
loop, 7, is not a loop in general. In case v ~, {w} ({w} stands for the trivial w-loop),
however, @, =id,, implies that v, is an w'-loopin Sg{M’). In this case we learn from
Lemma 10.3 that w( d)y‘p)p =@ly)=uly)p. Since w,( (an)" wol 0Y¢)=s(w) =uly)luly)
is valid, we can be assured that the following is true :

w¢(¢7¢);u(y), for any .y with y ~_,{w} and each @ eS(w). . (10.3)

By the definition of u(y), the subset 8(w) = {u(y): y withy ~ {w}} of Uls(wIMs(w))
is a subgroup. In fact, if y'is another w-loop with y'~ (w}, then

vy ~plol, ulryuly)=ulyy) (10.4)

by construction of u(-). Due to Lemma 4.1/(ii) we have u(y)*=u(y™').Since v ~ {w)
always implies y~!~_{w}, we further have u(y)* ¢ ©(w). The element u(y)*is the in-
verse of u(y) in U(s(w)Ms(w)). This proves that ©(w) is a subgroup of Uls(w)Ms(w)).



482 P.M. ALBERTI

We will refer to ©(w) as the torsion group of «. For a given ¢ ¢S(w), let us consider
the subset 4(@) of the full group of equivalence classes of w'-loops in So{ M'), with w’
€ So( M) defined by w'(-)=< (), >, which is given as

A(«p)={[y¢]:\lw—loops r~m(w)}.

Then A(p) is a subgroup which is isomorphic with the torsion group of w. This follows
easily from (10.3) and (10.4) in using the facts yet proven and telling us that 8(w) is a
group and both the maps [y]1* @, and @ w_(®) are anti-isomorhisms of groups
(cf. Section 8 ).

11. Examples ( the finite - dimensional case )

In this section we want to discuss examples for some of the results we have proved up
to now.We start with considering an w-loop for a normal, pure state w (i.e. we suppose
to exist such a non-trivial state w over M ). Our aim will be to calculate @(7y) if
¢ ¢S(w) is given. In doing this we will follow the line as indicated in Section O,
essentially. We start with some preliminary considerations.

Firstly, let us suppose o €Sg(M) and {w, o} to be « - minimal. Since w is an extremal
state, p'(¢) has to be a minimal projection of M'. Let ¢¢S(c) be the unique vector
representing o such that ¢ llg (cf. Theorem 5.1/(iv)). By the definition of Il (cf. (5.1))
we have also p'(¢)=p'(p). Hence, p'(¢) is minimal. This implies o to be an extremal
state. Therefore, also the second state of our «-minimal pair is a normal, pure state.
Suppose that ¢, € S(o) is given, and assume that ¢"=p ()¢, =p'(¢ )¢, is not vanishing.
Then since p'(¢) is minimal we have p(¢’) =p'(@). Because of | xp(@)¢, =1l p(@)x¢, Il s
Ixg,ll, for any xeM, and since o is extremal, in the.case of ¢’ + 0 we have ¢” =ll¢° || 71y’
€S(o), p(¢”)=p'(p). Let he M', be defined By h(:)=<(- )", ¢>. Since s(| h|) s p(p) and
s(lA*ysp(¢")=p'(@) and p() is minimal, s(|h|)=p(@)=s(| h*|) has to hold. Let h=
R, | h| be the polar decomposition of h. Then, v*v =s(|h|)=p'(g)=s(| A*|])=vv*. Hence,
v=e!9 (@) for some 9¢[0, 2n), and by Proposition 6.12 we may conclude to

g=vi o= ple)g 17 pielg,.

It remains to calculate the real 9. To this sake let us consider

[hlte) =< ¢, @>=e" 2 p ()¢, I "1 < p (P, p>.

This has to be a real number. Since (w, 0 } is « - minimal, | hl(e) = Pps(w,0)*2%0 (if not
we had w =0 =0, by Remark 2.2, which were in contradiction to w,o €Sg(M)). Thus,
<{p'(p)g, ¢>+0 has to be fulfilled in consequence of p'(¢{ )¢, * O, especially. Hence we
gete!®=<p(p)p, > 1<pleld, o>t =< ¢, > I< ¢, ¢>17?, and therefore

g=lpe)h 171 <, ¢, > IKp, ¢ T pp)d, (11.1)

follows. This formula will now be used to calculate #(y). Assume that our w-loop 7
in So(M) has length n, i.e. v: w=w, — w, — ... ™ w,= w. By our definitions of the terms
path resp. loop (cf. Section 8) and our preliminary discussions we can be sure that all



Geometry of Pairs of Positive Linear Forms 483

states of the loop are normal pure states if only wis a normal pure state. Assume that
€ S(wy ) are given, with ¢, =¢,=p and p' (@) + 0, for all k. Let p=¢,, @,,... , p,=@(7)
be the uniquely determined sequence of vectors with g, e S{wy) and @, l )., for any k.
In using formula (11.1) and respecting p*(@; ) =p'(@), for any k we get ¢, = | p (@) || 7}
x C@p_is Ui > K @py, i 21 71 p'( @) . By this recursive formula we finally arrive at the
following result.

Lemmaill: let v: w=w,— w, — ... = w,=w be an w-loop, with w being a normal,
pure state over M. Suppose ¢ €S(w) has been fixed, and Y, eS(wy ), for k =1, 2,...,n-1,
are vectors with p'(@)yy + 0. Then for w (D )¢ Ug(w) we find ( with y=¢,=9)

n
weld,) = kr=ll( P Wy i > K p (@)W, G2l ple), (11.2)
and therefore
n .
e(r) = 1< plolyy, the> K p(@ ey, ticd1 ™Mo (11.3)

Note that by our preliminary discussions we can be assured that <p(@)¢,_,, ¢, >*0
whenever only the ¢, are chosen in accordance with p'(@ )¢, # 0, for any k. As discussed
above, the very reason for this is that two neighboui‘ing states in a path cannot be mu-
tually orthogonal because this would violate the condition of « - minimality ( cf. Lem-
ma 4.1. /(vi)). We also remark that the expression (with ¢,=¢,= @)

My, o, ...,w,,_‘)=kﬁ‘< PP W i > 1< p (@ ey, e D

which is the multiplier of ¢ in (11.3), is the straightforward (normed ) extension of the
invariant factor 4 introduced and used by V.Bargmann in [2] (cf. our discussion of the
case B(H) in Section 0). The term invariance in this context means that the value
does not depend on the special choice of the representatives ¢, of the pure normal
states wy, provided p'(¢, )¢, + 0 is fulfilled and any two neighbouring states in the
sequence w,, Wy, ..., W,_,,0, are non-orthogonal to each other. We also note that the
restriction p(¢, )Y, + 0 is only necessary in order to get an explicite. representation of
AMwg, @y, ..., 0, _, ) interms of scalar products of the given vectors. The relative phases
in the sense of Section 6 are defined also without this restriction, and according to
Theorem 8.3 the ordered product of these factors { which are partial isometries) yields
the same w(0.) as we calculated for a system of representatives of the same states
with this restriction fulfilled.

In the next step we want to identify the w-phase group Ug,(«w) and the holonomy
group Glw) of a pure normal state w. By Lemma 11.1 and Lemma 8.2 we see that both
Ug(w) and Gplw) are isomorhic to some subgroup of the group U(1)={zeC:|z|=t}

Theorem 11.2 : Let w be a normal, pure state over the vN-algebra M. Then Gglw) =
Glw) and Glw)~{id } in case that w is a tracial state, and G(w)~U(1) otherwise. The
torsion group 8{(w) is trivial. ' S :

Proof: We use the notations from above. Let w be a normal, pure state over the
vN-algebra M. Suppose ¢ eS(w) is fixed. Let K=p'(p)H. Since w is both pure and
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normal, Mp'(¢) has to be irreducible and weakly closed if considered as an algebra of
operators over K. Hence, Mp'(®) can be identified with B(K). Two cases have to be
considered : dimg K =1, or dimgy K > 1.

The first case dimg K =1 occurs if and only if Mp'(p)= Cp(p), and in this case
xyp = yxp follows for any two operators x, y e M. Moreover, if x¢ =A@ and yp =pp, with
A, u€C, then xyp =Aup, and w(x) =2, w(y) =y and wixy)=2u follow. Hence, w(xy) = w(yx)
=w(x)wly) for any X,y e M. Thus w is tracial in this case. But then, for the vector @y
€S(wy) we have p'(py ) =p'(p). Thus, also Mp'(p,)=Cp'(p,) follows, i.e. w, obeys the
same conditions as w. Since on C there exists only one state, w;{x)=w(x) has to hold
for any x e M. Hence, the w-loop ¥ can only be the trivial one, i.e. @, =id,, and there-
fore the groups Gg(w) resp. U:(w) have only one element. The same then also holds
for Glw) resp. Ufow).

In situation of the second case dimy K>1, let p* ¢ K be a normalized to one vector
which is orthogonal to @. Let us define ¢y = @, ¢,=a! 2p +(1-2)" 2!, g,=al 2eitp +
(l-af)‘/ch1 , with O< @ <1 and some fixed, small £, say O<¢ <n/2. The sequence of vec-
tors ¢,= @, ¢, ¢,, ¢3= @ corresponds to an w-loop y(a). We have < ¢, ¢, > =al’2, { ¢,
GO =t+ale i-1)and < ¢,, ¢ > =a'’2eic, Since all the vectors belong to K, accor-
ding to Lemma 11.1 and (11.1), we have to calculate H:=‘ Cperr I gy > 17 in
order to get the multiplier in (11.2) as a function of a. Call this function z(a). The re-
sult of the'calculation is

z{a)=ele+8@)  ith tan 8(:!)=(1 +{a~1-1)(cos ¢ )")'ltan €.

Hence, the range of 9(a)contains some open interval if a varies continuously, and
therefore the corresponding values z{«a) generate the full group U(1). Since z(a)p'(p)
belongs to Ug(w). the assertion Ug(w)zl.l(l) follows. Since U%(w) is a dense
subgroup of U(p(w). also.Uw(u)zU(l ). The remainder now follows by Lemma 8.2 and
the corresponding result for continuous loops (cf. Section 9). To see the last assertion,
note that minimality of p(¢) for ¢ eS(w) means p'()M'p(p)=Cp(p). According to
the discussion at the beginning of this section, the same also holds for the vectors ¢,
of the w-loop ¥ with v: w =w, = w,— ... = w,=w ( cf. the notations used in the dis-
cussions at the beginning of this section), i.e. p(@, )M ‘p'(@, )=Cp(p,) for any k. Ac-
cording to the definition of w;'in Section 10 we then get w' = w, = wy ', for any k. Hence,
the loop 7, is the trivial @™ loop.in any case. This implies 8(w)={s(w)} 8

Let us now come to another special case. We are going to identify the groups
Golw) and G(w) for a faithful state w over a finite- dimensional vN-algebra M. Such an
algebra has the form M = Z;:o Mz;, with a family of mutually orthogonal, central
projections z; which sum up to e and for which Mz, = M, is fulfilled. By M,,, the full
algebra of m x m-matrices with complex entries is meant. As usual, the group of all
unitary m x m-matrices with determinant equal to one is denoted by SU(m). With these
notations we have the following result. )

Theorem 11.3: G(w) = G (w) = SU(n, ) X SU(n,) X -+ X SU(n,,) .

Proof: Following our remarks on the central decomposition of M and according to
Corollary 8.10 it is sufficient to consider the cases M = M,,, n eN. In these cases we
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shall prove that
SU(n) = {ueM,,: u=a,-ala.a/l™!, with invertible, positive a; ¢ M, reN}. (11.4)

Note that the group on the right-hand side of (11.4) in the terminology of Theorem 8.9
is SU(M,,, 1,)), where 1, is the unique tracial state of M,,. We will proceed inductively.
Assume n=2. Since there exist positive, invertible a, b ¢ M, such that ab + ba, we can be
sure that u =ab|abl™' # * e. Since u e SU(M,, 1,), we see that SU( M,. t,) is anon-trivial
subgroup of U(2) = (M,). By Theorem 8.9 we know that SU(M,, r,) AU(2). Note that,
by the definition of SU(M,,t,), detu =1 for any ue SU(M,, r,). Hence, we even know
that SU(M,, 1,)ISU(2). Therefore, we may suppose u=expisl, with /=[* [2=¢, trl
=0,and (-n)< e <, £*0. Since SU(M,.t,) is a normal subgroup of SU(2), each of the
elements u(9) =u*vg uvgy has also to belong to SU(M,, r, ), with 9¢R and vy= exp i 9I'
for some I'with I'=I', I'2 = ¢, tr I'=0. Now, for a given 9 there has to exist another I"”
with I'"="I"%, 1" 2-=¢, tr I'""=0 such that u(9)=exp i'G(4)I". Since u(9)=e cos-0(J) +
il”sin 8(9) holds, we obtain the expression 6(3)=arccos(tr u(9)/2) for 6(3). The
explicite calculation gives

6(8) = arccos(1-(1-271tr(11)?) sin%e sin?9). - (11.5)
Since SU(M,,z,) AU(2) we may conclude to
SUM,, t,)={u eU(2) : spec(u) =(eiOD ¢ i0W® ) y g R},

where spec(u) means the spectrum of u. Note that to given [it is always possible to
choose I' with the properties mentioned such that I/I' +te. Then tr(II')2%2, and
according to (11.5) the range of O contains a whole subinterval of reals. Argueing by
SU(M,, 7,)4U(2) once more again we infer that for any two reals 9. 9 there exist ue
SU(M,, t,) such that spec(u)={e {{O(D+ O3} ¢-ilO(9+O(3)} With other words,
the spectrum forms a group, too. Since 8 ranges over a set which contains a non-=trivial
subinterval, we have to conclude to

SUM,, 1) = {ucU(2): spec (u)=tei® ei®), v OcR).

Hence, SU(M,, r,) = SU(2) is seen. The general case of n>2 dimensions will be reduced

to the 2 x 2-case as follows. Assume that 6,, ..., 8,,_, ¢ R. Let us define §; = ij=0 6;,
fork=1,2,...,n-1. By the 2 x 2-case we can be sure that positive, invertible 2 x 2- ma-
trices a,(j), ..., a,,, (j) exist such that a,(j)-a,, (j)=diagle i%j, e"1% 1. Let us define’

the 'n x n ~ matrix l‘k(j) as the bloc matrix given by
Alj) = diagll, ... 1);_ Da(j) D diaglt, ..., 11 ,_;_,,

where diag[1,...,1), is ignored for s=0. Then A () e M,, are invertible elements and for
any j each of the products

A A () = diagll, ... 1];_ @diagle 1%, e 1@ diagl, ... 11,

belongs to SU(M,,, r,,). From this we infer

33 Analysis. Bd. 11, Heft 4 (1992)
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A,(l)"-Am‘(i ) .- A‘(n—l)--'Amn_‘(n—l)
=diag[e i81’ e—ié‘,*isz,m, e—isn_z*isn_"e—isn_ll
=diag [e‘et, e '92,.,..e'9n-1, e 1Z6)7] ¢ SU(M,, ).

This is true for any choice of 8,, ..., 6,,_, ¢eR. Finally, taking SU(M,,, 1,)<d U(n) into
account we see that SU(M,,r,)=SU(n). By our remarks from the beginning of the
proof Golw) 2 SU{(n,) X SU(n,) X -+ X SU(na,,) is now evident. The fact G(w)=Gplw)
follows from the discussion below Lemma 9.3. As we have shown there Golw) is a uni-
formly dense subgroup of G(w). We may content with treating the case of M =M, and
the state r,,. In line with this, assume ® ¢ G(w) and suppose that the sequence {®}<
Golw) tends to @. Then for any peS(r,,) we have @, (@) =u; @, where u;e SU(n) and
®p=t,, (uy) (cf. Theorem 8.8 and the definition of the map ¢ ). Since SU(n)C M, is
compact we find a converging subsequence of {u;}. Suppose we have ukl—* u. Then u
is unitary and ®(@)=up follows. Since u ¢eSU(n)we find some homeomorphism &’
€Gol1,) such that

Q" =t (u), and Ol@) =up =lim; Uy, ® =lim; (Dkl(q:):d)(«p)

for any @eS(z7,). Hence, ® = @’ Golw). Since ® has been chosen arbitrarily from Glw),
Glw) =Golw) is seen B

We want to continue in analyzing the cases of finite type-1-factors M= M,, neN,
but now we are going to consider the case of a positive linear form w =r,P, with a
projection p of relative dimension dim p = m < n. This case corresponds to the supposi-
tions of Proposition 8.11 . We will work within M,, and we also shall use the notations
and conventions from above. We will identify the group U.(w)s(w)=U,(w)p up to iso-
morphy. By (8.7) we know that U,(w)p is isomorphic to some subgroup of Gpl(w).
Hence we can hope to get some information on the group Go(w) by describing the type
of U,(w)p. We may also suppose that p=diag(1,t, ...,1],,@Bdiagl0,...,0],,_,,, for sim-
plicity. Note first that, by Theorem 11.3, for any given 8,, ..., 8,,_, ¢ R we find positive
invertible m x m - matrices a,, ..., a,. such that

a,a, = diagle'©®1,e192,.. . e1Om-1, e 1 Z6j] .
1 r g m

We define, for any subscript k, a’; = a;, @diagl},...,1),_,,. Let B ¢R be arbitrarily given.
By (11.4) we know that positive invertible 2x2 - matrices b,,..., by exist such that
b,-- by = diagle i® e-i9] Hence, we have

b, by diag (1,01 = diag (1,01 b, b diag [1,01 = diag[ei®,0] .
We define b’ =diagll,...,11,,,_ &b, ddiagl1,...,11,_,,,. We then have
a;a. b~ b, p=diag[e! ©1,eiO2,.. el Om-1,e 12 9}l €] @diaglo,...,01,_,,,,

from which a, - a; b, - bg p by b, a, - a; = p follows. This, on the one hand, proves
that a; ---a,. b, - b; e U, (w), with w =, . On the other hand it shows that
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diag[e! ©1, eiC2,..,e1Om-1, 71261 €] @diagl0,...,01,,_, ¢ Ulw)p

for any choice of 6,, ... ,8,, ,¢R and 8 =6,,cR. From this, and since U,(w)pd
WpM, ,p) Bdiaglo,...,0] ,__. has to hold (this follows because ©l,Mp is tracial), we
obtain the relation U (w)p =U(pM,, p)Ddiagl0,...,0]1,_ . We may summarize.

Proposition 11.4 : Assume M is a factor of type 1. For a normal state w such that
dim s(w)=m<® (and m < nif M= M, for some-n¢ N )we have

U (w)s(w)=2Us(wIMs(w)=U(m). (11.6)

For n <® and w=r,P with dim p =m the proof is now complete by our preceding
considerations and the case m =1 has been considered in detail at the beginning of this
section. The validity for a state w with dim s(w)=m follows by Theorem 8.7 and the
fact ‘that {w, t,,S(‘-"))-is «-minimal (cf. Lemma 6.1). The latter remark also.applies in
the case n = . Note that, for a projection p with dim p =m < © and any projection g
with dim g =n>m, for the state w(-)=tr p(-) we have that w IgMq corresponds to 7,3
with m-dimensional projection g"of M,,. Hence, and according to the above proven,

U(m) = U, (1,8 ) q" £ U w)p S UpMp) =U(m),

where A £ Bindicates that B contains a subgroup isomorphic to A. From this Ulwlp
> U(pMp)>U(m) is obtained also in case that n = «,

Note that due to Theorem 11.3 in the cases M =~ M, n €N, the suppositions under
which Proposition 8.12 holds are given. Hence, following Proposition 8.12, Theorem 11.3
and Proposition 11.4 we may take notice of the following inclusions in case of a state
withdim s(w)=m sn:

U(m) £ Golw) £ SU(n) . , (11.7)

As we know from a special case of Theorem 11.3, in the situation m=n we have Golw) =
SU(n). On the other hand, from Theorem 11.2 in case of m=1< nit is known that G w)
= Wl{1). We are going to show that in the case dim s(w)=m< n the left-hand side in-
clusion in (11.7) is not a proper one, actually, i.e. U(m) =~ Gy(w) also occurs if m >1. To
prove this we remind Lemma 8.2 from which there follows that Go{w) is anti-isomor-
phic to some subgroup of uitM'y), where M’y is the vN-algebra My =p(YIM'p'(¢)
and ¢e S(w).Now, let us identify M, with M = M_® e over the Hilbert space H=C"® C".
Then M'=e @M,,. As usual we may content with treating the case of a w=r,” over
M, ., with dim p=m. Let {g,,..., 9., )} be a complete orthonormal system in p € ™. Then
the vector ¢ =m~ 12 {p,®p, +... + Pm® ¢.,,} belongs to S(w) in the representation of
M, ( x+*2 x®e s the representation of M, in which we work ). Obviously p{¢)=e®p.
i.e. the relative dimension of P¢) with respect to M’ is m, too. Therefore, Um:y,) =~
U(m), since M', > M, in this case. On the other hand, as remarked above Gy(w) is anti-
isomorphic to some subgroup of U(M',). But then there is also a group isomorhism
from Gplw) into U(M',‘,) (remind that the "anti” in Lemma 8.2 comes only due to the
special map considered there), and we have Golw) £ U(m). By (11.7) now U(m) = Gglw)
follows. It should be clear that this result persists to hold also in the case of an arbi-
trary type-I-factor (cf. the argumentation in the reasoning of Theorem 11.4). By our
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discussions of Section 9 we know that U4, {w)C Uylw) is a subgroup of Uylw). Final-
ly, because of Uylw)CU(M’y) and UM y)x= Ulm)= Golw) =Uy(w) the relation Glw)
2 Golw) = U(m) follows.

Theorem 11.5 : Assume that M is a factor of type I. For a normal state w with dim

slw)=m < © we have

=~ W(m) incaseof m<dime
Glw) = Golw)
© 0@ {$SU(m) in case of m =dim e
We remark that, by Theorem 11.5 and by means of the considerations which led us
to Theorem 11.3, the complete classification of the holonomy group of a state w on a
finite dimensional vN-algebra can be described.In the notations of Theorem 11.3 the

result is
Glw) = Golw) = (S)U(k,) X (SHUlk,) X - X (S)Ulk,,), (11.8)
SU(k;) if di (w¥)=k
with the convention(S)U(kj)={ u(kj)’ Ilf d::i(z I)-kjj<nll with dim s(w)= Z;:’k}.

ACKNOWLEDGEMENTS: For general discussions and hints as to the relevant lite-
rature [ am very indebted especially to Dr. Bernd Crell, and also to Prof. A. Uhimann,
both from Physics Department of Leipzig University. Special discussions with Dipl.-
Phys. Matthias Hilbner, Physics Department, and with Dipl. - Math. Volker Heinemann
and Dr. Jochen Dittmann from the Mathematical Department of Leipzig University are
kindly acknowledged. .

REFERENCES

[1) ALBERTI, P.M.: A study on the geometry of pairs of positive linear forms, algebraic
transition probability and geometrical phase over non-commutative Operator Al-
gebras (1). Z. Anal. Anw. 11 (1992), 293 - 334.

23 BARGMANN,V.: Note on Wigner's theorem on symmetry operations. J. Math. Phys.
5§ (1964 ), 862 - 868. '

31 DITTMANN,]J. and G. RUDOLPH: A class of connections governing parallel trans-
port along density matrices. J. Math. Phys. 1992 (to appear).

t43 DITTMANN,]., and G. RUDOLPH: On a connection governing parallel transporc
along 2x2 - density matrices. J. Geom. & Phys. 1992 (to appear).

ts1 UHLMANN, A.: A gauge field governing parallel transport along mlxed states. Lett.
Math. Phys. 21 (1991),229 - 236.

t63 UHLMANN, A.: Parallel transport and holonomy along density operators. In: Diffe-
rential- Geometric Methods in Theoretical Physics (Eds.: H.D. Doebner and J.D.
Henning). Singapore: World Sci. Publ. 1987, pp. 246 - 254.

Received 20.01.1992

Doz. Dr. Peter M. Alberti

Institut fur Mathematik der Universitidt Leipzig
Augustusplatz 10

D (Ost) - 7010 Leipzig



