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0. Introduction 
The starting point for the study of J-contractive matrix-valued functions was the famous 
paper [34] of V.P. Potapov, where the Riesz-Nevanlinna-Smirnov factorization theory 
of bounded holomorphic functions was generalized to meromorphic functions which are 
contractive with respect to some indefinite inner product generated by some signature ma-
trix J. For several reasons, a particular subclass of f-contractive matrix-valued functions, 
namely the so-called f-inner functions, turned out to be very important. J-inner, func-
tions are immediately connected with lossless inverse scattering and Darlington synthesis 
(see, e.g., H. Dym [22] and the first author's papers [1-4]). Moreover, active research on 
matrix versions of classical interpolation problems has been indicated that under some 
non-degeneracy condition the set of solutions of such a problem can be described by a lin-
ear fractional transformation generated by some f-inner function which is only built from 
the original data (see, e.g., V.K. Dubovoj [17], H. Dym [22], I.V. Kovalishina [30] and the 
authors' papers [6-10, 13, 24, 25]). Naturally, this leads to so-called inverse problems for 
f-inner functions of the following type: Given a f-inner function W, one tries to find an 
appropriate matrix interpolation problem for which W is a resolvent matrix, i.e. for which 
the linear fractional transformation generated by W parametrizes the set of solutions of 
this matrix interpolation problem. In the context of generalized Schur-Nevanlinna-Pick 
interpolation, this topic was studied by the first author (see [6-101). There are situations
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in which only parts (blocks) of the resolvent matrix are known. Thus, there arises the 
problem of recovering the full resolvent matrix. This leads to various types of completion 
problems for .1-inner functions. For the case of the special signature matrix jpq, where 
pq := diag (J,, Jq) , such problems were first studied in the paper [5], which was moti-

vated by a system-theoretical background and various questions of Darlington synthesis. 
Reflecting developments in matrix interpolation, the authors studied in [11] completion 
problems for various subclasses of j pq -inner functions as jpq -inner functions of Smirnov 
type, of inverse Smirnov type and A-singular Jpq-inner functions. Recent investigations 
indicated the important role of A-singular j -inner functions in various contexts as ma-
trix interpolation, factorization and completion problems (see V.E. Katsnelson [28, 29] 
and the authors' papers [6-10, 201). 

Completion problems for J-inner matrix-valued functions turn out to be intimately 
connected to various aspects of meromorphic pseudocontinuability. Merornorphic func-
tions which admit a pseudocontinuation have been occurred in several areas: approxi-
mation of meromorphic functions by rational functions (see G.Ts. Tumarkin [361), de-
scription of cyclic vectors of the backward shift operator in the Hardy space H 2 (ID) (see 
R.G. Douglas, Il.S. Shapiro and A.L. Shields [16]), factorization of non-negative Hermi-
tian matrix-valued functions on the unit circle (see M. Rosenbaum and J. Rovnyak [35]) 
and realization of linear systems (see P.A. Fuhrmann [261). In this paper, we will show 
that, similar as in [5] and [11], necessary and sufficient conditions for solvability of the 
completion problems under consideration can be expressed in terms of some properties of 
the pseudocontinuations of the given block functions. We will continue the investigations 
of [11]. In particular, we will treat the problem of determining all j pq -inner functions with 
prescribed last block column (respectively, last block row), whereas in [11] we have only 
fixed the p x q block in the right upper corner (respectively, the q x p block in the left 
lower corner). 

This paper is organized as follows. In Section 1, we will summarize basic facts on 
merornorphic matrix-valued functions in the unit disc. In Section 2, we will give a short 
survey on J-inner functions. Especially, we will turn our attention to the special case 
J = pq Section 3 is the central one. It is aimed at studying the problem of describing 
all jpg -inner functions which have a prescribed last block column (respectively, last block 
row). In Section 4, we will discuss restricted versions of the problems treated in Section 3. 
Hereby, we will concentrate on the subclass of all A-singular j pq -inner functions. Finally, 
in Section 5, we will characterize the situation that a given matrix polynomial coincides 
with the last block column of some distinguished resolvent matrix associated with a non-
degenerate matricial Schur problem. In particular, it will turn out that there is at most 
one resolvent matrix with the desired property. 

1. Some basic facts on various classes of meromorphic 
matrix-valued functions in the unit disc 

In this first section, we will summarize some facts on several classes of meromorphic func-
tions. For a detailed treatment, we refer the reader to the monographs of R. Nevanlinna 
[31] and P.L. Duren [21]. We will start with some notations. 

Throughout this paper, let p and q be positive integers. If rn and ri are non-negative 
integers with rn	ri, then IN, stands for the set of all integers /c with m	k	n 
whereas No designates the set of all non-negative integers. We will use C, ID, T, C and IE
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to denote the set of complex numbers, the open unit disc, the unit circle, the extended 
complex plane and the exterior of the closed unit disc, respectively: 

ID := {z € C :1 z I < 1}, T := {z € C :1 z	1}, C := CU {}, LE : C\(IDU 1'). 

Let (x, %,,a) be a measure space, and let S be the complex linear space of all 21—

measurable mappings t : X -*	where Bpxq is the ci-algebra of all Borelian subsets 

of CPxq . Then

14) E 93 : p({wEX : 4() 54 O}) = O} 

is a linear subspace of IS. In the following, we will deal with the quotient space U := B/3. 
If 0 € s, then (I) denotes that element of U which is generated by & Obviously, 
(4 = (1') if and only if 4(w) = 'Ii (w) for p-almost all w € I. We will mainly be 
concerned with the measure space (T, B, A) , where S is the Borelian a-algebra over 
T, and where A is the normalized Lebesgue-Borel measure on B. We will shortly write 
() for ((I)/2,r•  

Assume that G is a simply connected domain of C. Then let AIM(G) be the Nevan-
linna class of all functions which are meromorphic in C and which can be represented as 
quotient of two bounded holomorphic functions in G. Observe that A(M(G) turns out 
to be a division algebra over C. If g E AIM(ID) (respectively, g € A(M(IE)), then a 
well-known theorem due to Fatou implies that there exist a l3orelian subset So of the unit 
circle T with (B° ) = 0 and a Borel measurable function g: 'F - C such that 

lim g(rz) = g(z) (resp. lim g(rz) = 
r 1-O r-.14-O — 	- ) 

for all z € 'r\ 0 . In the following, we will continue to use the symbol g to denote the 
boundary function of a function g which belongs to AIM (ID) or .iVM(!E). The subalgebra 
of all g € VM(G) which are holomorphic in C will be denoted by AI(G). The class V(ID) 
can be described as the set of all functions g which are holomorphic in ID and which fulfil 

sup 1	 log	g(rz) A(dz) < + 
rE[0,1) 2r  

where logx := max (log x,0) for each x E [0,). A function g € M(ID) is said to be 
outer in M(D) if there exist a Borel measurable function k : 'F - [0, ) and a number 
a € T such that the following two conditions are satisfied: 

(i) f log l d,\ < +. 
T 

(ii) g(w)=a exp TL f E; log k(z) X ( dz )] , w€ D. 

If g € .,V(ID) is outer, then I g I = k a.e. on T. For all g € A1(11)), the inequality 

log	g(z) I A (dz)	

/ 

log	g(rz) I A(dz)	(I) 
2r	 1-0 27r 

holds true. By the Smirnov class A1+ ( ID) we will mean the set of all g € .,V(ID) for which 
equality holds true in (1). The class N+ (ID) proves to be a subalgebra of AI(ID). If g is 
outer in .A1(I1)), then g necessarily belongs to H+(lD).
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Ifs E (0,00), then by the Hardy class H'(ID) we will mean the set of all functions 
g: ID —* C which are holornorphic in ID and which satisfy 

1

	

 sup	J g(rz)1 3 (dz) <+ 00 , — 
,ElO,I) 2-

T 

whereas H°°(ID) designates the set of all holomorphic arid bounded functions g : ID - C. 
Note that the inclusions 

H'(ID) c JP(ID) c M+ (ID) c iV(ll)) c MM (ID) 

hold true where 0 < I <s < 00. 
Let g E .AIM(ID). Then one says that g admits a pseudocontinuation into IE if there 

exists a function g# E AIM (IE) such that the radial boundary values £ and g# of g and g#, 

respectively, coincide Lebesgue-almost everywhere on the unit circle T. It is obvious that a 
function g e .iVM(ID) admits at most one pseudocontinuation. Note that if g E AIM(ID) 
admits a pseudocontinuation g# and if, additionally, g is analytically continuable through 
some open arc of T, then the analytic continuation coincides with g#. Later we will use 
some properties of pseudocontinuation which can be found in N.K. Nikolskii [32, Lecture 
II] and R.G. Douglas, H.S. Shapiro and A.L. Shields [16]. In the following, the notation 
fl(ID) stands for the set of all functions g E .,VM(ll)) which admit a pseudocontinuationi. 
If g € fl(ID), then the symbol g# will be used to denote the pseudocontinuation of g. 

If X is one of the classes .,VM(G), M(G), Aç(ID), fl(ID) or H'(lD), where s E (0,00], 
then p x q — I designates the class of all p x q matrix-valued functions each entry of which 
belongs to I. 

If g = (gjic) =i , • belongs to p x q — fI(ID), then we will also say that g admits 

a pseudocontinuation. In this case, we will write g# for (g),=i ,.p and call g# the Jk 
pseudocontinuation of g. 

For convenience of the reader, we will recall some facts on outer functions which belong 
to the matricial Smirnov class (see (7, 10]). A function 4) E q x q — .iV(ID) is called outer 
(in q x q — A(ID)) if det ci) is outer in ..'V(ID). A function 4) E q x q — .Af+ (ID) is outer 
in q x q — Af(ID) if and only if there exist outer functions 01 € q x q — H°°(ID) and 

	

2 E H°°(ID) such that 4) =	If 4) is an outer function in q x q — .iV+ (ID) , then

det4)(z) 0 for all z € ID and 4) is also an outer function in qxq—A((lD). Conversely, 
if 4) E  x q —)4(ID) satisfies det4)(z) 0 for all z E ID and if E  x q —H(lD), 
then ci) and ) are necessarily outer functions in q x q — .iV+ (lD). If (I) € q x q — )4(ID) 
and '.I' E q x q — .Af+(ID) are outer, then the product 4)'.!' is also an outer function in 
q x q - Af+ (ID). An outer function (D E q x q — .A1(ID) is called normalized if 4)(0) is non-
negative Hermitian. A q x q matrix-valued function 0 which belongs to the Hardy class 
q x q — H 2 (ID) is outer if and only if det 0 is an outer function in H 2"(ID) . If R € (1,00), 
if E is a q x q matrix-valued function holomorphic in K(0, R) := {z E C :1 z 1< R} and if 
det E(z) 54 0 for each z E K(0, R), then the restriction 0 of E onto ID is an outer function 
in q x q — H°°(ll)). Let C	be the set of all q x q non-negative Hermitian matrices. If 
A T	(Xl is Lebesgue integrable on T and if A satisfies 

_J log detAdA > — 00,
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then there exist unique normalized outer functions 4' and 'I' which belong to q x q - H 2 (ID) 
such that (A) = (4'I) and (A) = (ti"'!') (see, e.g., N. Wiener and P.R. Masani [371). 

A function f : ID - C" is said to be a p x q Schur function if f is both holomorphic 
and contractive in ID. The class of all p x q Schur functions will be denoted by Spxq(I)). 
A function I E Sqxq(ID) is called inner if f has unitary boundary values a.e. on T. 

Let f € p x q —A(M(ID). An ordered pair [B 1 , B2 1 consisting of a p x p inner function 
B1 and a q x q inner function B2 is said to be a denominator of f if B1 f B2 belongs to 
p x q - H+(ID). A p x p inner function B1 is called a left denominator of f if [B 1 , Iq j is a 
denominator of f, whereas a q x q inner function B2 is said to be a right denominator of 
f if [i,, B2 ] is a denominator of f. 

If çø € AIM(ID) , then y = g/h with some functions g and h which belong to HOO(D). 
If h = bh0 is an inner-outer factorization of h with some inner function b and some 
outer function h0 , then bço belongs to AI+(ID). Hence, one can easily see that, for each 
f € p x q - A(M(ID), there is a complex-valued inner function fi such that 131,, and 61, 
are a left denominator and a right denominator of J, respectively. In particular, each 
f € p x q - AIM(ID) has left and right denominators. 

Let I be a non-empty subset of the extended complex plane C, and let f : I - 
Then we will use the symbol f for the function f : -	which is given by 2) := {z €

C:1/€i} and f(z):=[f(1/)]'. 

Remark 1: (a) Let f € p x q - A/'M(ID). Then f E q x p - HM(IE) and f' is a 
boundary function of f. ( b) Let f E p x q - .AIM(IE). Then f € q x p -.AM(HD) arid 
f' is a boundary function of f. 

The next lemma which is taken from [11] will play a key role in the following. 

Lemma 1: Suppose that  € pxq—A(M(ID) admits a pseudocontinuation f. Then: 

(a) The functions ii := I + ff# and L2 := I +T# f belong to p x p - A(M(ID) and 
q x q - JtfM(ID), respectively, and have non-identically vanishing determinants. 

(b) There are unique normalized outer functions Wi, ti,1 € p x p - Ar+(ID) and P2, '2 € 
qxq—A((ID) such that 

( I +ff') = ('), ( 1 +ff') = ( 1P 1 1P ')	 (2) 

and
(I+f'f) =	 ( 1+11) = ( W 2 '!' 2 • )	 ( 3) 

(c) Each of the functions V1, 'P2, 'P i and tP 2 admits a pseudocontinuation, namely 

?:= 'Ai,	'D #1	 r:='L, 

2. On J -inner functions 
Let m be a positive integer. Suppose that J is an in x m signature matrix, i.e. an rn x in 
complex matrix with J = 1' and J2 = Im . If A € Ctmxm satisfies AJA J (respectively 
AJA = J), then A is called J-contractive (respectively, J-unitary). - 

If G is a simply connected domain of the extended complex plane C, then we will use 
j(G) for the Potapov class, i.e. the set of all in x in matrix-valued functions W which 

satisfy the following three conditions:
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(i) W is meromorphic in G. 

(ii) det W does not identically vanish in G. 

(iii) W(z) is i-contractive for all z which belong to the set IH(W) of all points of ana-
lyticity of W. 

Obviously, the class pj(G) is multiplicative, i.e. if W1 and W2 belong to q3.(G), then 
the product W1 W2 belongs to pj (lD) as well. The Potapov class pj(lD) is a subclass 
of m x rn -AM(ID) (see, e.g., H. Dym [22, Corollary 2)). The boundary function W 
of W E j (ID) is J-contractive, i.e. WJW < J holds true a.e. on T. A function 
W E j(ID) is called i-inner if W is i-unitary, i.e. if WJW = J is fulfilled a.e. on T. 

Remark 2: Every i-inner function W admits a pseudocontinuation W# which is 
given by

W* (Z) := i([W ( 1 /7 )]T ' J 

for all z E lE with 1/ E 11-1(W) and det W(11) 54 0. 

If W1 and W2 are i-inner, then the product W1 . W2 is f-inner as well. 
Later we will be concerned with some distinguished subclass of i-inner functions, 

namely the set of so-called i-elementary factors. An m x m matrix-valued function B, 
which is meromorphic in C, is called J- elementaryfactor if the following three conditions 
are satisfied: 

(i) B has exactly one pole z0 E C. 

(ii) For each z e ID\{zo}, the matrix B(z) is J-contractive. 

(iii) For each z E 'F\{zo}, the matrix B(z) is i-unitary. 

Obviously, conditions (ii) and (iii) mean that the restriction Rstr.u\{) B of B onto 
11)\{zo} is a i-inner function. Furthermore, (i) implies that every i-elementary factor 
is a non-constant rational matrix-valued function. The following lemma, which is taken 
from [19, Proposition 4.2.11, summarizes some properties of i-elementary factors. 

Lemma 2: Let B be a i-elementary factor with pole in z0 E C. Then: 

(a) For each z € C\{zo, 1/o}, 

B(z)iB(1/) = i, det B(z) 0 0 and B 1 (z) = iB(1/) J 

(b) B' is a (—J)-elementary factor with pole in 1/o. 

A i-inner function W is said to be singular if both W and W are holomorphic in 
ID. The product of two singular i-inner functions is also a singular i-inner function. 

Recent investigations of the first author (see [6-10]) indicated that there is an important 
subclass of singular i-inner functions which satisfy some growth conditions. This led him 
to the following object. A i-inner function W is said to be A-singular if both W and W' 
belong to the Smirnov class mxm—H+(ID). Obviously, every A-singular i-inner function 
is singular. Note that a f-inner function W is A-singular if and only if W is an outer
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function in in x in —H+ (ID). If W1 and W2 are A-singular f-inner functions, then W, W2 
is also A-singular. Moreover, we observe that in the cases J = I,,, and 1 = 'm every 
A-singular f-inner function is necessarily some f-unitary constant function. However, in 
the indefinite case f j4 ±1,,, the class of A-singular i-inner functions is very rich (see V.E. 
Katsnelson [28, 29]). Observe that the first author used in [6 - 10] the notion "singular" 
instead of "A-singular". By a suggestion of V.E. Katsnelson it is now common to use the 
notion "A-singular". 

Now we will specify the signature matrix. Namely, we will consider with the (p+q) x 
(p + q) signature matrix

pq := di-g (I,,	lg) .	 ( 4) 

In the following, we will be concerned with functions W which belong to the Potapov 
class q3jpg (I13). In this case, we will work with the block partition 

(w11 W12 

	

21	22 ) 

where W11 is a p x p matrix-valued function. The following proposition (see J.P. Ginz-
burg [27], P. Dewilde and H. Dym [15] and the first author's papers [2] and 14 ]) gives a 
summary of some basic facts of functions belonging to ¶433pq(ID)• 

Proposition 1: Let W E p(ID). Then: 

(a) For each z E 111(W), the matrix W22 (z) is non-singular. 

(b) The function

S:= ( Wi1 - W12 W 1 W21 W12W' )
	

(6) —W2- 21 2 1 W	W-1 22 

belongs to S(p+q)x(p+q)(ID). In particular, 

Si I : = W1 1 - l412 14/.j 2 ' W21 , S12 : = W1  W22' (7) 

and
S21	—W'W21 ,	S22:= W	 (8) 

are matrix-valued Schur functions, whereby 812 and S21 are strictly contractive. 
(A p x q Schur function S is called strictly contractive if I - S(z)S(z) > 0 for each 
z E ID.) 

(c) The functions det S11 and det S22 do not identically vanish. 

(d) IH(W)={zID:detS22(z)0}. 

(e) If W is jpq -inner, then S is inner. 

(f) There are unique normalized outer functions 40 1 E S(ID) and 'l I E S(ID) and 
unique inner functions b 1 E S(ID) and c 1 E S(ID) such that 

S11 = 4D I b i	and S11 = c 1 '.I' 1 .	 (9)
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(g) There are unique normalized outer functions 12 E Sqxq(ID) and I2 E Sqxq(ID) and 
unique inner functions b2 E S(ID) and c2 E Sqxq(ID) such that 

S22 = 02b2 and S22 = c2 W 2 .	 (10) 

(ii) if W is jpq inner, then the pseudocontinuation W# of W is given by 

W# ( 
- \ S12Sfl 522 - 512 S 821 

Note that the matrix-valued Schur function S defined by (6) is often called the Potapov-
Gznzburg transform of the pgflflCF function W. 

The following theorem, which is taken from [11], characterizes two important subsets 
of the Potapov class ¶Pjpq(ID). 

Theorem 1: Let W E q3(lD), and let (5) be the block partition of W where W11 is 
a p x p block. Then: 

(a) The following statements are equivalent: 

( i) WE (p+q) x (p+q)—J4(ID). 

(ii) W22Eqxq—N(ID). 

( iii) W22 is an outer function in q x q - X+ (11)). 

(iv) W' is an outer function (in S,,,, (11))). 

(b) The following statements are equivalent: 

(v) W 1 E(p+q)x(p+q)—Jv'(lD). 

( vi) (W11 - W12 W2 'W21 ) E p x p —A(+(ID). 

( vii) ( W11 - W12 W W21 ) is an outer function in p x p - .,V+(ID). 

( viii) W11 - W12 WW21 is an outer function (in S(ID)). 

A JP.-inner function W is said to be of Smirnov type (respectively, of inverse Smirnov 
type) if W (respectively, W-') belongs to (p + q) x (p + q) - .i'4(ID). Thus, Theorem 1 
provides necessary and sufficient conditions for the fact that a given 3 pq-inner function W 
is of Smirnov type (respectively, of inverse Smirnov type). It should be mentioned that 
special j,,-inner functions of Smirnov type have been investigated in P. Dewilde and H. 
Dym [14, 15]. However, these authors made not use of the fact that their objects are 
members of the Srnirnov class. 

Now we are able to characterize A-singular j pq -inner functions. 

Theorem 2: Let W be a jpq -inner function, and let (5) be the block partition of W 
where W11 is a p x p block. Then the following statements are equivalent: 

(i) W is an A-singular jpq -inner function. 

(ii) W is an outer function in (p + q) x (p + q) - AI+(ID).
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(iii) W11 - W, 2 W'W21 and W 1 are outer matrix-valued Schur functions. 

Proof: (i)	(ii) is clear from the above mentioned properties of outer matrix-valued 
function on the Smirnov class. (i)	(iii) follows by application of Theorem 2U 

Remark 3: Let A be ajpq -unitary matrix, and let A = (	) be the block partition

of A with p x p block A 11 . Then: 

(a) A ll and A22 are non-singular. 

(b) A ll - A l2 A'A21 and A22 - A 21 AA, 2 are non-singular. 

(c) (A,)- 1 = A ll - AI2A'A21, (A;2) 	A22 - A21A'Al2. 

(d) A21 = A 22 Al2 (A;,)-' = A;2)'A;2A,,. 

(e) A l2 = (A,)A;,A22 = A,,A;,(A;2)-' 

(f) A;2 A22 - A;2 A l2 = I. 

(g) A22 A 2 - A 21 A, = I. 

Proposition 2: Let W be a jpg -inner function with block partition (5) where W,, is a 
p x p block. Denote W# the pseudocontinuation of W. Let 01, %P l, 2, t 2 and b,, c 1 , b2 , c2 
be the normalized outer Schur functions and inner functions, respectively, given in part 
U) and (g) of Propoiition 1. Then: 

(a) The functions 'P1 := tç', 01 : j1 and W2 := 02 := 'P' are normalized 
outer functions which belong to p x p - )V+ (ID) and q x q - H+ (ID), respectively, 
and which satisfy the factorizations 

	

(PI) = (I + W12 l'i"12 ) ,	(01 11'1 • ) = ( I + '''2l l '"21)	(11) 

('P2 'P2) = ( Iq + W12 W12 ) , (02 02) = (I + W2 , W21 ) .	( 12) 

(b) The functions W1,01, 1102 and 02 admit pseudocontznuations, which satisfy 

W,, =	b , W,, = c1 

W22 = 'Pr b2 , W22 = c2 

(c) The following identities hold true: 

	

= W;2 ' W21 	c,'W24 = W,2W 

W12'P21b2 = W, 2 W ,: c20'W21 = W'W21 

In particular, b, and b2 are right denominators of W,p' and W,2'P', respectively, 

whereas c1 and c2 are left denominators of,1)1W and 11' W21, respectively.21
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(d) The jpq -inner function W admits the representations 

W = diag (in , b1) 12	diag (b 1 , Iq) 
\ 2 ) - 

(

bi'l1"b2 ) diag (1,, 4') W21 h2 
W = diag (c, I) 

(e) If W is A-singular, then

W12 ç	E Spxq(ID) , i'W21 E Sqxp(ID) 

W, 2 ç 1 E Sqxp(ID) ,	.)'W2 E S,., (11))

W, 2 Epxq—J 1 (1D)	W# ,2Eqxp—A'(ID) 

W21Eqxp—/(I1)),WEpxq—Aç(11)). 

A proof of Proposition 2 can be found in [11). 

3. Some completion problems for Jp -inner functions 
with prescribed block column or Ilock row 

Now we are going to study some specified completion problems for j " -inner functions. 
First we note that if W is a j,,-inner function with block partition (5) where W,, is a 
p x p block, then

W,,Epxp—A(M(lD),	1412Epxq—J'.JM(ID) 

and
W2iEqxp—AIM(ID),	W22Eqxq—A(M(ID). 

The central completion problems we will discuss in our paper can be formulated as follows. 

(CPC) Let f E p x q - JVM(ID), and let ii E q x q - AIM(lD). Describe the set J(f, h) 
of all jpq -inner functions W such that W12 = I and W22 = h. In particular, characterize 
the case that J(f, h) is non-empty. 

(CPR) Let g E  x p—JtIM(ID), and let h E q x q—J\IM(ID). Describe the set J, (g, h) 
of all jpq -inner functions W such that W21 = g and W22 = h. In particular, characterize 
the case that J(g, h) is non-empty. 

We are immediately able to give some necessary conditions for the existence of solutions 
of Problems (CPC) and (CPR).
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Proposition 3: The following statements are true. 

(a) Let f E pxq—JiM(ID) and h E qxq—J\IM(ID) be such that J(f, h) is non-empty. 
Then: 

( z) det h does not identically vanish. 

(ii) h E Sqxq(ID), fh' E S..., (ID) 

(iii) f and h admit pseudocontinuations f and h# which satisfy 

I+fIf=h#h .	 (13) 

(b) Let  E qxp—JtfM(ID) and  E qxq—AIM(ID) be such that J(g, h) is non-empty. 
Then: 

(iv) det h does not identically vanish. 

( v) h E Sqxq(ID), h'g € Sqxp(ID). 

( vi) g and h admit pseudocontinuations g# and h# which satisfy 

I+gg# = hh# .	 (14) 

Proof: Statements (i), (ii), (iv) and (v) are immediate consequences of Proposition 
1. Because of Remark 2, the functions f, h and g have pseudocontinuations. If W E 
J(f, h) (respectively, W E J(g, h)), then W has j,,-unitary boundary valuesa.e. on 
T. Taking into account that all the functions I + f#f , I + h#h , I + gg# and hh# belong 
to q x q —A(M(ID), then the application of parts (f) and (g) of Remark 3 and Remark 1 
provides (iii) and (vi) • 

Remark 4: In view of Remark 1 and the fact that the Nevanlinna class .VM(lD) is 
an algebra one can easily verify the following: 

(a) Let f E p x q —HM(ID) and h E q x q —A(M(ID) be such that the following two 
conditions are satisfied: 

(i) I admits a pseudocontinuation f#. 

(ii) WA) =(J+ff). 

Then h admits a pseudocontinuation h#, namely h# = h(I + ff#). 
(b) Let g E q x p - ftfM(lD) and h E q x q - .iVM(ID) be such that the following 

conditions are satisfied: 

(i) g admits a pseudocontinuation g#. 

(ii) '(Lth) = ( I + gg). 

Then h admits a pseudocontinuation h#, namely h# = (I + g#)hl. 

The following lemma due to the first author (see [2]) will turn out to play a key role 
in our considerations.
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Lemma 3: Let W E (p + q) x (p + q) - J'.(M(ID) be such that 

(jpq - W1 pq WI) = (0) ,	 (15) 

and let (5) be the block partition of W where W11 is a p x p matrix-valued function. Then 
det W22 does not identically vanish. If S given by (6) belongs to (p+q)x(p+q)—AI(ID), 
then W is a jpq -inner function. 

Now we are able to give a complete answer to Problem (CPS). 

Theorem 3: Let f E p x q - J'.IM(ID), and let h E q x q - JtfM(ID). Then: 

(a) J(f, h) is non-empty if and only if the functions f and h satisfy 

(LtLi) = ( I +ff)	 (16) 
h	E q x q - A1+ (ID)	 (17) 

fh	E p x q - AI+ (ID)	 (18) 

	

f E pxq—I1(ID).	 (19) 

(b) Suppose that J(f, h) is non-empty. Let 0 be the unique normalized outer function 
belonging to p x p - M+ (ID) such that

= ( J +ff) .	 (20) 

Then a (p + q) x (p + q) matrix-valued function W which is meromorphic in ID 
belongs to J(f, h) if and only if there exists a right denominator b 1 of f#	such 
that

	

=	 . diag (bi ,Iq ) .	 ( 21) 
hf#' h 

In this case, b 1 is unique. 

Proof: If J(f, h) 54 0, then Proposition 3 and Remark 1 yield that (16)-(19) hold 
true. Conversely, now suppose that (16)-(19) are satisfied. Equation ( 16) implies that 
det h does not identically vanish. Thus, conditions ( 17) and (18) have sense. We want to 
apply Lemma 3. Let f# be the pseudocontinuation of f, and let fri be a right denominator 
of f# çb'. In view of Lemma 1, by the formula 

	

W = (	 diag (bj ,Iq ) .	 ( 22) 
\hf#1 hJ 

a well-defined function W is given. Since A(M(ID) is an algebra over C, W belongs to 
(p + q) x (p + q) - .A(M(ID). Let (5) be the block partition of W where W11 is a p x p 
block. Then we see immediately that W12 = f and W22 = h. Now we will show that W 
has j,,-unitary boundary values a.e. on T. Let 

X :=
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and let

_ (x 1 x12 
- k x21 x22 

be the block partition of X where X11 is a p x p block. From (16) and (20) we obtain 

= (L('+rDr) = (II ('+11)) = (fLL) 
Hence,

(X11) = ( ( LL) (!i) - (i ((.LY 	Lk) (L - L- @t) ' )) 

= (i ( t: --  L.L (y1) 

= (b (()j [(1+ ff)	- LL1 L) 
= (b1) = Y") 

Similarly,

(X12) =	 (@r L__) 
Ol = ( L (!i	(f - 

= (- (()-') [( I +fr) f - 
= (Opxq) 

and
(A'22)	(f I -	= ( _ Jq) 

Thus, (15) is fulfilled. Let S,S 11 , S12 , S21 and S22 be given by (6), (7) and (8). We 
will show that S belongs to (p + q) x (p + q) - .'V+ ( ID). From (17) and (18) we see 
that 522 and 512 are functions which belong to the Srnirnov class. Part (c) of Lemma 
1 provides	= (I + ff#) l . Therefore, Si , = (	- ff#c)bi = q'b1 . Since çf. 
is an outer function in p x p - A(+(ID), 0 1 ' is also an outer function which belongs to 
P x p —A(+ (11)). Since b1 is a p x p Schur function and since .V+ (D) is an algebra, we get 
511 E p x p - .Ah+ (ID). Since b 1 is a right denominator of T# 6 1 ', we have 

521	_f#	 b1 E qxp—H(ID). 

Hence, S E (p + q) x (p + q) - H+ (ID). Using Lemma 3 it follows that W is a jpq-inner 
function. Consequently, W E J(f, h). In particular, J(f, h) is non-empty. 

Now we suppose that W is an arbitrary function which belongs to J(f, h). Then 
W12 = f and W22 h. Let S be defined by (7), and let b 1 he the unique inner function 
occurring in part (f) of Proposition 1. We obtain from parts (c) and (d) of Proposition 2 
that b1 is a right denominator of f#' and that identity (21) is satisfied. The unicity of 
b1 is clear U 

Similarly, as Theorem 3 gives an answer to Problem (CPC), the following theorem 
describes the solution set Jr(g, h) of Problem (CPR). 

34 Analysis, Bd. II. Heft 4 (1992)
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Theorem 4: Let g E q x p - .iVM(ID), and let h E q x q - JtfM(ID). Then: 

(a)	h) is non-empty if and only if the functions g and It satisfy 

(•)	= (23) 

h'	e	qxq—AI(lD) (24) 
hg	e	qxp_Ar+ (ID) (25) 

g	E	q X p— 11(11)) (26)

(b) Suppose that j(g, h) is non-empty. Let	be the unique normalized outer function

belonging to p x 1— A(+ (11)) such that

= (i+gg) (27) 

Then a (p + q) x (p + q) inatriz-valued function W which is ineromorphicin II) 
belongs to J,(, h) if and only if there exists a left denominator c 1 of ,bg# such 
that

W = diag (ci,Iq). (
	

'g#h )

	
(28) 

g	It 

In this case, c 1 is unique. 

The proof of Theoreiii 4 can be done in a similar manner as in the proof of Theorem 

4. Some completion problems for subclasses of 
jpq-infler functions 

This section is aimed to study completion problems for some subclasses of j,,-inner func-
tions. In particular, we will look for A-singular j,,-inner functions in the solution sets 
J(f, h) and J(g, h) of Problems (CPC) and (CPR), respectively. To be more precise, 
we will treat the following questions: 

(CPCA) Let  E pxq—AIM(), and let /mE qxq—J\IM(lD). Describe the set A(f,h) 
of all functions W E J(f, h) which are A-singular. 

(CPRA) Let g E q X p—iVM(11)), and let h € q x q—A(M(ll)). Describe the set A,.(g, h) 
of all functions W € J, (g, h) which are A-singular. 

From the definition of A-singular j,,-inner functions it seems to be reasonable to 
decompose each of the just formulated problems into two completion problems for 3pq 
inner functions of Smirnov type and inverse Smirnov type, respectively: 

(CPCS) Let f € p x q—AIM(ID), and let h € q x q—VM(Il)). Describe the set JV(f, h) 
of all functions W E J(f, h) which are of Smirnov type. 

(CPRS) Let g € q x p—AIM(ll)), and let h E q x q—JiM(ID). Describe the set J\Ir (g, h) 
of all functions W E J, (9, h) which are of Smzrnov type. 



On Some Completion Problems 503 

(CPCIS) Let I E p x q - AIM(ID), and let h E q x q - JfM(ID). Describe the set 
M (f, g) of all functions W E J(f, h) which are of inverse Smirnov type. 

(CPRIS) Let g E q x p - .AIM(ID), and let h E q x q - JtfM(ID). Describe the set 
Mr(g, h) of all functions W € J(g, h) which are of inverse Smirnov type. 

In view of the results in Section 3, we get immediately a description of the solution 
sets of (CPCS) and (CPRS). 

Theorem 5: Let f € p x q - AIM (ID), and let h € q x q - ArM(ll). Then: 

(a) A1(f, h) is non-empty if and only if the functions f and I satisfy conditions (16) - 
(19) and

	

h€qxq—A(+(ID).	 (29) 

(b) Suppose that V(f, h) is non-empty. Let be the unique normalized outer function 
belonging to p x p - M+ (ID) such that (20) holds. Then a (p + q) x (p + q) matrix-
valued function W which is meroinorphic in	 A/ II) belongs to	(f, h) if and only if


f# there exists a right denominator b 1 of	pj1 such that (21) is fulfilled. In this case, 

b 1 is unique. In particular, A1(f, h) = J(f, h). 

Proof: First we observe Ac(f, h) c J(f, h). Thus, Theorem 3 yields that V(f, h)

0 implies (16) - (19). Furthermore, we see from Theorem 1 that h E q x q - jV+ (ll)) is

also necessary for .AI(f,g) 0 0. Conversely, now suppose that (16) - (19) and (29) are

fulfilled. Combining Theorems 1 and 3 we obtain immediately the rest of the assertion U 

Theorem 6: Let g € q x p - AI M(), and let h € q x q - Jt1M(). Then: 

('a) .IVr(g, h) is non-empty if and only if the functions g and ii satisfy conditions (23) - 
(26) and (29). 

(b) Suppose that X, (g, h) is non-empty. Let be the unique normalized outer flinction 
belonging to p x p - V.4.(ID) such that (27) holds. Then a (p + q) x (p + q) matrix-
valued function W which is meromorphicin II) belongs to A1r (g, ii) if and only if 
there exists a left denominator c 1 of /'g# such that (28) is fulfilled. In this case, 
c1 is unique. In particular, Alr (g, h) = J(g, h). 

Theorem 6 can be proved in a similar manner as Theorem 5. We omit the details. 

Now we are going to turn our attention to Problems (CPCIS) and (CPRIS). We will 
see that the study of these problems requires more work in comparison with Problems 
(CPCS) and (CPRS). 

Theorem 7: Let f € p x q - Al M(ID), and let h € q x q - AIM(ID). Then: 

(a) M(f, h) is non-empty if and only if f and ii satisfy conditions (16) - (19) and 

	

€ qxp—Al(ID).	 (30) 

34*
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(b) Suppose that M(f, h) is non-empty. Let 0 1 be the unique normalized outer function 
belonging to p x p - .N'1.(ID) such that (20) is satisfied. Then a (p + q) x (p + q) 
matrix-valued function 14' belongs to M(f, h) if and only if there exists a p x p 
unitary matrix b 1 such that (21) is satisfied. In this case, b 1 is unique. 

Proof: First suppose M (f, h) 54 0. Because of M (f, h) g J(f, h), Theorem 3 
yields that (16) - (19) hold. From Theorem 14 in [11] (30) follows. Conversely, now 

suppose that (16) - (19) and (30) are fulfilled. Since the functions	and I + ff'

belong to p x p - fifM(LD), from Remark I and (20) we obtain 

= !+ff#.	 (31) 

Assume that W is a (p + q) x (p + q) matrix-valued function which is meromorphic in ID 
and which admits a representation ( 21) with some p x p unitary matrix b 1 . Then Theorem 
3 implies W E J(f, h), whereas ( 31) provides that the function 

:= [
	

- fh (hJ1)] b1 

fulfils

	

=	b 1 - f f# y b = [
	i - (	

- i)]	' b =	b1.	(32) 

The function ç'b 1 is obviously an outer function in p x p - .A1+ ( ID). Consequently, we 
infer from part (b) of Theorem 1 and (21) that W E M (f, h ) . Now we consider an 
arbitrary function W which belongs to M (f, h). Then W E J(f, h). Theorem 3 shows 
that W admits representation (21) with some right denominator b 1 of f#ço'. Hence, 
from Theorem 1/(b) we get that Q is an outer function in S(lD). From (32) we have 

= .1l, i.e. the inner function 1i coincides with the outer function pi1 E pxp—A((lD). 
Therefore, E S 9 (ID) C p x p— H 2 (ID). Using the inner-outer factorization theorem 
in p x p - H 2 (ID) (see P.R. Masani (33]), -we see that b1 is a constant unitary matrix  

Theorem 8: Let g E q x p - AIM(IIJ), and let h E q x q - 1\rM(ID) Then: 

(a) Mr(g, h) is non-empty if and only if the functions g and h satisfy conditions (23) - 
(26) and

g# E p x q - H+(ID).	 (33) 

(b) Suppose that M r (g, h) is non-empty. Let 0 1 be the unique normalized outer function 
belonging to p x p - Af(lD) such that (27) is satisfied. Then a (p + q) x (p + q) 
matrix-valued function W meromorphic in ID belongs to M r (g, h) if and only if there 
exists a p x p unitary matrix c 1 such that (28) holds. In this case, c 1 is unique. 

Theorem 8 can be proved analogously to Theorem 7. 

Combining Theorems 5 and 7 (respectively, Theorems 6 and 8) we get an immediate 
answer to Problems (CPCA) and (CPRA).
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Theorem 9: Let f E p x q - JtfM(ID), and let h E q x q - J%JM(ID). Then: 

(a) .AC (f, h) 54 0 if and only if the functions f and h satisfy conditions (16) - (19), (29) 
and (30). 

(b) If A(f, h) is non-empty, then A(f, h) = M (f, h). 

Proof: Obviously,
A(f,h) = Ai (f,h) n M (f, h ) .	 (34) 

Thus, Theorems 5 and 7 provide that conditions (16) - ( 19), (29) and (30) are necessary 
for ..4(f, h) j4 0. Now we suppose conversely that (16) - ( 19), (29) and (30) hold true. 
Theorem 7 shows that .M(f, h) 0 0. Let W E M (f, Ii). Because of (29) we obtain 
from Theorem 5 that W belongs to A/ (f, ii). In view of (34), W E A (f, h) follows. In 
particular, M (f, h) c ..4(f, h) 54 0. Clearly, (34) implies then A (f, h) = M (f, h) I 

Theorem 10: Let g q x p - AIM(IID), and let h E q x q - A(M(ID). Then 

(a) A r (g, h) is non-empty if and only if the functions g and h satisfy conditions (23) - 
(26), (29) and (33). 

(b) If Ar (g,h) is non-empty, then A r (g,h) = Mr(g,h). 

Theorem 10 can be analogously proved as Theorem 9. 

5. A completion problem for full-rank A-normalized 
jpq elementary factors 

In this section, we will consider distinguished J,,-elementary factors which can be con-
ceived as convenient normalized resolvent matrix associated with some non-degenerate 
matricial Schur problem. The matricial Schur problem consists of the following question. 
Given a non-negative integer n and p x q complex matrices A 0 , A 1 , ..., A, the problem is 
to describe the set Spxq[Ao, A,_., A] of all p x q Schur functions with first n + I Tay-
lor coefficients A 0 , A 1 , ..., A,, in their Taylor series representation around the origin. It is 
known that Spxq[Ao, A,,..., A,,] is non-empty if and only if the block Toepiitz matrix 

A 0	0	...	0 
A 1	A 2	...	0 

Sn =	. 

is contractive (see, e.g., [19, Section 3]). If the problem is non-degenerate, i.e. if S, is 
strictly contractive, then the set S [ A 0, A,_., A,,] can be parametrized via linear frac-
tional transformations of the Schur class Spxq(ID) generated by appropriately constructed 
jpq inner matrix polynomials. Choosing convenient normalizations there is a one-to-one 
correspondence between non-degenerate Schur problems and particular subclasses of 3pq 
inner polynomials (see [18] and [23]). In order to define the special subclass of ]',,-inner 
functions we will deal with in this section, it seems to be useful to recall the notion of 
reciprocal matrix polynomial and some facts on j-elementary factors.
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If P0 , P1 , ..., Pm are p x q complex matrices and if the matrix polynomial P is given by 

P(z)=Pk z k , zEC, 

then the reciprocal matrix polynomial plml of P (with respect to the unit circle T and 
the formal degree in) is defined by 

p[ml(Z) :=	 z E C. 

Obviously, Pl h1(z) = z tm P(1/) for all z E C\{o). 
Let n E No, and let D be a JP.-elernentary factor with pole of order n + I at z0 = cc 

(see Section 2). Clearly, D is a (p+q) x (p+q) matrix polynomial of formal degree n + 1. 
It can be easily shown that the rank of the leading coefficient matrix of D is not greater 
than p (see V.K. Dubovoj [17], or [19, Lemma 4.4.8]). If this rank is equal to p, then we 
will say that D is a full-rank j,,-elementary factor. 

In [10] (see also 1231) a general concept of normalizing of j pg -inner function has been 
developed. For the case of a full-rank J pq -elementary factor with pole of order n + 1 at 
z = cc, it cami be equivalently formulated as follows (see [23, Theorem 70]): A full-rank 
Jpq -elementary factor A with pole of order n + 1 at z = cc is called A-normalized if the 
following three conditions are satisfied where A = ') is the block partition of A 
with p  q block A11: 

(i) A,'+'](0).     is positive Hermitian. 

(ii) A22 (0) is positive Hermitian. 

(iii) A21 (0) = Oxp. 

In [23] it was shown that there is a one-to-one correspondence between non-degenerate 
rriatricial Schur problems with n + 1 given coefficients and A-normalized full-rank pq 
elementary factors with pole of order n + I at z = cc. The origin of the notion A-
normalized full-rank j pg -elemnentary factor with pole at z = cc lies in the concrete resolvent 
matrix associated with a non-degenerate Schur problem which originates in [13] and which 
was alternately refound in [22] and [25, Part IV]. 

In [12, Theorem 31] we showed that there is a bijective correspondence between the 
set of A-iiorrnalized full-rank j-elementary factors with pole of order n + 1 at z = cc 
and the set p x q -P. of all p x q matrix polynomials of formal degree not greater than n. 
Using this connection we can immediately characterize the situation that a given matrix 
polynomial is the last block column of some A-normalized full-rank J,,-elementary factor: 

Theorem 11: Let n 6 No, Ict P 6 p x q - P,, and let R E q x q - 2,.. Suppose 
that in is an integer with in n. Then there is an A-normalized full-rank ],,-elementary 
factor °rn+I with pole of order m + 1 at z = cc such that 

(* P 
°m+i =	•	1? 

if and only if the following conditions are satisfied:
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i) deL R(z) 54 0 for all z E II). 

(ii) For each z E T, R(z) R(z) = I + P(z) P(z). 

(iii) R(0) is non-negative Hermitian. 

In this case, °m+I is unique and can be expressed by 

(	p(m+I)	
p \ 

Om+I =	aP[m+hlp	I?.) 

where P1 is the unique p x p matrix polynomial which fulfils the following three conditions: 

(a) det P, (z) 54 0 for all z E H). 

() For each z E 'F, P, (Z) Pr (Z) =-I + P(z) P(z).	- 

(-y) P1 (0) is non-negative Hermitian. 

For the Proof use [12: Theorem 31] I 
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