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A result on the existence and smoothness of solutions for temperature - coupled Bingham 
problems in non-smooth bounded 2D-domains is proved, which complements the results of 
G. Duvaut and J. L. Lions [3] on this subject. 

Key wordsi Bingham fluids, non -smooth domains,-temperature -coupled fluid.flow 

AMS subject classification: 76A05, 35J65, 35R05 

1. Introduction 

Bingham fluids are usable in various technical and technological directions. For exam-
ple coating processes may be considered as flows of Bingham fluids. Beside zones of 
viscous flow there exist so-called "plugs", that means zones where the derivative of the 
velocity vanishes. 

Moreover, the boundary value problems arising from technical processes should be 
considered with changing types of boundary conditions. For example gas heated melt-
ing processes need three types of boundary conditions for the velocity: condition of 
adherence for solid walls, slip-conditions for uncovered fluid surfaces and conditions 
for in/out-stream surfaces. 

Unlike the well-known existence results of C. Duvaut and J.L. Lions (cf.(3, 41) 
the coupling between temperature and velocity by convection will be considered here. 
Whereas convection is essentially, the energy transport by radiation and convection of 
mass is negligible and the fluid flow may be regarded as stationary in many cases (e.g. 
the flow of liquids). Beyond this the material constants heat capacity and viscosity are 
considered to be temperature-dependend and - in a sence - unbounded. 

The differences between the model considered here and that stated in 13, 4, 22, 231 
are implying modified techniques for proving an existence result for the corresponding 
boundary value problem. Although the general scheme: 

• proving an existence and uniqueness result for an - in a sence - linearized bound-
ary value problem using variational inequality techniques 

• proving an a priori estimate for the original non-linear problem 
• using a fixed point theorem to prove the existence of a solution for the original 

non-linear problem



50	H.-U. KALEX 

is used in our proof too, there are some differences. Caused by the models for heat 
capacity and viscosity as well as the temperature coupling by convection the space 
W"2 may not be used for fixed point considerations. Thus we need some regularity 
results for the "linearized" problem and therefore some results on isomorphisms for the 
Stokes as well as the Poisson problem in case of non-smooth boundary data. Moreover 
the proof of the a priori estimate is quite different to that used in the literature cited 
above. 

2. Notations and definitions 

Let 11 C 1W' be a bounded domain with a C°'-boundary 8ft In the following we 
denote by D, the partial derivative with respect to the i-th coordinate. The flow 
of a Bingham fluid is assumed to be incompressible, viscous and buoyant. Here we 
are especially interested in temperature-coupled flow. Thus the flow is described by 
velocity, pressure and temperature. For this the preservation of mass, momentum and 
energy results in the following differential equations in the domain l (D, denotes the 
partial derivative with respect to the i-th coordinate): 

	

—D1 (o,1 (19,M,p))+kuDu +K,i9 = f1	(j = 1, 2),	(La) 

	

= D,u, = 0,	 (1.b) 

	

—D,(K(19)D,19) + uD,t = g.	 (1.c) 

These are supplemented by the boundary conditions 

—wc(t9)D,t9 - b't9 = c	on	 (2.a) 

	

!IRI =
	 (2.b) 

Un I R3 = 1&711R2 =	T ( t9 , 1L ,p)nIft, = P2n,
	 (2.c) 

=	= 'P3g,	na(t9,u,p)n, =	O3n	 (2.d) 

Here we have used the usual summation convention and the following notations: 

U... velocity 
19. . . temperature 
Kt9... buoyancy force 

• heat capacity 
• . . usually = 0; i.e. one has adherence at R1 

W31 . . . tangential velocity at R3 
• . . normal component of the area force at R3 

k... convection factor which depends on the 
boundary conditions for the velocity; 
k = 0 if R3 = 0 and k = 1 elsewhere

p... pressure 
• . outer force 

o(t9,,p) ... stress tensor 
g... sources or sinks of heat 
W2n ... slip of the fluid at R2 

• . tangential stress at R2 
811 = R1 U R2 U R3 
a, b, c. . . functions describing the


heat transfer through 811. 

Moreover, underlined variables are denoting vectors in 1R2 , a is the outward normal at 
811, t is the corresponding unit vector tangential to 811 and j3 is the scalar product of 
vectors a,f3 E JR2 Later on we denote by jz the viscosity. It seems to be more conve-
nient to use t9 as a normed temperature, i.e. to set 19 = (T - TB)/TB with T absolute
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temperature and T8 a proper reference temperature (e.g. T2 melting temperature or 
mean value), if we do this, the notation of problem (1),(2) do not vary qualitatively 
and therefore in the following we identify 10 with (T - TB)/TB. 

In this paper we prove a theorem on the existence of a solution for the following 
special case of the problem written above - usually called Bingham fluid: The stress 
tensor a' is defined by the equations 

a-,(t,u,p) =—p&, + &ij 
- { ((t9) + rD ff (y&)']D 1 (yA)	for D,j(u) 0	(3) 

- - ô',(u)	 for Di,()=O 

(ij=1,2) where r is a non-negative number. In the latter case we require &,,(u) 15 r 
and ö,(u) = &,,(u). Above we have used the abbreviations 

D,,(u) = 1/2(D,u, + D,u1 )	(i,j = 1,2)


and
An(M) = 4 ,,A,, for any A E 1R2 x V. 

It should be remarked that in this case the boundary conditions at R3 get the form


—fl0'(t9,u,p)flJ R3 = 7) -	(t,M)!jR = O3,,. 

Usually the vector of boundary stresses S(t9,u) = nô'(t9,u) is used and hence the 
boundary conditions at R2 and R3 may be reformulated; we get 

Sg(t,U) 3	W2i	and p - S ( t9 , u )I p,, = ço,,. 
The non-smoothness of the boundary is described in the following way: For the set 

81 there exists a disjunct partition into subsets F 1 ,... , F,r such that 81 = U 1 l', the 
subsets I', are sufficiently smooth and for every j E { 1,. .. , N] there exists a unique 
i E {l,2,3} with F, C R and a( .) ao > 0 on r, or a( . ) 0 on F,. The partition 
{r 1 ,.. . , F} is assumed to be maximal in the following sence: if we enlarge any set I', 
(j = 1,. .. , N) this set violates one of the last conditions. The points where the kind 
of the boundary conditions for the temperature or the velocity changes as well as the 
points where the boundary 811 is non-smooth are of special interest; these are denoted 
by C), (j = 1,... , N). This way we get 

M = {O,.. . ,Oq} = {x €011: 3i 54 j E (1,... ,N} with x = r1nr,}, 

the set of all singular boundary points of problem (1), (2). By wj we denote the (inner) 
apex angle of 11 at the singular point 0, (j = 1,. .. , N) and for some sufficiently 
small e > 0 and each point 0, of the set M we define a weight function p,, 

Ix - O,I	for Ix-0,I <c/2 
E	 for Ix-0,I>, 

which near C), reflects the distance between x and the singular point 0,. Apart from 
we assume this function to be sufficiently smooth. Later on we use the infinite 

cone K c ff 2 with vertex at zero and apex angle w 0 as a model domain to describe 
non-smoothness in 1R2-domains.



512	Hr-U, KALEX 

For the following considerations we need a number of function spaces. As usual the 
classical Sobolev spaces are denoted by Wa(1l), a "J'(1), WI -P(M) (1 < p :5 00,8 E 
JR). Besides this we need so-called weighted Sobolev spaces to describe the regularity 
of solutions for boundary value problems in case of non-smooth boundary data. For 
lEI T U{O},pE1R with l<p:5oo and I3=(I3I ...... 3N )EJRN we define the spaces 
'?(Z, M) as the closure of 

C(1l,M) = {v € Cco 	supp(v) fl M = 0, supp(v) bounded} 
relative to the norm

11 P

 

1/p 

	

II u I 1'?( ,M )D = 
(Iral-:51 

I(ñ'+'o) D°'uL ) .	(4) 

Obviously N is the cardinality of M. Similar, 1 (11, M) is the closure of C°() 
with respect to the norm (4). After that, weighted Sobolev spaces with negative order 
of derivation, i.e. for 1 E Z with I < 0, and trace spaces of weighted Sobolev type 
may be defined by duality and as factor spaces, respectively, as this is known from the 
classical Sobolev spaces. The analoga of the above defined spaces for the infinite cone 
K are built in a similar way using C(K, x€,) instead of Coo (fl, M) and Q(x) = Ix - 
instead of the functions p,. For further information on this topic see, e.g., 112, 13, 141. 
In this context it should be pointed out that we often use the notation E instead of 
E(Q) to describe a function space on Il. For the norm of an element x E E we write 
synonymously IIx I E ( 1)D = li x iE ll = lir il . Moreover, for E we use the abbreviation 
instead of E x E. 

For technical and physical reasons we make use of the following, basic 

Assumption I: Let a(x) a0 > 0, b(x)/a(x) 2! 0 and Ic(x)I :5 CeIb(x)I for some 
C0 E iR. and  Era = {x E 81: a(x) 9k 0), let k = 0 if R3 36 0 and assume that one 
of the following conditions is satiesfied: 

(i) 0<m<ic(t)<M<oo for any tE1R and u>oorgojniI 
(ii) c(t)>0 for any t€ JR, un Jr. >0 and g0 in f) 

(iii) ,c(t)>O and (i(s)—ic(t))(s—t)^!0 for any s,tEIR and g0 in fZ 

Moreover, assume that the function c/b defined on rD =	may be extended to

an element of W1/22 (acZ), that the functions ço,ço , fulfil appropriate compatibility 
conditions, which will be stated later (cf. (17) -(fj). 

Remark 1: (1) The condition unir. > 0 means 
ra n R3 = 0,	(z) ^! 0 for x E r. n R1 and ço20(x) ^! 0 for z € ran R2. 

This means especially that at in/out-stream surfaces , which are part of R3 , we must have a Dirichiet 
boundary condition for the temperature. In practice we have usually UftIR,UR, 0. 

(ii) The boundary conditions on R2 describe the circumstances on an uncovered fluid surface and 
those on R3 mean that an area force is acting. 

(iii) The positivity of b/a on r5 is equivalent to the fact that the heat flux is directed from wanner 
to colder materials.
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(iv) The condition Ic(z)I < CoI b(x)I on 1', especially may be interpreted as follows: Constant 
heating or cooling through the walls is impossible if these are completely isolated, i.e. if the coefficient 
b is equal to zero and a is positive. 

(v) The assumption that k vanishes whenever R3 is non-empty is a technical one; otherwise a 
proof of existence for problem (1), (2) seems to be impossible. 

(vi) Assumptions (i) —(iii) above signify especially that either the medium inflow is free of sour ces

 and sinks of heat or the heat capacity is everywhere bounded and strictly positive. 
(vii) For heat capacity and viscosity the models v(6) = exp(- a 1 6 + 52) and c(6) = exp(b i t9 + b3) 

with some a,, b1 E R.* and &2 , b2 E JR are used in rheology. 

3. Isomorphisms for the Stokes problem in non-smooth 
bounded domains 

Because the results in this section are technical generalizations of well-known results 
we give only an outline of the considerations and omit the proofs. For details we refer 
to the conscious presentation of the material in case of elliptic operators (especially the 
Laplacian) in 1141 and to author's thesis 191. 

As pointed out in the introduction regularity results for some related Stokes problems 
are essentially for the proof of the existence of a solution for problem (1) ,(2). In the 
following let us consider the Stokes problem 

—D1(v(.)(D1u, + D,u)) + Dip = 1, (j = 1,2) in 0,	(5.a) 

	

divu=D,u1 =f3	 in 0,	(5.b) 
!IRI =q, Un I R3 =Q'2n,	UIR3	l'	

(5.c) 
Sj()IR3 = d'2t p - S() = 

Here the viscosity ii: Il - 1R is a function fulfilling the inequality 0 < v0 u(x) !^ 
v0 <oo for x e 1, S = ((v(D,u1 + D1u,))...j) denotes the vector of boundary stresses. 

The weak formulation for problem (5) is given by 

f11 v(D1u, +D,u1 )(D1v, + D1v) dx	
E X0	(6.a) 

= J0 Lit dx + fR3 02, vi d8 + JR. 93V ds 

Du1 = 13, !IR, = 0 1 ' Ufl3 = 02., uiI,13 = 4'	 (6.b) 

with the space X. = {jL E i 12 (u): !LIR, = Q, V,,R2 = 0, VtI, = 0, divv = o}. 

A simple homogenization and Korn's second inequality (cf. 18)) yield 

Lemma 2: For problem (5) there exists a unique weak solution, i.e. a function 
jj E W1.2(0) which fulfils the weak formulation (6). 

To describe the Fredhoim properties of Stokes problems in non-smooth bounded 
domains we may use techniques of V.A. Kondratiev (of. 110, 11)) and V.G. Maz'ya



514	i--u KALE)< 

and B.A. Plamenevskii (cf. 117, 18, 191). The usual localization argument led us to the 
model problem

	

—ri0u1+ Dip =f1	(j=1,2)'.K 

	

D,u1 = f	 J 
(° := v(0)) with one of the following boundary conditions:

(7) 

U I(8K) = ij 

Unl(oK), = 
= 011, 

Ut I(OK), = 01tv 
P - Sno 	+ tlodivitl(OK), = tIn, 

= 1i, 
P - S(u) + tlOdiVUI(OK), = 1n,

U.I(aKh = 02i 

UjI(19K)2 = 

UnI(OK)2 = 02ni 
S(u)I (OK )2 =

(i,j = 1,2)	(8) 

(j=1,2)	(9) 

(j=1,2)	(10) 

(11) 

The problems - denoted by (7),(8) - (7),(1 1) later on - are defined in the two-dimen-
sional infinite cone K with vertex at zero, angle w,, and sides (8K) (i = 1,2). By 
S°(u) we have denoted the boundary stress vector ° = (( o (D1u1 + D1u1))...1) for the 
reduced problem. 

Remark 3: Beside the four cases of boundary conditions above noted, there exist two other 
combinations which are out of physical interest. But they can be treated in the same manner. 

Considering the model problems (7),(8) - (7),(11) the methods of Maz'ya and Plr 
menevskii 119, esp. Theorems 4.1 and 4.21 results 

Theorem 4: Assume I E IV U {O}, E JR and I <q <00. The boundary value 
problems (7),(8) - (7), (11) define isomorphisms 

2(K) x V '+ "9 (K) - U(K) 

With
2 

U V;
1+2_h/ j(K) = i'(K) x 4+l(K) x	 ((8K).) x 

1=1 

and
( 0 for a Dirichiet boundary condition on (8K)1 

m53 =	for an in/out-stream condition or a condition of an 
(	uncovered surface on (OK), 

if the line l,={AEGJ: ImA=h}withh=13—l-2+2/q is free of solutions of the 
corresponding of the following equations: 

A2 sin2 w. - sixth2(Aw ) = 0	(A 0 0)	 (12) 

A sin 2w0 - sinh2A 0 = 0	(A 9t 0)	 (13) 

A sin 2w0 +sinh2Aw0 =0	(A0)	 (14) 

for problem (7),(8), 

for problem (7),(9),
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for problem (7), (10) and 

ReA=O, ImAE{+ 2k+1 ir-1	ir+1 
2w0	' 2w	IhEZ	

(15) 

for problem (7), (11). 

Moreover, for 1 < q < oo, 1 1 ^! 1, fli E JR with h 1 =	- 1 1 - 2 + 2/q 1 < h = 
,6-1-2+21q and € U"(K)flU,"(K) one conclude that the solution 

of any of the problems (7),(8)-(7),(11) is an element of i.42.(h1 (K) x ''(K) if 
the strip {X E (1': h 1 -5 ImA < h} is free of solutions of the ' corresponding one of the 
equations (12)-(15). 

Using duality and interpolation arguments —this way generalizing results of G. Wil-
deñhain 1261 and J. Rossinazm 1241 - we get moreover	-	 -. 

Proposition 5: The assertions of Theorem 4 behold true if we assume I to be less 
than zero. 

An outline of the proof in case of Dirichiet's problem for the Laplace operator is 
given in 1141. For an exact proof see author's thesis (9). 

Summing up the results for the model problem in cones and the general Agmon-
Douglis-Nirenberg results for elliptic boundary value problems in domains with smooth 
boundary data (see [11) we may state the following theorem on Fredholm properties 
for the Stokes operator on corner domains in JR2. 

Theorem 6: Assume thatv(x) E V'	(0, M) with p > max(2—k,q) is fulfilled 
b+) -3/pj 

for k > 0, that 1 e Z, 1 < k and that the lines It,, = { A E (1: ImA = h, } with 
hi = 131 -1-2+2/q are free of solutions of that equation of (12)-(15), which corresponds 
to the boundary conditions at the singular point O,,i.e. 

• that It,, is free of solutions of equation (12) if we have Dirichlet boundary condi-
tions on both sides of 0,, 

• that It,, is free of solutions of equation (13) if we have a Dirichiet boundary 
condition on one and a condition of type R 2 on the other side of 0,, 

• that 1h1 is free of solutions of equation (14) if we have a Dirichiet boundary 
condition on one and a condition of type R 3 on the other side of C), and 

• that It,, is free of elements of (15) if we have a condition of type 112 on one and 
a condition of type R3 on the other side of 0, 

for j = 1,... , N. Then the Stokes problem (5) defines a Fredholmian operator 

X V(1,M) —..Ur(1l,M) 

with

[q(
r,110,10,+1))   U(1, M) =i(1l,M) x % '(nM) x 11N	1+2-1/9 ,9

 L	 i..'+' 
X vI+2_ms3_i/i.i(r {0,,0,+i})]
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and

0 for the case of a Dirichlet boundary condition on I', 
ins, =	for the case of an in/out-stream condition or a condition 

(	of an uncovered surface on 1', 

Once again we remark that the proof is a simple generalization of that given in (14] 
for elliptic operators. 

Together with the existence and uniqueness of a weak solution we can now state 

Corollary 7: The weak solution of problem (5) is an element of the space 

M) x M) if the right-hand sides of the differential equations are fulfilling the 
smoothness assumptions of Theorem 6, if the condition ii E C() with E (0,1) and 
£=max(0,l) or  E V!L.(1Z,M) with  >max(1,l-1) and p2 >max(3—k,q) holds 

for the coefficient v( . ) and if for each j E {l,.. . , N} the strip /3,—l--2+2/q -5 Im.\ < e3 
of the complex plane is free of solutions of that equation of (12)-(15) which corresponds 
to the kind of boundary conditions near the singular point C),. Here e, > 0 (j = 

1,.;. ,N) are sufficiently small. 

Up to now we have considered the Stokes problem (5) in weighted Sobolev spaces. In 
difference to the classical ones the elements of these spaces must vanish at the singular 
boundary points by definition. On the basis of the considerations of P.Grisvard 161 we 
try to answer wether a generalization of the regularity results to the case of classical 
Sobolev spaces is possible or not. In keeping with the scope of this paper we restrict 
our consideration to the case of spaces with first order of derivation and slimming 
exponents q ^! 2. A generalization to other cases is possible, but this involves some 
technical difficulties, which are avoidable here. To get an idea what we have to do, we 
assume that the right-hand sides of (5) are sums of a W'- and a %7_pact, i.e. 

f	
}(ç,M)]x 

I 
[L9 (Q) e L(cl,M))x 

E 

(2n, 

2g)	
(W / 

J	
Q(R2) ®	1h (R2, M)) x (W_ h/ (R2 )	 M)]x I	(Wl1/Q(R1)	1(R1, M)] 

(3n,u)	(W-l/(R3)ED%7/(R3,M)] x (Wl-l/.Q(R3) ® 

The last space we denote by U?(1l, M). If we use a function , EE"9 1) with 

!&OIRI
=	(w) E 

U0n I R2 =	(2n
w ) vl_1/.Q(R2),	 (16) 

u0,fp, =	
(w) E W1_1f.9(R)

i.e. a function which homogenizes the W''-part of the non-natural boundary condi-
tions and if we assume P. ^: 0 (i = 1,... ,N), problem (5) may be transformed into 
a similar one with right-hand side € U'(1l,M) using the 
imbedding theorems for weighted Sobolev spaces into the classical ones (cf. 114]). 
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The existence of u is proved by using P. Grisvard's trace and continuation theo-
rems for Sobolev spaces on domains with singular boundary points (cf. 16, Theorem 
1.6.1.4)). We construct u = E W2 (1l) . In this case 
the boundary conditions (16) get the form (D and Dt denote normal and tangential 
derivative respectively) 

(w) (w) 

De

 

=
(w) 
2n	,	

= 

I
Xs , D( = I 

X	

Xi	I X2	 it - X	 Xi	on R1 
X4	,	

=	

0 on R2 

(5	 03Lw)

	
Xe on

with Xi E	 for i = 1,. . ,6. P. Grisvard's compatibility conditions for 
and C yield the following conditions (assume {i,4} = {j - 1,j}): 

(i) The right-hand sides of (16) should fulfil the equation 

0(W	 00 (0,) = (sin w, -	 (17) 

if at C), a Dirichiet condition and a condition of type 112 intersect and Wj is an integral 
multiple of ir/2. 

(ii) The right-hand sides of (16) should fulfil the equation 

(w) 
(0,) = (sinw, - cosw,)c1 31 (0)	 (18) 

if at 0, a Dirichiet condition and a condition of type R3 intersect and w3 is an integral 
multiple of 7r/2. 
(iii) The right-hand sides of (16) should fulfill the equation


	

= (sinw)1$t(0)	 (19) 

if at 0, a condition of type R2 and a condition of type R3 intersect and ci is an odd 
multiple of 7r/2. 

It is easily seen that functions	defined by u E Wt() in sence of (16)

fulfill the conditions (17)-(19). 

Using the imbedding theorems between weighted and classical Sobolev space ones 
again we conclude from Theorem 6 and Corollary 7 the following 

Corollary 8: Let the conditions of Corollary 7 be fulfilled and assume wi 0 17r/2, 
31r/2} for any C),, where boundary conditions of type R2 and type R3 intersect. Then 
for any real number  with 2< q <2/(1 +max{s, : j = 1,...,N}) the operator of 
problem (5) defines an isomorphism between W(1) x Lq (Il) and the subspace of 

W'(cl) x Lq (Il) x WI-u/(R) x W/.Q(R2) >( W(R2) 
)( i,i/-1/z(fl3) x 

which is defined by the conditions (17)-(19). Therein the numbers s j denote: 

(i) 8 = max{-1,sup{8 € IR_ : A = t+i8 is a solution of (12)}} in the case of inter-
secting Dirtchlet boundary conditions at 0,. 

35 Analysis. Bd. 11. Heft 4 (1992) 
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(ii) 83 = max{—1,sup{s € 1R_ : A = t+is is a solution of (13)}} if at 0, a Dirschlet 
boundary condition and a condition of type R2 intersect. 
(iii) 83 = max{—1,sup{s € IR_ : A = t+is is a solution of (14)}} if at 0, a Dirichiet 
boundary condition and a condition of type R3 intersect. 
(iv) s = max{-1,sup{s € JR_ A = t+is is a solution of (15)}} if at 0, a condition 

of type R2 and a condition of type R3 intersect. 

4. The Bingham equation without convection of mass for a 
fixed temperature 

After substituting for 10 any 9 e L,(fl) and neglecting the convection term u,D,u1 we 
consider the equations (1 .a),(1.b) and the corresponding boundary conditions (2.b)-
(2.d). It is well known (cf. 13 , 231) that this problem implies the variational inequality 

(20) 

for all V E W, where we have used the notations 

a(u,v) = fo	 'I'(u) 
= in 

rDjj(u)dx, 

= fR ' 2W ut ds,	 43(9) = fR. co3,,u ds, 

W = fit € W 1,2 (1l): divv = 0, yIn, = 0, v I3 = 0, v(p = 01 

and the function / denotes any element of 1 '2 (0) fulfilling the conditions 

= 0, Mn, = ço 1 , h I3 = P2n, h jI p = 
and

co21 = W2t - Sj(!j)In2 ,	ço3 = cosn - S(i)I,. 

It is easily seen that the above written variational inequality has a unique solution in 
the spare W. The proof is based on the existence result for variational inequalities 
with pseudo-monotone operators given in (16] (cf. also 13 , 23]). The monotonicity of 
the operator A defined by (A(u),v) = a(u,v) is obvious. Moreover, we have the a 
priori estimate 

IJ I'() II{ IlL li_I2() 11 + lk' II'-"22(R2) II 
+ II'3a lY-v22 (R3 ) II

 + lI! I.12() II} 
< 707{ II! Ii!"() II +	=: llwkI l T1I2m2(Rk) II} 

1 where 0 < m(9) :5 k(6( . )) &e. in 1 and m	0 ifk=2, 1=nork=3, I=t
kg = Ii  if k = 2, = or k = 3, I=n*  

Let us remark that another variational formulation of the Bingham problem is given 
by

VEW (21.a)
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with

	

diV —U = 0, —U 1 R, = W I , tLnR3 = W2n, uiI,, = ço.	 (21.b) 

We use the regularity results for weak solutions of Stokes problems with changing 
types of boundary conditions in non-smooth bounded domains given in Section 3 to 
describe the regularity of the solutions of (21). Recalling the inequality (21.a) we 
substitute there ±)v for v with \ > 0. 'Alen \ tends to zero we get the system 

	

Ia(i&,M) - Q, R) + 'I2(!) + 3(i)I :5 'I' (R),	 (22.a) 

	

—a(u,u) + (j!) - 2(!&) - 3(u) = 'I'(!&),	 (22.b) 

	

divu=O, !IR1 =, UIIR2 = W2n, u4 p,	ço3g.	 (22.c) 

1/2 
Introducing the space = (L1 (1l))4 with the norm	= r	

) 
dx 

(r > 0) and an operator 7r : W -i E, v i—i ((D11(M))_1) and denoting M() = Sj 
- (f,) - 4'2 (v) —4 3 (s), we see that(22a) is equivalent to IM(i )( :5 IIir()IEII. 

By the Hahn-Banach theorem it follows that there exists ((m,1),._1) E E = (L,(1l))4 
with rn,3 = rn3 , such that

2 

	

M(v) 
= j 

m,,D,1 (v) dx	 (23) 

and
1/2 /2	\ 

U rnIII = ess sup	m i)	:c 1	 (24) 
i,j= 1 

hold. Because of (22.b) we have

	

22	1/2 
ji M(u) + 'I'(i&) = f > rn,,D,,(u) + (> D2)()) I dx =0 

L' 

and, with (24),

2/ 2	1/2 

> rn,,D,,(u) + (> D i (u)) = 0	a.e. in 
i.j=I	 ij=1 

With the definition of the operator M and (23) we get the Stokes problem 

—D,(jiD,,(u) —rn,3 —p&,) = Ii (i = 1,2)	in 0 
Du=0	 in  

u= (P i	 onR1 

	

U = W2n , (pD,,(u) - m,,)n,t, = W21	 on R2 

	

Ut = çQ3 , (p6. - 1zD 1 () - m,,)n,n, = W3n	 on 

which is equivalent to (21). Because rn,, is essentially bounded in 1 we get 

((D,m,j ) j ) E	 m,nt,IR2 E WV'J'(R2) mijninjlR. E 

35*
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for every p € (1, oo). Therefore it is possible to use the regularity theorems for the 
Stokes operator with non-smooth boundary data in two-dimensional domains (cf. Sec-
tion 3) to get 

Theorem 9: Assume q ^! 2. The solution of problem (21) is an element of the 
space

fll,q(f) = Wl(1l) X Lq (Il)	 (25) 
if the right-hand sides of the differential equations and the boundary conditions are 
elements of

U I (fl) =	x [J [wl_h/(r,) x TyI_msi_l/(r.)]	(26) 

ms,... order of the boundary condition on I', 
if the functions V1,2.,E3t fulfil the compatibility conditions (17)-(19), if r(9) € 
W"(Il) with s > max(2,q) holds and if for each j € {1,.. . ,N} the strip f3 —1-2 + 
2/q :5 ImA ( Ej of the complex plane is free of solutions of that equation of (12)-(15) 
which corresponds to the kind of boundary conditions given at the sides of the singular 
point 0,. Therein e (j = 1,... , N) may be any positive numbers. 

Remark 10: Obviously, at the line JA E (1: Im\ = 0) there are situated only solutions of (15). 
These correspond to the apex angles ir12 and 3ir/2. Therefore if the domain under consideration has 
no corner with apex angle ir/2 or 31r/2 and intersecting boundary conditions of type R2 and type R3, 
if 8 E W' .'$ (fl) for some p > 2 and if the coefficient function p(S) is sufficiently smooth, then there 
always exists a number q> 2 fulfilling the assumptions of Theorem 9. Moreover the excluded case 
seems to be unreasonable by physical arguments. 

By another point of view we define formally an operator 

A	A + 'I":	q(ç1) i— U1(1l) 

with the spaces 1(1,9(11), U' ,9 (Q) as defined in Theorem 9 and 

(A(u),v) = a(li,) and (W'(u),v) 
=

 in rDu1(M)Duj() 
D1() dx 

(n is defined to be (1,p)) and a sequence {Ac}e >. 0 of operators approximating A by 
A = A + W with

((u),v) 
= J dx. 

ci	D,j(u) 
It is easily seen that A tends to A with respect to uniform convergence if e tends to 
zero and that A, : fl1(0) i—p U(fl) is an isomorphism for any r > 0. Moreover for 
8 € W"(Il) with s > 2 we have 

A'	 fl"() < C (118 V1(1)fl) 

where C( . ) is a constant depending on the norm of 8 but not on r. This may be proved 
in two steps. First we deduce this inequality for q = 2 from the inequality of coercivity 
for a(u,v), where we use the monotomcity of 'I" on fl 1,2 (1l) to prove the coercivity
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of A. With the usual arguments (cf. 11, 15]) we get then the asserted inequality for 
q >2. 

5. The linearized energy equation 

First we consider now the variational equation 

f0 ?c(I)Dt9D,q dx + f. v1 (D1t9)i7 dx + f t17 ds + Jr I7 dx = gr dx	
(27)


= -c/b on F1) = 

for any 1L E Q"(Il) (p4 > 2), which corresponds to (1.c) with fixed velocity. For this 
problem we get the following weak maximum principle.. 

Lemma 11: Assume that the conditions 

(i) >OonF, 
(ii) Ic(x)I :5 CoIb(x)I 

(iii) s(t)>O for all tElR, 
(iv) I"D1 > 0, that means that Dirschlet boundary conditions are given on a set with 

positive measure and 
(v) (a) vn >- Oonfa ,divv=O and g(.)moinllor 

() (r(s)-K(t))(s_t) Ofor all s,tEIR and g( . )moin 12 or 

(c) 0<m<c(t):5M<oo for all tEJR,	12Ivi(x)I:5 m22 a.e. in 1

and q € L,(12) for some r> 1 

are fulfilled. Then any weak solution t E W' 2 (0) of problem (27) fulfils the weak 
maximum principle 

min f -C., inf ( c) -C1 K, :5 if t9 sup t9 max {Co sup ()}+C2Kr 

with C, = C,(r, , 12) (i = 1,2) and K, = jjg IL,(12)II /m. By (h) and (h) we denote 
the positive and negative part of a real-valued function h, respectively. 

The assertion of Lemma 11 is a generalization of other well-known statements of the 
weak maximum principle (see, e.g., (5 , 15]). An exact prove is given in author's thesis 
19 , Section 5.5]. 

Remark 12: if condition (v)(c) of Leznnia 11 holds the assumption (ii) may be shipped, if we 
assume that the function c/a defined on 1' may be extended to an element of W 1122 (arZ). We get in 
this case the maximum principle 

inf(	-CiR,.^inf6<	^ supt aup(+c2k, 
I'D \b)	 0 - a	i,0 \bI 

with K, = K,. + ic/al W' /2 ,2(812)ll/rn.
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Let us now consider the problem consisting of the equation 

- DDt9) + vD1t9 = g	in I	 (28.a) 

and the boundary condition

- akDt9 - bt9 = c	on 09f ?,	 (28.b) 

where k is a function possibly depending on x E 8f but not on t9. For this we state 

Lemma 13: A unique weak solution t9 E W 11 (1l) of (28) exists if the conditions 

(i) Ir'D I = I1\ra I > 0, 
(ii) the function c/b defined on r0 may be extended to an element of W'/2'2 (812), 

(iii) 0<m<k(.)<M<oo a.e.in12, 
(iv) 11 E E"2 (12) with div v =0, 
(v) b(x)/a(x) 0 on 

(vi) g E Lr(1Z) for some r> 1 and 
(vii) the function c/a defined on l' may be extended to an element of W'/2'2(0cZ) 

are fulfilled. 

Proof: The operator 

E: W"2(cI) -i W"2 (12) x [J [W"2-'"1'2(r1)] 

with
(E410), ) = j DD,q dx +j v . (Dt9)t7 dx + fr	ds 

and
mp3.. order of the boundary condition on 

is pseudo-monotone. Moreover, any weak solution of (28) fulfils an a priori estimate. 
This is seen by using Lemma 11 and the inequality 

jvt(DM6dx+j 102 ds > _jIvnIt2dS 

1. -C(f') IIi9 I L©II III}±'II IItIw"2II. 

(The coercivity of the principle part of the operator E is obvious) Hence the main 
theorem on pseudo-monotone operators (cf. [271) ensures the existence of a weak 
solution of problem (28). Using the assertion of Lemma 11 once again we conclude the 
uniqueness of the solution I 

In connection with the consideration of the Bingham equation for a fixed tempera-
ture (cf. Section 4) we have assumed that 0 € L,,(12). Therefore we state now a result 
on the regularity of the weak solution of problem (28).
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To this end we need some information on the data of the boundary value problem 
near a corner. The general theory on elliptic problems in non-smooth bounded domains 
results that the following numbers are characteristic with respect to the regularity of 
the solution near a singular boundary point (cf. 1141): 

if at 0, two Newton conditions intersect, i.e., 
"I f kEZ	if a(x) > ao > 0 along I', and I',; 

f 1 (2k+1),r)	if at 0, a Newton and a Dirichiet condition intersect, i.e., 
1 kEZ if a(x) 0 either along r,_ 1 or along F,; 

Aw	 if at C)1 two Dirichiet conditions intersect, i.e., 
wi I kEZ\o}	if a(x) 0 along F, and F,. 

(Here i denotes the imaginary unit.) We get 

Proposition 14: Assume the conditions of Lemma 13 be fulfilled. The weak solution 
of problem (28) is on element of the space W(fl) if for any j E {1,.. . , N} the strip 
{A E (V: 2/t - 2 < ImA ^ e} is free of the respectitive of the above listed numbers 
for some e > 0, if v € and if the vector built of the right-hand sides of the 
differential equation and the boundary condition is an element of the space 

L(1l) )( 

where mp3 = 0 if we have a Dirichiet boundary condition on I', and mp3 = 1 else. 

The proof of the last assertion is a direct consequence of V.A. Kondratiev's and P. 
Grisvard's regularity theory (cf. 16, 10, 141) 

Remark 15: It is easily seen that for every boundary configuration there exists a number i> 1 
fulfilling the assumptions of Proposition 14. We may choose I = 2 if the inner apex angles at the 
singular boundary points are less than 

(i) r for two intersecting Dirichiet or Newton conditions at 0, and 
(ii) r/2 if at 0, a Newton and a Dirichiet condition intersect. 

6. A priori estimates for the solutions of the non—linear prob-
lem (1),(2) 

In this section we proof the following 

Theorem 16: If Assumption I is fulfilled, then for a solution of problem (1), (2) we 
get the estimate

I	9) I W9 x W2" 11 :5 C(f, K, g, a, 6, c, ço ) Il). 

The space H'-9 (0) is defined in (25).
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Proof: First we remark that, because of the weak maximum principle (cf. Lemma 
11), we have a universal bound in the L,,.-norm for the t -component of the solution. 

This we use secondly to prove an a priori estimate for the velocity components of the 
solution in terms of W"2-norms. As noted above we set k = 0 if R3 0 0 and therefore 
we can use the well known technique of estimating weak solutions of Navier-Stokes 
(for k 96 0) or Stokes (for k = 0) problems (cf. 1251 in both cases) to get an a priori 
estimate for the velocity components of the solution. 

Third we state 

Lemma 17: Let u € i 1.2 (1l) and t900 € W"2 (1l). Then there exist.., t90 E W"2(11) 
with Tr0 i90 = 'fr0 000 and 

j
Iu1(Do)I cLx <

110001 YT"2 (1l)II II ij V/"2(1Z)II 

for all 1? € W"2(0) such that 17 = 0 on rD = {x € 811: a(x) = 01. Here Tr denotes 
the usual trace operator. Moreover, for this function t90 we get the estimate 

j
icDtoD,q dx :5 C 11 Til L,,,(1Z)II 11 ,0001 Li/l.2(cl)fl II I W'2(0)II


for all i' € W"2 (11) and any coefficient R. Therein the constant C is independent of. 
Proof: Near smooth parts of the boundary we use E. Hopf's function (cf. 125, 

p.1751), which describes the distance between a point of Il and the boundary in a 
smooth way, and R. Temain's [25] construction of vectors homogenizing the boundary 
conditions of Navier-Stokes problems. 

Near non-smooth parts of the boundary we define a function analogous to E. 
Hopf's using polar-coordinates (r, w). Therefore once again we use the standard cone 
K with apex angle w0 defined in Section 2. The function in request should only depend 
on u. We split the interval 10, wj into five sub-intervals symmetrically. In the outer of 
this intervals the function is required to be equal to one, in the inner sub-interval we 
demand to be equal to zero and in the intermediate intervals we interpolate between 
zero and one smoothly. To be more precise; the function is defined by 

1	 for	0<w<e 
p((w - e)/e)	for	e w 2€ 

= 0	 for	2€ <w < w. - 2€ 
- e - w)/e) for w0 - 2€ <w	- e 

1	 for w0—e<w<w0 

where p is a polynomial in the interval 10,11 with 

p(0)= 1, p(1)=p'(l)=p"(l)=O and p'(0)=p"(0)=0, 

which guarantees that the interpolation between zero and one in the intermediate 
intervalls is twice continuously differentiable. (The simplest polynomial fulfilling these 
conditions is p(t) = —6t5 + 15t4 - 10t3 + 1.) The definition of shows that there exists 
a number B € Rf such that

<B	(x E K; i,k = 1,2).
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Therein D 11, denotes the second partial derivative. The construction of a homogenizing 
function now follows the line of R.. Temain's proof I 

Inserting this homogenizing function in (27) for the case that too is a continuation 
of the function -c/b defined on r0 and using the weak maximum principle (cf. Lemma 
11) we may proof an a priori estimate in W' 2 for the temperature component in the 
usual way. The strong monotonicity of the principle part of the respective variational 
equation is obvious and the assumption u.1r. 2 0 together with div u = 0 ensure 
that J0 u(D1t)6 dx is positive. In the case u,, 0 on r. we use the weak maximum 
principle for t to get an a priori estimate in W1.2 for u, which is independent of 0. 
This estimate may be used to prove an estimate for t9 in terms of the W' 2-norm, which 
only depends on the L,,.-bound for t, the geometry of SI and the right-hand sides of 
the equations. 

After that we use the estimates for t9 and u and a result of K. Gröger 1 7 , Theorem 
1] to improve the a priori estimate for t9 as follows: 

Lemma 18: There exists a number s > 2 (depending only on the geometry) such 
that the weak solution t of 

	

-D1 (kD,3) + u1 D 16 = g	in ci 

	

-akDt9 - 0 = c	on 81, 

with 0 < m < k < M < 00, is an element of W"(IZ) and the estimate 

11 19 1 V iI ^C(m,M){II g I v_'' Il 2 + II I I4T_1/4,S (1 )112 + II I 4T''/''(rD)II2 

+ E
lIII W'I2'2 (R) x T,4r1/2m.k2 (R)II 2 + 1111 w_12II21 

holds, if the functions a, b, c, g are sufficiently smooth on their supports. 

For the proof we only remark that because of 

If0 u(D16)17dxI 
15	IIulLiII II D,t9 1'211 11 171 LgII 
^ C II !I t,z?T12II 11,1 4/1,2 

1117 1 WIX II
 

with 1 + f = , + , = 1 the inequality Ik D I W'111 < C I1 jjI
12 II 11t9 1 W1'2 

holds. I 
The last assertion means that there exists a number s > 2 such that 

11 19 1 W' ,' 11 :5 C(m, M, g, a, b, c,ço,f,K) 

because we have 0 <m < ,c(t9(x)) :5 M < 00 a.e. in Il by the maximum principle. 
Using Theorem 9 and the "bootstrapping" argument known from the considerations of 
Navier-Stokes problems in the "smooth" case we get an estimate for (y,p) in 7tt.(Il). 
norms for some q > 2, namely 

II (i,p)I 
^ C(m, M)C(II t91 W"fl) { IILI	+	*I ii!*iI 

+ Ek=1 III j4rl_l/9.Q(R) x 

5 C(rn,M,g,a,b,c,w,f,K)f),
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because for any s > 2q/(q —2) the term maybe estimated by jjffJ L jj 
1161 W 1 ,2 11. Once again we improve the estimate for 6, now using the last inequality 
and Proposition 14, and we get 

I! (,p,6) 1,9 x W2fl < C(m, M,g,a, b, c,w,f,K,()). 

The proof of Theorem 16 is done I 

7. Proof of the solubility of non-linear temperature-coupled 
Bingham problems 

For problem (1),(2) we define the space 

ju E (1,q() x W2'(1	u = (!&,P, 6) and div!& = 0 and iIR, = 0 and 
UnIR2 =0 and ul,=0 and 6Ir0=0	} 

for 2 < q < 00 and 1 < t < oo and an operator B X x X - W x Lt by 
(v = (v,ir,8)) 

(B(u,v), (w, ti)) = a(8,u,w) + b i (v,v,w) + k(8, w) +	 (29) +e(e,'3,ri) + b2(% t9,17) 

with

= J(9)D 11 (u)D(w)dx, e(6,6,t) = 
b i (v,v,w) = f0 kv1 (D1 v,)w1 dx,	b2(106,17) = 

(4"(u),w) =	 D ij 	k(9,) = f0K,Owdx, 

(iL,'7) E W'((1) x Lt , (0)	(l/t + i/i' = 1, 11q + 1/q' = 1). 

In analogy to the approximation of A by A (cf. Section 4) we define now a sequence 
{B}>0 , substituting

($ (i),i) with ($(u),w) = fT_D11() D,,(w)dx j D(u)if 
in (29). It is easily seen that B converges uniformly to B on bounded sets of X x X 
if e tends to zero (cf. the same property for A and As). 

By B and we denote the operators resulting from B and Be by fixing the 
second argument. The properties which we have proved for A and Lemma 13 ensure 
that {B;,,(y)}>o,g is bounded for each y = (f,g,c,ço) E Y with 

	

Y = W(1l) x Lt (Q) x	[w2-mPi_l/t(r,)] 

X 1I:_:i 
[W1_1/(F,) x wl-msi_1/(r1)] 

x = 

and each bounded set 9 C X. Obviously B 1, and	are operators from X to Y.
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Because the operators B, are well defined not only for v E X but also for v E 
X W- 12 (cl) x L(1) for every s > 2 and X is compactly imbedded in the last 

space, we have 

Lemma 19: Let 9 C X be a bounded open set. The operator-valued operators 
v e— Be,v are completely continuous with respect to the uniform convergence on 

g, i.e., every weak Cauchy sequence {v} C g will be transformed into a sequence 

{ which, with respect to the norm of uniform convergence on , is a strong 
Cauchy sequence. 

Proof: With (, q) E	x Lt, we estimate the difference 

I(B(ui, v 1 ) - B(u2, v2), (, ))I 
^. Ia(91,1 i ,i&') - a(02,M 1 ,)I + Ia(92, 1 -	+ I((t1) -

(30) 
+ Ib i ( 1 , 1 ,) - b1(,,)I ± Ik(91 - 02,1)I+ Ie(92 ,0 1 - 

+ Ie(91 ,t9 i ,t) - e(92,0 1 ,q) + I b2(1 1 ,1, 17) - 

We restrict the estimation to the first four summands of the right-hand side of the last 
inequality; the other one may be managed in a similar way. 

(i) The first term may be estimated using Holder's inequality, that means 

- 

= 1f0[/40' ) -	 dxl 
:5 C 11i491) - /492)1 LOO fi II Du(!i)l LgII II DIi(!L)I Ll 
:5 C(Lip.&) II Oi - 921 L. 11 11

(ii) For the second term we get 

la(92,!&i —,i)I 
= If0 /42),(mi —u2)D,,(w)dxl 
:5 C(Lip /L) 11 921 LOOII D,,( 1 - i&)I LqII II Dti()I Lq11 

^ C(Lip) 11 921 LOOfl II1i - !2l El,qjj
11 1q , W"11 

(iii) Because of the boundedness of the function f(-\) = ( A1 +1 - 2AC cos i)/i A2 + 1 - 
2.\ cos 7Jt for A E iFLf , for any elements a, b of a Banach space E we get the inequality 

a	 b
Ell <Clia - bIEIIC 

ll a I E II'	-	I IIbIElI'  

And therefore for the third term of (30) we get the estimate 

- 
If
	[_D.,( 1 )	D,() 

D,1Q)I-. ]
D ij 	

dxI 
Rji )	D,(5	2 1/2	 1/2 

^ fn
f

Eij=i [D,,, \ - . - D,,-'] }	
dx 

- f0rDjj _D, 	D.,() 1 Djj(w)dx -	 - D,,( -J
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:5 Cr J0 [13 11 ( 1 - v)] ' Dr,(w) dx 
15 Crf(I)/" IIM -	

Wi.fJe 
II!t 

(iv) Finally the fourth of the terms of inequality (30) may be estimated in the fol-
lowing way: 

Ib 1 ( 1 , 1 ,) - 
= IfnIvii Dsvi, — v2 D,v21 ]w, dxl 

15 (f0 (v11 - v21 )(D1v2,)w, dxl + Ifn v2,[D1 (vi, — v2 . )Jw, dx 

fi Vi - V2i I t'21I IlDivlj I LqII 11 w, I Lill 

+ II V2i I W1,q
II
 V1j — v2j p Lqfl II W 

< CII Rj - !2I Lq II [11,11
I	II -- II !2I 

T,4.ri.p] 
!tI 

There we have used the imbeddings W"' L1 for = - and W1 (Q) - L. 
Summing up the estimates (i)-(iv) and the analogous ones for the other terms of 

(30) we get 

l(Be(1i, v i ) - B, (U2, "2), (, ))I 
:5 C(Lip, Lip ,c)	 x LjiII 

X [Il u lY"911 +	+ IIY1W'qI I + 

>	- !sI}'	+ Il!&i 
+ 11 R1 - !2I L2 11 + 11 6 1 - t9 2 1 W" n L,pl] 

That means that the conclusion is now proved. I 

The last assertion results obviously in the following 

Corollary 20: Each operator of the family B, : X x X - Y fulfils the properties 
of a mapping with restricted representation by F.E. Browder [2, Definition 12.6.1 if 
is a bounded and open subset of the space X. 

The trace B(u, u) of B is the operator of problem (1), (2). It is denoted by S. We 
now prove 

Lemma 21: The set S(a) is closed for each bounded set Q C X. 

Proof: Assume {Yfl} flEw C S() with y - y E Y. For every n there exists 
an element x, E 0 with S(x,,) = y,,. Because of the a priori estimate for solutions 
of problem (1),(2) the sequence {x} is bounded and consequently weakly compact. 
Then xn converges to x E X weakly with respect to the norm in X and strongly with 
respect to the norm in (1) x W- 12(C) x L,,(1l) for 8> 2. Using the properties 
already proved for the operators A and B we get 

S(X) - S(x)II	II 5(x ) — B(x,x,)II + II B (x , x ) — B(x,x)II 
+ II B (x, x,,) — B(X,X)II + II B (x , x) - S(x)II < 

if n > n0 (6) and € < €0(6) . The uniqueness of limes in )) shows that S(x) = y I
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We define a homotopy S, by S7(u) = B(u) = B(u,'y . u) and choose the set 
= In E X : II u I X II < 2C}, where C is the constant for which we have proved 

the a priori estimate in Theorem 16. Above we have proved the existence, uniqueness 
and regularity of weak solutions for the energy equation with fixed velocity and for the 
Bingham problem with fixed temperature. In the case -y = 0 the operator S 7 defines 
an uncoupled problem and we conclude therefore the unique solubility for the equation 
So(u) = y and the regularity of its solution for every y E Y. 

The properties just proved for the couple (S, S7 , B, B) of operators show that the 
assumptions of 12, Theorems 12.5, 12.6 and 12.71 are fulfilled and consequently we get 

Theorem 22: Let f = (f, g, c, ) E 31 and assume that Assumption I is fulfilled and 
that the summing exponents q and t comply with the assumptions of Proposition 14 and 
Theorem 9. Then there exists a solution U E X for problem (1), (2) with right-hand 
side f.	 - 
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