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A result on the existence and smoothness of solutions for temperature-coupled Bingham
problems in non-smooth bounded 2D -domains is proved, which complements the results of
G. Duvaut and J. L. Lions [3] on this subject. :
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1. Introduction

Bingham fluids are usable in various technical and technological directions. For exam-
ple coating processes may be considered as flows of Bingham fluids. Beside zones of
viscous flow there exist so—called "plugs”, that means zones where the derivative of the
velocity vanishes.

Moreover, the boundary value problems arising from technical processes should be
considered with changing types of boundary conditions. For example gas heated melt-
ing processes need three types of boundary conditions for the velocity: condition of
adherence for solid walls, slip—conditions for uncovered fluid surfaces and conditions
for in/out-stream surfaces.

Unlike the well-known existence results of G. Duvaut and J.L. Lions (cf.[3, 4])
the coupling between temperature and velocity by convection will be considered here.
Whereas convection is essentially, the energy transport by radiation and convection of
mass is negligible and the fluid flow may be regarded as stationary in many cases (e.g.
the flow of liquids). Beyond this the material constants heat capacity and viscosity are
considered to be temperature-dependend and —in a sence-— unbounded.

The differences between the model considered here and that stated in (3, 4, 22, 23]
are implying modified techniques for proving an existence result for the corresponding
boundary value problem. Although the general scheme:

e proving an existence and uniqueness result for an — in a sence — linearized bound-

ary value problem using variational inequality techniques '

¢ proving an a priori estimate for the original non-linear problem

o using a fixed point theorem to prove the existence of a solution for the original

non-linear problem
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is used in our proof too, there are some differences. Caused by the models for heat
capacity and viscosity as well as the temperature coupling by convection the space
W'2 may not be used for fixed point considerations. Thus we need some regularity
results for the linearized” problem and therefore some results on isomorphisms for the
Stokes as well as the Poisson problem in case of non-smooth boundary data. Moreover
the proof of the a priori estimate is quite different to that used in the literature cited
above.

2. Notations and definitions

Let  C IR" be a bounded domain with a C%!-boundary 9. In the following we
denote by D; the partial derivative with respect to the i-th coordinate. The flow
of a Bingham fluid is assumed to be incompressible, viscous and buoyant. Here we
are especially interested in temperature-coupled flow. Thus the flow is described by
velocity, pressure and temperature. For this the preservation of mass, momentum and
energy results in the following differential equations in the domain 2 (D; denotes the
partial derivative with respect to the i-th coordinate):

~Di(o:(9,u,p)) + kuiDiu; + K;9 = f;  (j=1,2), (1.a)
divy = D;u,- = 0, (lb)
—D,(IC(!?)D.!’) + u,'D,'t’ = (l.C)

These are supplemented by the boundary conditions

—ax(9)D;Y—bd = ¢ on 89, (2.a)

ulr, = @, (2.b)

Unlp, =unlg, = pan,  to(d,u,p)nlp, = @on, (2.c)
w|r, = utlr, = pa,  no(d,u,p)nlp, = —@sn. (2.d)

Here we have used the usual summation convention and the following notations:

u...velocity p...pressure

J...temperature f ... outer force

K9 ... buoyancy force _ o(9,u,p)...stress tensor

k.. .heat capacity g ...sources or sinks of heat

@ usually = 0; i.e. one has adherence at R, 3, ...slip of the fluid at R,

¥a . . . tangential velocity at Rj 2 . .. tangential stress at R,

{3n - - - normal component of the area force at Ry Q2 = R, UR, UR;

k...convection factor which depends on the a,b,c...functions describing the
boundary conditions for the velocity; heat transfer through 99Q.

k=0if R3 =0 and k = 1 elsewhere

Moreover, underlined variables are denoting vectors in IR?, n is the outward normal at
011, t is the corresponding unit vector tangential to 302 and a g is the scalar product of
vectors o, € IR?. Later on we denote by u the viscosity. It seems to be more conve-
nient to use ¢ as a normed temperature, i.e. to set ¥ = (T' — Tg)/Ts with T absolute
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temperature and Ty a proper reference temperature (e.g. T melting temperature or
mean value). If we do this, the notation of problem (1),(2) do not vary qualitatively
and therefore in the following we identify ¢ with (T — Tg)/T.

In this paper we prove a theorem on the existence of a solution for the following
special case of the problem written above — usually called Bingham fluid: The stress
tensor o is defined by the equations

0;(9,u,p) = —pbi; + 7,(9,u)

T u)™! u or u 3
3y(0,0) = { VO DU@ DLW for Due) 20 ®

(i,j=1,2) where 7 is a non-negative number. In the latter case we require o;;(u) < 7
_and 0;(u) = 7;i(u). Above we have used the abbreviations

D;;(u) = 1/2(Diu; + Dju) (i, =1,2)

and

Apr(u) = /A;;A;j for any A € R? x R%.
It should be remarked that in this case the boundary conditions at R get the form

—-no(d,u,p)n|r, =p — no(J,u)nlr, = Psn.

Usually the vector of boundary stresses S(#,u) = na(d,u) is used and hence the
boundary conditions at R, and Ry may be reformulated; we get

S, u)|r, =¢n  8nd  p—Su(9,u)|rs = P3n.

The non-smoothness of the boundary is described in the following way: For the set
99 there exists a disjunct partition into subsets I'y,. ..,y such that 3Q = U ,F,, the
subsets I'; are sufficiently smooth and for every j € {1 , N} there ex1st,s a unique
i€ {1,2,3} withT; C Riand a(-) > a9 > 0on T; or a(-) = 0 on I';. The partition
{I'y,...,Tn} is assumed to be maximal in the following sence: if we enlarge any set I';
( = 1,..., N) this set violates one of the last conditions. The points where the kind
of the boundary conditions for the temperature or the velocity changes as well as the
points where the boundary 35 is non—smooth are of special interest; these are denoted
by O; (j =1,...,N). This way we get

M={0],,ON}={.’L'68031#]E{1,,N} withz:l".-ﬂl‘j},

the set of all singular boundary points of problem (1), (2). By w; we denote the (inner)
apex angle of {2 at the singular point O; (7 = 1,...,N) and for some sufficiently
small € > 0 and each point O; of the set M we define a weight function p;,

o;(z) = I:t: - O for |z — O;] < /2
for |z — O;] > ¢,

which near O; reflects the d.ista.nce between z and the singular point @;. Apart from
O; we assume this function to be sufficiently smooth. Later on we use the infinite
cone K C IR? with vertex at zero and apex angle w, as a model domain to describe
non-smoothness in JR?>-domains.
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For the following considerations we need a number of function spaces. As usual the
classical Sobolev spaces are denoted by W*#(Q), W *#(1), Wr(3) (1 <p<o0,8€
IR). Besides this we need so—called weighted Sobolev spaces to describe the regularity
of solutions for boundary value problems in case of non-smooth boundary data. For
le NU{0}, pe Rwith1 <p<ooand = (h,...,0n) € R we define the spaces
Vé"(Q, M) as the closure of

C=(Q,M) = {veC®(Q): supp(v)N M =@, supp(v) bounded}

p\ 1/p
) : (4)

Obviously N is the cardinality of M. Similar, v ;—"(Q, M) is the closure of C(£2)
with respect to the norm (4). After that, weighted Sobolev spaces with negative order
of derivation, i.e. for ! € Z with [ < 0, and trace spaces of weighted Sobolev type
may be defined by duality and as factor spaces, respectively, as this is known from the
classical Sobolev spaces. The analoga of the above defined spaces for the infinite cone
K are built in a similar way using C*(K, z,) instead of C=(2, M) and o(z) = |z — .|
instead of the functions g;. For further information on this topic see, e.g., (12, 13, 14].
In this context it should be pointed out that we often use the notation E instead of
E(Q) to describe a function space on 2. For the norm of an element z € E we write
synonymously ||z|E(Q))] = ||z|E|| = ||z||. Moreover, for E we use the abbreviation E
instead of E x E.

For technical and physical reasons we make use of the following: basic

relative to the norm

o] - (2

lerl <t

L,

(fre0) o

=1

Assumption I: Let a(z) > aq > 0, b(z)/a(z) > 0 and |c(z)| < C,|b(z)| for some
Co€Ry andz €Ty ={z € 80 : a(z) #0}, let k = 0 if Ry # @ and assume that one
of the following conditions is satiesfied:

(i) 0<m$x(t)_<_M<oofaranyt€Randu,,|p.ZOOrgEOinQ
(i) k(t)>0 foranyt € R, unjr, >0andg=0inQ

(#%3) x(t) > 0 and (x(s) — &(t))(s—t) > 0 forany s,t € R and g =0 in O

Moreover, assume that the function c/b defined on I'p = OQ\I', may be estended to
an element of W'/%2(9Q), that the functions @19, @5 fulfil appropriate compatibility
conditions, which will be stated later (cf. (17)- 135)

Remark 1: (i) The condition ug|r, > 0 means
TaNRy =8, p1a(z) 20for z €Ta N R, and p2,(z) 2 0for z € T, N R,.
This means especially that at in/out-stream surfaces , which are part of Ry, we must bave a Dirichlet
boundary condition for the temperature. In practice we have usually u,| R,UR, = 0.

(ii) The boundary conditions on R; describe the circumstances on an uncovered fluid surface and
those on R3 mean that an area force is acting. .

(iii) The positivity of b/a on I, is equivalent to the fact that the heat flux is directed from warmer
to colder materials.
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(iv) The condition |((z)] < C.|Xz)| on I'a especially may be interpreted as follows: Constant
heating or cooling through the walls is impossible if these are completely isolated, i.e. if the coefficient
b is equal to zero and a is positive.

(v) The assumption that k vanishes whenever Ry is non—empty is a technical one; otherwise a
proof of existence for problem (1), (2) seems to be impossible.

(vi) Assumptions (i) — (iii) above signify especially that either the medium in flow is free of sources
and sinks of heat or the heat capacity is everywhere bounded and strictly positive.

(vii) For heat capacity and viscosity the models v(f) = exp(—a; 9 + a;) and &(J) = exp(br ¥ + b,)
with some a;, b € Ry and a;, b; € IR are used in rheology.

3. Isomorphisms for the Stokes problem in non—-smooth
bounded domains

Because the results in this section are technical generalizations of well-known results
we give only an outline of the considerations and omit the proofs. For details we refer
to the conscious presentation of the material in case of elliptic operators (especially the
Laplacian) in {14) and to author’s thesis [9).

As pointed out in the introduction regularity results for some related Stokes problems
are essentially for the proof of the existence of a solution for problem (1),(2). In the
following let us consider the Stokes problem

=Di(v(-)(Diu; + Djui)) + Djp = f; (j=1,2) inQ, (5.a)
divg = D.'U.' = f; in Q, (5b)

ulr, =94, Unlr, = ¢z, wlr,= Pu (5.0)
SiWlr, = b2 P Sa(W)lRy = ¢3n. '

Here the viscosity v : @ — IR, is a function fulfilling the inequality 0 < v, < v(z) <
v° < oo for z € 2, S = ((v(Diu; + Dju;))3.,) denotes the vector of boundary stresses.

The weak formulation for problem (5) is given by
% fn v(D;u; +Dju;)(Dyv; + Djv;) dz

Vy_ € Xo 6.
‘-“fnigdx‘*'fn‘ P2y ds'*‘f&, $3nvn ds ( a)

D;u; = f;, EIR, = 21. “nl!l; = ¢2m u’(lﬁg = ¢3( (6b)

with the space X, = {g eEW(): vlg, =0, Vnlr, =0, t)r, =0, divy = 0}.

A simple homogenization and Korn's second inequality (cf. [8]) yield

Lemma 2: For problem (5) there ezists a unique weak solution, i.e. a function
u € WH(Q) which fulfils the weak formulation (6).

To describe the Fredholm properties of Stokes problems in non-smooth bounded
domains we may use techniques of V.A. Kondratiev (cf. [10, 11]) and V.G. Maz'ya
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and B.A. Plamenevskii (cf [17,18, 19]) The usual localization argument led us to the
mode] problem

e SR T o
(76 := v(0)) with one of the following boundary conditions:
usleon =4 (Lj=12) (8
Unlioky, = in, ' .
Sf(u)h:z;, = ﬁl. U;loxy = b3 (1=12) (9)
u, = , )
p—Si(uw)+ ﬂodivl;:E:ﬁ;: = z::" ujlok), = #2; G=12 - (@0

uelok), = Un|8K); = P2ns (11)
P — Sa(y) + nodivlok), =1, Sp(w)lok), = ba-

The problems — denoted by (7),(8) - (7),(11) later on — are defined in the two—dimen-
sional infinite cone K with vertex at zero, angle w, and sides (8K); (i = 1,2). By
S5°(u) we have denoted the boundary stress vector S° = ((no(D;u; + Dju;))2.,) for the
reduced problem.

Remark 3: Beside the four cases of boundary conditions above noted, there exist two other
combinations which are out of physical interest. But they can be treated in the same maaner.

Considering the model problems (7),(8)-(7),(11) the methods of Maz’ya and Pla-
menevskii [19, esp. Theorems 4.1 and 4.2] results

Theorem 4: Assumel € NU {0}, f € R and 1 < ¢ < co. The boundary value
problems (7),(8)-(7),(11) define isomorphisms

V(K x VIFA(K) — U (K)

with

ué*'(x) — VI(K) < V() x [T Vi e (o)) x Vi ok, )|

=1

and

for an in/out-stream condition or a condition of an
uncovered surface on (0K);

if thelinely, ={A € @: ImA=h} with h=[ -1 —2+2/q is free of solutions of the
corresponding of the following equations:

Asinfw, — sinh*(Mw,) =0 (A #£0) (12)

{ 0 for a Dirichlet boundary condition on (8K);
ms’ =

for problem (7),(8),
Asin 2w, — sinh2dw, =0 (A #0) (13)

for pmble?n (7),(9),
Asin 2w, + sinh 2 dw, = 0 (A#0) (14)
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for problem (7),(10) and

2k +1 2k +1 ,
Re) =0, ImAe{ T -1, 7r+1} (15)
2w 2we keZ

for problem (7),(11).

Moreover, for 1 < gy < oo, Ly 21, /L E Rwithhy = -, -2+2/qi < h =
B—-1-2+2/q and ((f f3): 8,5 _2) € u;'"(K)nu;,"“ (K) one conclude that the solution

of any of the problems (7),(8)-(7),(11) is an element of V“n"‘(K) X V"“"" (K) if
the strip {A € €': hy < Im) < h} is free of solutions of the correspondmg one of the
equations (12)-(15).

Using duality and interpolation arguments —this way genera.hzmg result.s of G. Wil-
denhain [26] and J. Rossmann [24] — we gét moreover  ~ -

Proposition 5: The assertions of Theorem 4 behold true if we assume | to be less
than zero.

An outline of the proof in case of Dirichlet’s problem for the Laplace operator is
given in [14]. For an exact proof see author’s thesis [9).

Summing up the results for the model problem in cones and the general Agmon-
Douglis-Nirenberg results for elliptic boundary value problems in domains with smooth
boundary data (see [1]) we may state the following theorem on Fredholm properties
for the Stokes operator on corner domains in IR?.

Theorem 6: Assume that v(z) € V'™ _(Q, M) with p; > max(2—k, q) is fulfilled
k41-2/py

for k > 0, that 1 € Z,l < k and that the lines I, = {A € € : ImX = h;} with
h; = Bj—1—2+2/q are free of solutions of that equation of (12)-(15), which corresponds
to the boundary condstions at the singular point O;,i.e.

o that Iy, is free of solutions of equation (12) if we have Dirichlet boundary conds-
tions on both sides of O;,

o that Iy, is free of solutions of equation (13) if we have a Dirichlet boundary
condition on one and a condition of type R, on the other side of O},

e that Iy, is free of solutions of equation (14) if we have a Dirichlet boundary
condition on one and a condition of type Ry on the other side of O; and

o that Iy, is free of elements of (15) if we have a condition of type R, on one and
a condition of type Rs on the other side of O;

for j=1,...,N. Then the Stokes problem (5) defines a Fredholmian operator
V29, M) x Ve, M) — U2, M)
with )
U@, M) =Vi8(0, M) x Vi (@, M) x 1%, [v(“,jf,,]l{';"(r,.,{o,-,o,.“})
4+2-mg;-1
X V(I;t.ﬁ,'u? /qq(r\j’ {OJ"OJ'-H})]
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and

for the case of an in/out-stream condition or a condition

0 for the case of a Dirichlet boundary condstion on I';
mg;
of an uncovered surface on T';

Once again we remark that the proof is a simple generalization of that given in [14)
for elliptic operators. :

Together with the existence and uniqueness of a weak solution we can now state

Corollary 7: The weak solution of problem (5) is an element of the space _‘_/.;.*2"(9,
M) x V"”‘"(Q M) if the right-hand sides of the differential equations are fulfilling the

.smoothness assumptions of Theorem 6, if the condition v € C*¢(Q) with ( € (0,1) and
¢ = max(0,l) or v € VE»_ (2, M) with k > max(1,1—1) and p; > max(3 —k, q) holds

k-2/p3

for the coefficient v(-) and tffar eachj € {1,...,N} the strip B;—1-242/q < ImA <L ¢;
of the complez plane is free of solutions of that equation of (12)-(15) which corresponds
to the kind of boundary conditions near the singular point O;. Here e; > 0 (j =
1,.:.,N) are sufficiently small.

Up to now we have considered the Stokes problem (5) in weighted Sobolev spaces. In
difference to the classical ones the elements of these spaces must vanish at the singular
boundary points by definition. On the basis of the considerations of P.Grisvard [6] we
try to answer wether a generalization of the regularity results to the case of classical
Sobolev spaces is possible or not. In keeping with the scope of this paper we restrict
our consideration to the case of spaces with first order of derivation and summing
exponents ¢ > 2. A generalization to other cases is possible, but this involves some
technical difficulties, which are avoidable here. To get an idea what we have to do, we
assume that the right-hand sides of (5) are sums of a W*P- and a Vi'"’—pa.rt, ie.

[W-19(Q) & V2 (2, M)) x
P [L(M) & L, (9 M))x
6 e e, )ev‘ Y39(Ry, M)}x
(B2n, P) [W'-Yas(R, )@V‘ Y49 Ry, M)) x [WY/99(Ry) @ V; /%%(Rp, M)] x
(@s3n, P3¢) [W-'/9(Rs) @ V; 1/""(R3,M)] [W'=Y43(Rs) @ V; ~1/49(Rs, M)).

The last space we denote by Ul"(Q M). If we use a function u, € W""(Q) with

R, 4’(") € Wl—llq.q(R ),
Uonlr, = "> € W'-Ya9(Ry), (16)
Yotlr, = ¢§',') € W'~1/99(Ry),
i.e. a function which homogenizes the W*P-part of the non—natural boundary condi-
tions and if we assume §; > 0 (i = 1,...,N), problem (5) may be transformed into

a similar one with right-hand side (f f3’¢1’¢"" ¢2,,¢3m¢3‘) € Ll""(Q M) using the
imbedding theorems for weighted Sobolev spaces into the classnca.l ones (cf. [14]).
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The existence of u, is proved by using P. Grisvard’s trace and continuation theo-
rems for Sobolev spaces on domains with singular boundary points (cf. [6, Theorem
1.6.1.4]). We construct u, = (D€, Dy€)+(D5(, —D1() with &,¢ € W29(Q). In this case
the boundary conditions (16) get the form (D, and D, denote normal and tangential
derivative respectively)

¢$:) - X1 X2 ¢(1‘:) - X2 X1 on R]
D.§ = g:) y D€=4 X3, Da{ =1 Xa yDE=<¢ 0 on R,
Xs 0 W xs ©on Ry
with x; € W'-Y99(Ry) for i = 1,...,6. P. Grisvard’s compatibility conditions for ¢
and ( yield the following conditions (assume {¢,,£,} = {5 — 1,7}):
(i) The right-hand sides of (16) should fulfil the equation

¢$Z)‘ (O,—) = (sino.),j ~ cos w,~)¢g:22 (0,) B . (17)

if at O; a Dirichlet condition and a condition of type R, intersect and w; is an integral
multiple of 7/2.

(ii) The right-hand sides of (16) should fulfil the equation

B, (0) = (sinw; — cosw)éfi) (0;) (18)

if at O; a Dirichlet condition and a condition of type R; intersect and wj is an integral
multiple of n/2.

(ii) The right-hand sides of (16) should fulfill the equation

Som, (03) = (sin ;)¢ (O;) (19)
if at O; a condition of type R, and a condition of type Rj; intersect and w; is an odd
multiple of x/2.

It is easily seen that functions &, %20, ¢3¢ defined by u, € W'(Q) in sence of (16)
fulfill the conditions (17)-(19).

Using the imbedding theorems between weighted and classical Sobolev space ones
again we conclude from Theorem 6 and Corollary 7 the following

Corollary 8: Let the conditions of Corollary 7 be fulfilled and assume w; & {n/2,
3n/2} for any O;, where boundary conditions of type R, and type Ry intersect. Then
for any real number q with 2 < ¢ < 2/(1 + maz{s; : j =1,...,N}) the operator of
problem (5) defines an isomorphism between W'9(Q) x L () and the subspace of

W9(Q) x Ly(9) x Kl_l/"’(Rl) X Wl-l/q.q(Rz) x W-Y49(R,)
x W-149(Ry) x W1-1/29(Ry),

which is defined by the conditions (17)-(19). Therein the numbers s; denote:

(1) 8; = max{—1,sup{s € IR_ : A = t+is is a solution of (12)}} in the case of inter-
secting Dirichlet boundary conditions at O;.

35 Analysis, Bd. 11, Heft 4 (1992)
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(i) s; = max{—1,sup{s € IR_: A = t+is is a solution of (13)}} if at O; a Dirichlet
boundary condition and a condition of type R, intersect.

(iti) s; = max{—1,sup{s € R_: A = t+is is a solution of (14)}} if at O; a Dirichlet
boundary condition and a condition of type Ry intersect.

(iv) s; = max{—1,sup{s € IR_: A = t+is is a solution of (15)}} if at O; a condition
of type R, and a condition of type Rj intersect.

4. The Bingham equation without convection of mass for a
fixed temperature

After substituting for ¥ any 6 € Lo,(€2) and neglecting the convection term u;Diu; we
consider the equations (1.a),(1.b) and the corresponding boundary conditions (2.b)-
(2.d). 1t is well known (cf. [3, 23]) that this problem implies the variational inequality

(fru—u)+®(v—u)+Bs(v—u) <a(u+hv—u)+¥(u+h)—P(u+h) (20)

for all v € W, where we have used the notations
0wy = [ WODWDsWdzs, Y= [ Du(wds,
0 0

P(u) =/ Partie 3, P3(u) =/ P3nbin ds,
Rz R:!
W={ueW"?Q): divu=0, v|g, =0, va|r, =0, v|g, =0}
and the function h denotes any element of W(Q) fulfilling the conditions
divh =0, hlp, = @, hnlr, = P20, helry = Pae
and

Py = P2t — St(b‘.)lﬂu Pin = P3n — sn(ﬁ)lﬂa‘

It is easily seen that the above written variational inequality has a unique solution in
the space W. The proof is based on the existence result for variational inequalities
with pseudo-monotone operators given in [16] (cf. also |3, 23]). The monotonicity of
the operator A defined by (A(u),v) = a(u,v) is obvious. Moreover, we have the a
priori estimate

a2 @) < il 2@ | + llex [W-1722(Ry) |
+ ||esn (W22 (R) || + || [W2(@) ]|}
< sl 2@ + Sias llow [W-m(Ry) |}

0 ifk=2,l=nork=3, 1=t
1 fk=2l=tork=3,l=n"
Let us remark that another variational formulation of the Bingham problem is given
by

(fru—w)+®(v—u)+Ps(v—u) <a(y,v—u)+¥(v) -¥(w) YveW (2la)

where 0 < m(6) < x(6(-)) a.e. in Q and my =
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with
divu =0, ylp, =@, tnlr, = ¢2n, |, = ¢s. (21.b)

We use the regularity results for weak solutions of Stokes problems with changing
types of boundary conditions in non-smooth bounded domains given in Section 3 to
describe the regularity of the solutions of (21). Recalling the inequality (21.a) we
substitute there +Ay for vy with A > 0. When ) tends to zero we get the system

|a(§,2) - (£3 2) + ¢2(y.) + Q3(2)' S ‘I’(t_’): (223)
—a(u,u) + (f,u) — 2(u) — ®a(u) = ¥(u), (22.b)
dive =0, ulp, =@, talr, = P20, wlr, = P2 (22.c)

‘ 1/2
Introducing the space = = (L,(R))* with the norm [¢|E}| = f, 7 ( .2,1—152) dz
(r > 0) and an operator 7 : W — =, v +—» ((D.,(v)) ';=1) and denoting M(v) =
a(y,v) — (f,2) — ®2(v) — 3(v), we see that'(22.a) is equxva.lent to |M(v)| < lIm(w)I=)-
By the Hahn-Banach theorem it follows that there exists ((m;;)?;_,) € Z* = (Loo(R))*
with m;; = mj; such that

M(v) = Z/muwa (23)

l.’—
and

| 1/3 )
lwqwmm(zm) <1 (24)

l,)"

hold. Because of (22.b) we have

1/2
M(w) + V() = /[Z m; .,(u)+(ZD (u)) } dz =0

iy=1 $,5=1

and, with (24),

1/2
Z m;;Dii(u) + (Z D; (u)) =0 a.e. in Q.

iJj=1 =1

With the definition of the operator M and (23) we get the Stokes problem

—D;(pDij(u) — mi; — p&i;) = f; (1 =1,2) in O

Dju; =0 in Q
u=gp, on R,
Un =2 , (uDi;(u) — mi)nit; = o on R,
e = @3, (pi; — pDi;(w) — myj)nin; = s, on Ry

which is equivalent to (21). Because m;; is essentially bounded in Q we éet
((Dimii)?=l) € WIH(Q), mynit;|a, € W™/P#(Ry), myjnin;|a, € W/PP(Ry)

35*
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for every p € (1,00). Therefore it is possible to use the regularity theorems for the
Stokes operator with non-smooth boundary data in two-dimensional domains (cf. Sec-
tion 3) to get

Theorem 9: Assume ¢ > 2. The solution of problem (21) is an element of the
space
HI(Q) = WH(Q) x Lo(R) (25)
if the right-hand sides of the differential equations and the boundary conditions are
elements of

U@y =Ww9(@) x [ WiVea(ry) x wimmsi-teary] - (26)

j=1

ms; ... order of the boundary condition on I';,
if the functions ¢, ¢, , @, fulfil the compatibility conditions (17)-(19), if u(6) €
W4(Q) with s > max(2,q) holds and if for each j € {1,...,N} the strip f; —1 -2 +
2/q < Im) < ¢; of the complez plane is free of solutions of that equation of (12)-(15)
which corresponds to the kind of boundary conditions given at the sides of the singular
point O;. Thereine; (j=1,...,N) may be any positive numbers.

Remark 10: Obviously, at the line {A € €: Im\ = 0} there are situated only solutions of (15).
These correspond to the apex angles 7/2 and 37 /2. Therefore if the domain under consideration has
no corner with apex angle 7 /2 or 37/2 and intersecting boundary conditions of type R, and type Ry,
if @ € W1-Ps(Q2) for some py > 2 and if the coefficient function u(-) is sufficiently smooth, then there
always exists a number ¢ > 2 fulfilling the assumptions of Theorem 9. Moreover the excluded case
seems to be unreasonable by physical arguments.

By another point of view we define formally an operator
A=A+V: HYQ)— UY(Q)
with the spaces H!9(Q2), U"9(Q) as defined in Theorem 9 and

(4(w),v) = a(w,) and (¥(a),v) = [ 91()—%’%)—(-—’ dz

(u is defined to be (u,p)) and a sequence {A.},,, of operators approximating A by

A, = A+ with
(@ (u),v) = [ ~2aDu®)
. Ja  Du(u)

It is easily seen that A, tends to A with respect to uniform convergence if ¢ tends to
zero and that A, : H19(Q) — U'(Q) is an isomorphism for any & > 0. Moreover for
6 € W*(Q) with s > 2 we have

|a2 (£.0020e,) | @) < c (lew @) || (£.20 20 2,) 0@

where C(-) is a constant depending on the norm of 6 but not on . This may be proved
in two steps. First we deduce this inequality for ¢ = 2 from the inequality of coercivity
for a(u,v), where we use the monotonicity of ¥/, on H"?(f2) to prove the coercivity
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of A.. With the usual arguments (cf. [1, 15]) we get then the asserted inequality for
q>2.

5. The linearized energy equation

First we consider now the variational equation

Jos(9)D9Dindz + [ vi(Did)ndz + [ 29nds+ [, Snds= [ gndz

d=—cfb onlp=380\Tl, @7

for any v € L>*(2) (p¢ > 2), which corresponds to (1.c) with fixed velocity. For this
problem we get the following weak maximum principle. .

Lemma 11: Assume that the conditions

(i) 32>00nT,,
(¥) 1c@)| < Colb(z)]| on L.,
(#3) x(t) >0 for allt € R,
(iv) [Tp| > 0, that means that Dirichlet boundary conditions are given on a set with
positive measure and
(v) (a) va20o0nT, divi=0andg(:)=0inQ or
(b) (x(8) = x(t))(s—t) 20 foralls,t € Rand g(-)=0inQ or
(c) 0<m<Lk(t)SM<oo foraite R, 3., ,|vi(z)| < m*? ae in Q
and g € L, () for somer > 1

are fulfilled. Then any weak solution 9 € W1(Q) of problem (27) fulfils the weak
mazsmum principle

min { ~Co,inf (3) | — CiK, < inf9 < supd < max{ C.,mup (£)"} + ok
0y rn b r = ro) -— a -— i 09 rD b r
with C; = Cy(r,(,|]) (i =1,2) and K, = ||g|L,(Q) || /m. By (h)* and (h)~ we denote
the positive and negative part of a real-valued function h, respectively.

The assertion of Lemma 11 is a generalization of other well-known statements of the

weak maximum principle (see, e.g., 5, 15]). An exact prove is given in author’s thesis
[9, Section 5.5).

Remark 12: If condition (v)(c) of Lemma 11 holds the assumption (ii) may be skipped, if we
assume that the function c/a defined on Iy may be extended to an element of W1/22(312). We get in
this case the maximum prinaple

c

iof (5) - ik < info <oupd < mup (5)" + k.

with K, = K, + |lc/a|W'/32(8Q)||/m.
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Let us now consider the problem consisting of the equation
—Di(RDW)+vDd =g inQ (28.8)
and the boundary condition A
—akDd-bd=c on 81, -~ (28.b)
where & is a function possibly depending on z € 812 but not on ¢. For this we state
Lemma 13: A unique weak solution ¢ € W'2(Q) of (28) exists if the conditions

(}) ITo| = |89\F,| >0,
(ii) the function c/b defined on T'p may be eztended to an element of W1/22(3Q2),
(i) 0<m<k()<M<oo ae n4,
(iv) v € W'(Q) with divy =0,
(v) b(z)/a(z) 20 onT,
(vi) g € L.(Q) for some r > 1 and
(vii) the function c/a defined on T’y may be extended to an element of W/22(3Q)

are fulfilled.
Proof: The operator

N
E:W(Q) — W(Q) x [] W2 ¥(T;)]
=1
with b
(E(®),n) = / FcDiﬂDmdz+/ v;(D;9)n dz +/ -(-1-1771 ds
a 0 L.

and
mp;...order of the boundary condition on I’y

is pseudo-monotone. Moreover, any weak solution of (28) fulfils an a priori estimate.
This is seen by using Lemma 11 and the inequality

/ v(Did) dz + / boras > - [ | Lenords
Q . G . 2

~C(L) 191 Lol ] B2 91 W

[\

v

(The coercivity of the principle part of the operator E is obvious.) Hence the main
theorem on pseudo-monotone operators (cf. [27]) ensures the existence of a weak
solution of problem (28). Using the assertion of Lemma 11 once again we conclude the
uniqueness of the solution B

In connection with the consideration of the Bingham equation for a fixed tempera-
ture (cf. Section 4) we have assumed that § € Lo (f2). Therefore we state now a result
on the regularity of the weak solution of problem (28).
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To this end we need some information on the data of the boundary value problem
near a corner. The general theory on elliptic problems in non-smooth bounded domains
results that the following numbers are characteristic with respect to the regularity of
the solution near a singular boundary point (cf. [14)):

{,,,,} if at O; two Newton conditions intersect, i.e.,

keZ if a(z) > 6o > 0 along I';_; and T'j;

{‘ (2 “E} if at O; a Newton and a Dirichlet condition intersect, i.e.,
tez if a(z) = 0 either along I';_, or along T;;

{m} if at O; two Dirichlet conditions intersect, i.e.,
keZ\{o0) if a(z) = 0 along I';_, and T;.

(Here i denotes the imaginary unit.) We get

Proposition 14: Assume the conditions of Lemma 13 be fulfilled. The weak solution
of problem (28) is an element of the space W*(Q) if for any j € {1,...,N} the strip
{Ae: 2/t —2 < Im < g;} is free of the respectitive of the above listed numbers
for some g; > 0, ify € Wli and if the vector built of the right-hand sides of the
differential equation and the boundary condition is an element of the space

L) x [[ (W= -0

=1
where mp; = 0 if we have a Dirichlet boundary condition on I'; and mp; =1 else.

The proof of the last assertion is a direct consequence of V.A. Kondratiev’s and P.
Grisvard’s regularity theory (cf. [6, 10, 14])

Remark 15: It is easily seen that for every boundary configuration there exists a number ¢ > 1
fulfilling the assumptions of Proposition 14. We may choose t = 2 if the inner apex angles at the
singular boundary points are less than

(3) ' x for two intersecting Dirichlet or Newton conditions at O; and
(ii) =/2 if at O; a Newton and a Dirichlet condition intersect.

6. A priori estimates for the solutions of the non-linear prob-
lem (1),(2)

In this section we proof the following

Theorem 16: If Assumption I is fulfilled, then for a solution of problem (1), (2) we
get the estimate

" (ﬁ)ps ")' Hl'q X Wz"" < C(L’K’ 9,a, b7 (232 Q)
The space H9(R2) is defined in (25).
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Proof: First we remark that, because of the weak maximum principle (cf. Lemma
11), we have a universal bound in the L-norm for the ¥-component of the solution.

This we use secondly to prove an a priori estimate for the velocity components of the
solution in terms of W'?-porms. As noted above we set k = 0 if Ry # 0 and therefore
we can use the well known technique of estimating weak solutions of Navier-Stokes
(for k # 0) or Stokes (for k = 0) problems (cf. [25] in both cases) to get an a priori
estimate for the velocity components of the solution.

Third we state

Lemma 17: Let u € W'%(Q) and 9o € WH%(Q). Then there ezists 9, € W2(R2)
unth 'IY‘,!’O = ’I&'o!,oo and

1
[ Doyl ds < 3 |l W@ i wH2@)]

for alln € WY*(Q) such that n =0 onT'p = {z € 3N : a(z) = 0}. Here Tr, denotes
the usual trace operator. Moreover, for this function ¥ we get the estimate

| [ 200D ds| < C &I L@l | 90l W2 (@)] 1 W)

for alln € W12(Q) and any coefficient k. Therein the constant C is independent of u.

Proof: Near smooth parts of the boundary we use E. Hopf’s function (cf. |25,
p-175]), which describes the distance between a point of 2 and the boundary in a
smooth way, and R. Temam'’s [25] construction of vectors homogenizing the boundary
conditions of Navier-Stokes problems.

Near non-smooth parts of the boundary we define a function £, analogous to E.
Hopf’s using polar—coordinates (r,w). Therefore once again we use the standard cone
K with apex angle w, defined in Section 2. The function in request should only depend
on w. We split the interval [0, w,] into five sub—intervals symmetrically. In the outer of
this intervals the function £, is required to be equal to one, in the inner sub-interval we
demand £, to be equal to zero and in the intermediate intervals we interpolate between
zero and one smoothly. To be more precise; the function £, is defined by

1 for 0<w<e
p((w — €)/e) for e<w< 2%
L(w)=¢ 0 for 2e Sw<w, -2

P(wo —e—w)fe) for wo—2e<w<w,—¢
1 for  wo—e<w<we

where p is a polynomial in the interval [0, 1] with
p(0) =1, p(1) =p'(1) = p"(1) =0 and p'(0) = p"(0) = 0,

which guarantees that the interpolation between zero and one in the intermediate
intervalls is twice continuously differentiable. (The simplest polynomial fulfilling these
conditions is p(t) = —6t°> 4 15¢* — 10t> + 1.) The definition of £, shows that there exists
a number B € IR, such that

e(2)l, |Dike()], |Due(z)| < B (z € K; 4,k =1,2).
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Therein D;, denotes the second partial derivative. The construction of a homogenizing
function now follows the line of R. Temam’s proof il

Inserting this homogenizing function in (27) for the case that v, is a continuation
of the function —c/b defined on I'p and using the weak maximum principle (cf. Lemma
11) we may proof an a priori estimate in W' for the temperature component in the
usual way. The strong monotonicity of the principle part of the respective variational
equation is obvious and the assumption u,|r, > O together with divu = 0 ensure
that fnu;(Diﬂ)ﬂ dz is positive. In the case u, ¥ 0 on I', we use the weak maximum
principle for ¥ to get an a priori estimate in W2 for u, which is independent of .
This estimate may be used to prove an estimate for ¥ in terms of the W!-2-norm, which
only depends on the L,,—bound for ¥, the geometry of 2 and the right-hand sides of
the equations.

After that we use the estimates for J and u and a result of K. Groger [7, Theorem
" 1) to improve the a priori estimate for ¢ as follows:

Lemma 18: There erists a number s > 2 (depending only on the geometry) such
that the weak solution ¢ of

—D.(kD,t’) + u.~D,~t9 = g in
—akD,9-b% = ¢ on 99,

with0 < m < & < M < 00, is an element of W*(Q) and the estimate
191 Wil <Clam, MY || W21 + | | Wes(TL)||* + [ §| Wr-/e (Do)
+ Tha e Wes(Re) < wira R+ | £ W27}
holds, if the functions a,b,c, g are suffictently smooth on thesr supports.
For the proof we only remark that because of
| fowi(Dd)nde] < CEL, wl Lill | D\ Lall lf ) Lol
< Clluw || oW [ w |

with 3 + 1 = §, 3 + § = 1 the inequality ||u;Di9|W="%|| < C|lulW"?|| |} W2
holds. i
1

The last assertion means that there exists a number s > 2 such that
|81 W] < C(m, M, g,0,b,¢,¢, f, K)

because we have 0 < m < x(¥(z)) < M < oo a.e. in Q by the maximum principle.
Using Theorem 9 and the "bootstrapping” argument known from the considerations of
Navier-Stokes problems in the "smooth” case we get an estimate for (u,p) in H"9(Q)-
norms for some ¢ > 2, namely

Il (s ) HE22)

< ClmM)C(I| W) {|| F| | + || Kol 29|
+ Tiay ||| Wi-Vea(R,) x Wi-ma-i/ea(R,)||}
S C(maM19,a,b,C,£,L.K,Q),
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because for any s, > 2¢/(g — 2) the term ” Ko|w-" “" may be estimated by “_] ”
||9| W2||. Once again we improve the estimate for ¥, now using the last mequa.hty
and Proposition 14, and we get

|| (w,p,9)| H" x W2|| < C(m, M, g,8,b,¢,9, f,K,Q).

The proof of Theorem 16 is done |

7. Proof of the solubility of non—linear temperature—coupled
Bingham problems

For problem (1),(2) we define the space

X= {u € HIA(Q) x WrH(q): U= @p9)and dive =0 and ulp, =0 and }

tn|lr, =0 and w]g, =0 and J|r, =0
for 2 < ¢ < o0oand1 <t < oo and an operator B : X x X — W™ x L, by
(v=(2v"vg))

(B(u,v), (w,n)) = a(6, 4, w) + bi(v, v, w) + k(6, w) + (¥'(v), w)

+e(6,9,7) + by(w, 9, ) (29)

with
a(,u,w) = [, p(0)Di;(w)Di;(w)dz, e(6,9,n) = [f,u(0)DiIDindz,
bi(y,v,w) = [, kv(Dv;)w;dz, ba(y,9,n) = [u(D)ndz,
@ (ww) = [orpiD;(w)dz, kO,w) = [, K;bu;dz
(w,n) € WM (Q) x Lo() (1/t+1/¢ =1, 1/g+1/¢ =1).

In analogy to the approximation of A by A, (cf. Section 4) we define now a sequence
{B.},>0, substituting

@,e) — @0 vt @@= [ ZD,w
Il =.

in (29). It is easily seen that B, converges uniformly to B on bounded sets of X’ x X
if € tends to zero (cf. the same property for A and A.).

By By and B,y we denote the operators resulting from B and B, by fixing the
second argument. The properties which we have proved for A, and Lemma 13 ensure
that {B.(¥)}e>0,veg is bounded for each y = (f,g,¢,¢) € Y with

Y= W- ‘Q(Q) X L((Q X HJ‘I [Wz’"‘l’,—lll l(r\ )]
x H,:l [wi-1aa(p;) x Wi-msi=la(r)]

and each bounded set G C X’. Obviously By and B,y are operators from X to ).



On a Temperature-Dependent Bingham Fluid 527

Because the operators B, are well defined not only for v € X but also for v €
L,(2) x W=13(Q) x Lo(R) for every s > 2 and X is compactly imbedded in the last
space, we have

Lemma 19: Let G C X be a bounded open set. The operator-valued operators
B, : v — B,y are completely continuous with respect to the uniform convergence on
G, i.e., every weak Cauchy sequence {v,} C G will be transformed tnto a sequence
{Beyv.}, which, with respect to the norm of uniform convergence on G, ts a strong
Cauchy sequence.

Proof: With (w,n) € W x Ly we estimate the difference

|(Bc(u1,v1) — Be(uz, v2), (w, )|

< la(6y, 1y, ) — a (B2, 1y, )| + (62, 8, — 1, w)| + |( () — P, (us), w)
+ (b1 (21, 01,) — b1(a, U, )| + k(6 — 62, 0)| + [e(62, 81 — O2,m)|
+ le(61,91,7) — e(82,91,m)] + [B2(wy, 01, m) — ba(tip, F2,m)] .

We restrict the estimation to the first four summands of the right-hand side of the last
inequality; the other one may be managed in a similar way.

(30)

(1) The first term may be estimated using Holder’s inequality, that means
|a(61, uy, w) — a(62, 1y, w)|
= | falis(81) = 1(62)IDs;(w,)Dis(w) de|
< Cllu(61) = p(62)] Looll 1 Drr(wi)] Loll 1 Drr(w)] Ly |l
< C(Lip ) 161 — 8a) Looll [l s W ||l w22
(ii) For the second term we get
la (82,4, — uy, w)|
= | fu #(62)Di;(1; — u,)Dij(w) dz|
< C(Lip ) (|62 Lol 1 Drr(ws — o)l Lgll D rs(w)] Le ||
< C(Lip ) [16a) Lol [| 1 — il W] [| i w2
(iii) Because of the boundedness of the function f(A) = (A% 41 —2X°cosy)/[A?+1—
2X cos )¢ for A € R, for any elements a, b of a Banach space E we get the inequality

a b

E
lalE|*-<  |IblE|-

| < Cla- bIEIF.

And therefore for the third term of (30) we get the estimate
(22 () — P(ue), w)l
= |fa7 [mrs - o] Dutw s
< for { o [0 - o)} {2 mp )} " e
= Jo D [t ~ poiite] Din(w de
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< C7 [o[Dr(w — v2)]° Drr(w) dz
< OOl — ol W |l

(iv) Finally the fourth of the terms of inequality (30) may be estimnated in the fol-
lowing way:

lb1 (21, 01, w) — b1 (3, va, w
= | falvsiDivy; = vy Divajlw; dz|
< | fa(vs = vas)(Divrj)w; dz| + | [ val Dilvy; — va;)}w; dz
< llvai = vai| Laf| || Divij| Lg|l fw;| Lell
+ oz | W [ v1; = voj| Ll || w;| W
< Clles = vl Lo [l B24] + [l w2} |l w2 |
There we have used the imbeddings W' — L for =} - 1 and W'9(Q2) — L.

Summing up the estimates (i}-(iv) and the analogous ones for the other terms of
(30) we get

[(Be(uy, v1) — Be(ug, v2), (w,1))]
< C(Lipp,Lipx) || (w, I W x Lef|
X ([l WY + o] B2+ a9+ [ W24 ]
x ["21 - hlﬂl'q" + "!1 - lzlﬂl'q”z
+ller — vo| Loll + || 62 — 92| W 0 L]

That means that the conclusion is now proved. il

The last assertion results obviously in the following

Corollary 20: Each operator of the family B, : X x X — Y fulfils the properties
of a mapping with restricted representation by F.E. Browder [2, Definition 12.6.] if G
13 a bounded and open subset of the space X.

The trace B(u,u) of B is the operator of problem (1), (2). It is denoted by S. We
now prove

Lemma 21: The set S(G) is closed for each bounded set G C X.

Proof: Assume {y.},cnw C S(G) with y, — y € V. For every n there exists
an element x,, € § with S(x,) = y.. Because of the a priori estimate for solutions
of problem (1),(2) the sequence {x,} is bounded and consequently weakly compact.
Then x, converges to x € X weakly with respect to the norm in X’ and strongly with
respect to the norm in L,(22) x W-13(Q) x L,(R) for s > 2. Using the properties
already proved for the operators A, and B, we get

I18(xa) = SGI < 1S(xn) = B(x,xa )|l +[IB(x,%0) = Be(x, )|
+1Bc(x,xn) ~ Be(x,x)|| + [[Be(x,x) - S(x)]] < 6

if n > n,(6) and € < €,(6). The uniqueness of limes in ) shows that S(x) =y §l
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We define a homotopy S., by S,(u) = BS,")(u) = B(u,7 - u) and choose the set

= {u € X : ||u|X| < 2C,}, where C, is the constant for which we have proved
the a priori estimate in Theorem 16. Above we have proved the existence, uniqueness
and regularity of weak solutions for the energy equation with fixed velocity and for the
Bingham problem with fixed temperature. In the case v = 0 the operator S, defines
an uncoupled problem and we conclude therefore the unique solubility for the equation
So(u) =y and the regularity of its solution for every y € ).

The properties just proved for the couple (S,S,, B, B,) of operators show that the
assumptions of [2, Theorems 12.5, 12.6 and 12.7] are fulfilled and consequently we get

Theorem 22: Letf = (f,g,c,9) € Y and assume that Assumption I is fulfilled and
that the summing ezponents ¢ and t comply with the assumptions of Proposition 14 and
Theorem 9. Then there exists a solution u € X for problem (1),(2) with nght—hand
side f.

References

[1] AGMON, S., DouGLIS, A. and L .NIRENBERG: Estimates near the boundary for solu-
tions of elliptic partial differential equations satisfying general boundary conditions. Comm. Pure
Appl. Math. 17 (1964), 35 - 92.

(2] BROWDER, F.E.. Nonlinear Operators and Nonlinear Equations of Evolution (Proc. Symp.
Pure Math.: Vol. 18/2}. Providence, R.1.: Amer. Math. Soc. 1976.

(3} DuvauT, G. and J.L. LIONS: Inegualities in Mechanics and Physics. Berlin-Heidelberg-
New York: Springer Verlag 1976.

(4 DuvauT, G. and J.L. LIONS: Tvansfert de chaleur dans un fluid de Bingham dont la
viscosité dépend de lo température. J. Funct. Anal. 11 (1972), 93 - 110.

[5] GILBARG, D. and N.S. TRUDINGER: Elliptic Partial Differential Operators of Second
Order. Berlin-Heidelberg-New York: Springer Verlag 1977.

(6] GRISVARD, P.: Elliptic Problems in Nonsmooth Domains. Boston-London-Melbourne: Pit-
man 1985.

(7] GROGER, K.: A W'P_estimate for solutions to mized boundary value problems for second
order elliptic differential equations. Math. Ann. 283 (1989), 679 - 688.

(8] HLAVACEK, I. and J. NECAS: On inequalitics of Korn’s type. Arch. Ration. Mech. Anal.
36 (1970), 305 - 334.

[8] KALEX, H.-U.: Zur Lisungstheoric fir dic Gleichungen der warmegekoppelten Stromung
zaher, inkompressibler Fluide mit temperaturabhangigen Materiglkoeffizienten in zweidimension-
alen Gebieten mit nicht-glatten Randdaten. Thesis. Dresden: Techn. Univ. 1990.

[10) KONDRATIEV, V.A.: Boundary value problems for elliptic equations on domains with conical
or angular points Q;l Russian). Tr. Mosk. Mat. O.-va 18 (1967), 209 - 292.

[11] KONDRATIEV, V.A. and O.A. OLEINIK: Boundary value problems for partial differential
equations in non-smooth domains (in Russian). Usp. Mat. Nauk 38 (1983), 3 - 76.

(12] KUFNER, A.: Weighted Sobolev Spaces (Teubner-Texte zur Mathematik: Vol. 31). Leipzig:
B.G.Teubner Verlagsges. 1980.

[13) KUFNER, A., JOHN, O. and S. FUCIK: Function Spaces. Prague: Academia 1977.

(14] KUFNER A, and A.-M. SANDIG: Some Applications of Weighted Sobolev Spaces
'I‘eubner-Texte zur Mathematik: Vol. 100). Leipzig: B.G.Teubner Verlagsges. 1987.

(15] LADYSHENSKAYA, O.A. and N.N. URAL'TSEVA: Linecar and Quasilinear Equations (in
Russian). Moscow: Nauka 1973.

(16] LIONS, J.L.: Quelques Méthodes de Résolution des Problémes auz Limites Non Linéaires.
Paris: Dunod 1969.

(17} MAZ’YA, V.G. and B.A. PLAMENEVSKII: On the coefficients in the assymptotic ezpan-
sion of solutions of elliptic doundary value problems in a cone (in Russian). Zap. Nauchn. Semin.
Leningr. Otd. Mat. Inst. Steklova 82 (1975), 110 - 128,



530 KH.-U KALEX

(18] MAZ’YA, V.G. and B.A. PLAMENEVSKII: On the cocfficients in the assympiotic ezpan-
sion of solutions of elliptic boundary value problems in domains with conical points (in Russian).
Math. Nachr. 76 (1977), 29 - 60.

{19) MAZ’YA, V.G. and B.A. PLAMENEVSKII: Estimates in L? and in Holder classes and the
Agmon-Miranda mazimum principle for solutions of elbiptic boundary value problems in domasns
with singular boundary points (in Russian). Math. Nachr. 81 (1978), 25 - 82.

(20) MAZ’YA, V.G. and B.A. PLAMENEVSKIL: L?-estimates of solutions of elliptic boundary
value problems in domains with edges (in Russian). Tr. Mosk. Mat. O-va 37 (1978), 49 - 93.

[21]) MAZ’vYA, V.G. and B.A. PLAMENEVSKII: First doundary value problems for the classical
cquations of mathematical physics in domains with piecewise smooth boundsry (in Russian). Z.
Anal. Anw. 2 (1984), 335 - 359 and 523 - 551.

[22] NAUMANN, J. and M. WULST: On evolution equations of Bingham-type in three dimen-
sions, II. J. Math. Anal. Appl. 70 (1979), 309 - 325.

(23] PANAGIOTOPOULOS, P.D.: Incguality Problems in Mecchanics and Applications. Boston—
Basel-Stuttgart: Birkhauser Verlag 1985. )

{24] ROSSMANN, J.: Elliptische Randwertaufgaben in Gebieten mit Kanten. Thesis. Rostock: Uni-
versity 1984.

[25) TEMAM, R.: Navier-Stokes Equations. Theory and Numerical Analysis. Amsterdam: North
Holland 1977.

[26] WILDENHAIN, G.:Darstellung von Lésungen linearer elliptischer Differentialgleichungen
(Mathematical Research: Vol. 8). Berlin: Akademie-Verlag 1981.

(27) ZEIDLER, E.: Vorlesungen iiber nichtlincare Funktionalanalysis (Teubner-Texte zur Mathe-
matik: Vols. 2, 9, 16). Leipzig: B.G.Teubrner Verlagsges. 1976-78.

Received 14.01.1991; in revised form 03.03.1992

Dr. Hans-Ulrich Kalex

Hochschule fir Architektur und Bauwesen
Fakultat Informatik und Mathematik
PSF 545

D(Ost)- 5300 Weimar



