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Sufficiency Conditions for Weak Local Minima in Multidimensional 
Optimal Control Problems with Mixed Control-State Restrictions 
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In [13] a new sufficiency criterion for strong local minimality in multidimensional non-convex control 
problems with pure state constraint was developed. In this paper we use a similar method to obtain 
sufficient conditions for weak local minimality in multidimensional control problems with mixed state-
control restrictions. The result is obtained by applying duality theory for control problems of KLOTzLER 
[11] as well as first and second order optimality conditions for optimization problems described by C 1 - 
functions having a locally Lipschitzian gradient mapping. The main theorem contains the result of 
ZEIDAN [17] for one-dimensional problems withoutstate restrictions.  
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1. Introduction 

Let ci be a domain in R" , m > 1 , with piecewise smooth boundary. Then we study the 
following basic problem (P) of multidimensional optimal control theory: 

Minimize J(z, u) 
= J r(t, z(t), 11(t)) di	 (1) 

subject to all pairs (x,u) of state functions z E D"(li) and control functions u e D°"() 
such that the state equations 

x 1, (I) = g. (t, x(t), u(t)) a. e. on ci (a = 1,... , m),	 (2) 
the mixed state-control restrictions 

(x(t), u(i)) E Y(t) a. e. on	 (3), 
with

Y(t) = {(E, v ) e Rn x R'	f1(t,,v) ^! 0 (i = 1, ...,l)}	 (3)2

and the boundary condition 

x(s) = w(s )	on 81.1	 (4)
are fulfilled. Here 811 is the boundary and f' is the closure of 11. The functions r, g 
and f (a = 1,...,m; i = 1,.. .,1) are assumed to be continuous with respect to all argu- 
ments. D°	 ci '(f) is the space of all continuous vector functions on	' (j = 1,. . . , v) , where 
[fl',. . ., is a finite decomposition of ci into domains ci' with piecewise smooth boundary, 
and D'-"(fl) is the space of all continuous vector functions on fl having continuous first partial 
derivatives in fl (j = 1, . . . , ii). A pair (x, u) € D''(fZ) x D°"(ci) satisfying (2) - (4) is called 
admissible to (P) and the set of all admissible pairs is denoted by Z
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2. Construction of a dual problem to (P) 

In a very general sense we call a problem 
(D)	maximize L(S)	subject to S E S 

a dual problem to 
(P)	minimize J(z,u)	subject to (x, u) E Z, 

if the weak duality relation 
L(S)_<J(x,u)	 (5) 

is fulfilled for all SE S. and (x, u) E Z . If for S E S and (x, u) e Z the equation 
L(S) = J(z,u)	 (6) 

holds, then the pair (x, u) is a global minimum of the problem .(P). 
There are many different conceptions of duality in literature, see, e. g., [3, 6, 7]. In contrast 

to the earlier concepts the duality construction of KLÔTZLER [11], introduced in 1979, works 
without any convexity assumptions. 

Using the Pontrjagin function H of (P) given by 

H(t,,v,i)= —r ( t ,e, v) +	 (7) 

a dual problem (D) to (P) can be formulated in the following way [1]: 

maximize	L(S) =J S(s, co(s))Tn(.$) do(s)	 (8) 
an 

subject to	S E S. 
Here n denotes the exterior normal unit vector to Oil and S is the set of all vector functions 
5 = (51 , ..Sm)T E C'"(il x It") fulfilling the Hamilton-Jacobi differential inequality 

div tS(t,) + H(i,e,v,gradS(t,)) 0 on W	 (9)1 
with

W = {(i, f, v) It E fi, (E, v) E Y(t)}.	 (9)2 

Assertion 1. Between the problems (D) and (P) the weak duality relation 

L(S) :5 J(, u) 

holds for all SE 	and (x,u)EZ. 
Proof. This relation follows immediately from (7) with y(t) = gradS(t,a(i)) and Gauss' 

theorem:

J(x, u) 
= 

/ —H(t, x(i), u(i), gradS(t, x(t))) dt 

+ E J 
gradS(i, z(i))Tga(t x(i), u(i)) dt 

0	 (10) 
= -	 H(t, x(t), u(t), gradS(t, x(i))) + div j S(t, z(t))} di 

+J S(s, (3))T(3) do(s) ^! L(S). 
an
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Assertion 2 (Generalized Maximum Principle). An admissible pair (x,u) isaglobal 
minimizer of (P) if there exists a vector function S E S satisfying the Hamilton-Jacobi equation 

(HJ)	divS(t, z(t)) + H(t, z(t), u(t), gradS(t, x(t))) = 0	on 12. 

Proof. The condition (HJ) effects that especially the equation J(z,u') = L(S) holds in 
(10) for (z,u)E Z and S ES. Thus (x,u) is a global minimizer of (P) I 

Remark. The existence of an S in Assertion 2 is hypothetical and, in general, it is very 
difficult to find a suitable 5' . Nevertheless, it was done for some interesting problems, see, 
e. g., [1, 2]. 

For that reason it is also helpfull to give sufficient criterions for local minima. In [13] we 
proved such a criterion for strong local mninimality. The present paper can be regarded as the 
second part of those investigations which gives a sufficient optimality condition for weak local 
minimality. 

Definition 1. An admissible pair (z°,ti°) , with u0 E C°"(), is a weak local minimum 
of (P) if there exists an € > 0 such that (x°,u°) minimizes J(x,u) over all admissible pairs 
(x, U) E Z with li z - X°iIco._ <€ and il u - u°iic o. <e. 

In a similar way as in Assertion 2 we now can deduce from the Generalized Maximum Principle 
Assertion 3. An admissible pair (z°, u°) E Z , with u0 E C°'), is a weak local minimum 

of (P), if there exists an e> 0 and an S E C'(Q x lit") such that the condition (HJ) and the 
Hamilton-Jacobi inequality 

div t S(t,e) + H(i,.,v,gradS(t,	0	 (11) 
on

W = {(t,,v) it E , (,v) E Y(t)} 
with

Y(t) = Y(t) fl K((z°(t), u°(t)) 
and

K(x°(t), u°(t)) = {(, v) I ii(( - z°(t)) T , (v - u°(t)) T ) T ii	€}	 (11)4 
denotes the Eukiidean norm in lEt" x R T ) is fulfilled. 

Proof. The proof follows from the fact that (x', u') E Z is a weak local minimum of (?) 
if there exists an € > 0 such that (x°, u°) is a global minimum of (Ps) . Here (P() is defined 
in the same way as (P), where only Y(t) is replaced by Y(t) U 

3. On strongly stable local maximizers of parametric optimization problems 

As in (13] we will use now results concerning strong stable local maximizers of parametric 
optimization problems to prove the main result. Therefore we study the general parametric 
problem 
(P(t))	maximize fo(t, ,v)	with respect to (, v) E Y(i). 
Let (z°, u°) E Z ,with uo E Co '() ,be given. Then our aim is to develop sufficient conditions 
for the existence of an € >0 (independent on t € 12) such that, for t €12, 

fo(t, x°(t), u°(t)) ^! fo(t, ,v) for all (, v) € Y(t).	 (12) 
The relation (12) means not only that (x°(t),u°(t)) is a local maximizer of(P(t)) for all t € Il 
but also the existence of a uniform radius e> 0 such that (z° (t), u°(t)) is a global maximizer 
with respect to Ye(t). In a natural way this problem (P(t)) appears if we are looking for an 
admissible 5' for which the Hamilton-Jacobi equation (HJ) is already satisfied.

(11)2 

(11)3
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3. 1. Linear statements of S in the dual problem 
Now we choose the following statement S in (D): 

S(t,) = aa () +p'(t) T ( —	 (13) 

with pQ	C 1 "() and aG € C 1 () (a 	1,. . . ,in). Then the function fo appearing in
(P(t)) has the special form 

fo(,e, v ) =	+ p(t) T (e - _O (t)) — p)Tx (t)} + H(t,,v,p(t)). 

In accordance with the basic assumptions, the function H and therefore the function Jo is 
continuous with respect to all its arguments. In addition to these assumptions we require the 
folloving condition: 

For an e > 0 let fo(t,,) and f(i, .,.) (i = 1,..., 1) be proper concave functions (V)	on K(x°(t),u°(t)) for all t E ci. 

According to [16] f(t,.,.) (i = O,...,1) are Lipschitz functions on k€(z°(t),u°(t)) with re-
spect to the second and third argument and, by the Rademacher theorem [14], they are almost 
everywhere on K(x°(t), iz°(t)) totally differentiable. Functions having such properties possess 
a non—empty supergradient [16] 

zi	O,\ 0 (1JI,l,X 

= {(r v) E p,1dr 
I 
f, 

(t, ', v') - f(t, x° (t) u°(t)) 

^ V	X0 (0) + (v,v' - u°(t))VC E R',Vv' € Kr) 

which in this case coincides with the supergradient in the sense of CLARKE [4] 

0 'f1( t , °(t), iL°(t)) 

= conv{M I {h1}. 1 with(x°(t) + h,u°(t) + h,) E Etft(t,.,.)	(14)
gradf(t,z°(t)+h,u°(t)+h)_.. Mforj .—- 

(Here Etft(t, ,•) is the set of all (, v) E k(z°(t), u°(t)) , for which f1(t, .,.) is continuously 
differentiable and cony denotes the convex hull.) Thereby the problem (P(t)) is a concave 
maximization problem. If we assume that in (x°(t), u°(t)) the following Linear Independent 
C onstraint Qualification 

For each t E Il the vectors 
(LICQ)	gradf1 (t, x°(t), u°(t)), i E 10 (t) = {i E {1, . . , 1} I f1 (t, z°(t), u°(t)) = o} 

are linearly independent 

is satisfied, then the necessary conditions 

0 e 8fo(t, r°(t), u°(t)) +	.A(t)8f(i, z°(t), u°(t))	(15)
i=1 

and
.\(t) ^! 0,	A1(t)f1(t, x°(t) u°(t)) = 0	(i = 1,. . . , 1)	 (16) 

are sufficient for optimality. 
We remark that the function fo(t,.,.) fulfils the assumption (V) for an e > 0 if the Pont-

rjagin function H(t,., .,p(t)) satisfies the assumption (V) for all t E 0. Then it holds
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Theorem 1. Let (x°, u°) , with u0 E C o-'(0) , be an admissible process to (P). Assume that 
there exists an e > 0 such that the condition (V) is fulfilled for the corresponding Pontrjagin 
function H(t, , .,p(t)) and f1 (i, .,	= 1,. , 1) and that the condition (LICQ) is satisfied in 
(z°, u°) If there are vector functions pe	C 1 (1) (a = 1,.. .,m) and multiplier functions 
)	(i = 1,.. .,l) with 

-	

p (t) E 8{H(i, z°(i), u°(t), p(t)) +	A(t)f(t, x°(t), u°(t))},	(17) 

)(t) ^ 0,	)i(t)f(t, x°(t), u°(t)) = 0	(i = 1,	'0,	 (18) 

0 e 8{H(t, x°(t), iz°(t), p(t)) +	A(t)f(t, x°(t), u°(t))},	-	 (19) 

.for. t E , - then (x°, u°) provides a weak local minimum of (P). 

Proof. We show that the conditions of Assertion 3 are satisfied. By the special choice of 
ac

a' (t) 
=	

pt(t) - H(t, x°(t), u°(t) p(t)), 

we ensure that the Hamilton-Jacobi equation (HJ) is fulfilled on ti. Furthermore we choose 
p° (a = 1,...,m) in such a way that (x°(t),u°(t)) is a global maximizer of (P(t)) on Y1(t) 
for all t E t . Following (15) and (16) the conditions 

0 E	p(t)T( - x°(t)) + H(t, ,v,p(t)) +	k(i)f(i, , v) } 
a1 

that means relation (17) and relation (19) of the theorem and the complementary condition (18) 
are sufficient for maximality, see [4]. Now it follows that S in (12) fulfils the Hamilton-Jacobi 
inquaiity (11), i. e. S E Sc, and Assertion 3 holds. This completes the proof U 

3.2. Quadratic statements for S in the dual problem 
By nonlinear statements we shall overcome the a priori concavity assumptions of Theorem 1. 
Therefore, we now use the statement 

S a (t , ) = a(t) + p°(t) T (e - z°(t)) +(f - xo (i)) T Q a (t)( - z°(t))	(20) 

with aa € C 1 (0), p° E C"((), and a symmetric matrix function Q° with components 
E C'(fZ)(a = 1,...,m; i,j = 1,...,n) in the dual problem. 

As in the section before, we study the parametric optimization problem (P(t)) and give 
sufficient conditions for the fact that (x°(t),u°(t)) is a global maximizer of (P(t)) for a given 
e > 0. With the quadratic statement of S , the objective functional ía in (P(t)) has the form 

fo(t,,v) =	{a ;(t) + p(t) T ( - z°(t)) 

- pO(t)TXO (t) -	(t)TQ°(t)(e - x°(i))	 (21)t.1.

+	- z°(t))Q (t)(E - 
2	

t.

+ H(t,,v,p(t) + Q(t)( -
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We are mainly interested in second—order conditions which require further assumptions on the 
differentiability of the appearing functions. Therefore, with 

N(t,e,ö) :=	V, 17) E	I(,v) E 

JI - (p1 (t) T	,pm (j) T ) T II ^ 6} 

and

N(E,5) := {(t,,v,,7) e Rm++7tm I
	V, 77) E N(t,e,5), i E 

for a given e,6> 0 we additionally assume: 

1. H(t,-,.,.)E C'(N(t,e,6)) for all t€	, 
2. H(-, , , .), grad	 ,,H( . , -, , )E C(N(s, 6)), 

(W)	•	 be locally Lipschitzian on N(t, e, 6) for all t E fl 
4. the mapping	 i-i	 be closed and locally 

bounded on N(E,6), 
5. 1k E C 2 (NC ) (k = 1,. - . , 1), N := {(t, , v) It E fl, (, v) E K(x°(t), u°(t))} 

If the function H satisfies the assumptions (1) - (4) of (W), then fo in (21) is almost everywhere 
twice differentiable with respect to (, v) in a neighbourhood of (x°(t), tL°(t)). In the following, 
we use the generalized Hessian 8fo in the sense of HIRIART-URRUTY et al. [9]: 

r t	Oi \ * 0 
t*) Li 

= conv{M(t) I 3{h,h} 1 with {h,h} - Oforj - oo,	
(22) 

(x°(t) + h,',u°(t) + h) E Et(gradfo(t, -, 
d,,,fo(t,x°(t) + h,u°(t) + h) - M(t) for j -+ oo} 

denotes the usual Hessian). With these assumptions we get 

Assertion 4. Let the assumptions (W) and (LICQ) be fulfilled in (z°(t), u°(t)) for t € 
Then, the following conditions are sufficient for optimality of a continuous pair (x°(t), u°(t)) to 
the problem (P(t)): 
There exists a multiplier function ). : C1 - It (i = 1, . . . , 1) such that (x°(t), u°(t), .\(t)) is a 
stationary point of (P(t)), i. e. 

gradfo(t, -°(i), u°(i)) + > A(t)grad(x°(t), u°(t)) = 0,	 (23) 

),(t)f1 (t, z°(t), u°(t)) = 0,	)1 1 (t) ^! 0 (i = 1,. . . , 1)	 (24) 
and each matrix function M(t), with 

M(t) E 8fo(t, x°(t), u°(t)) +	A(t)df1(t, ° (t), °(t)), 
iEI'(t) 

is negative definite on 
R(t) := {h e	I hTgradf1(t, x°(t), u°(t)) = 0, z E I+ (t)}, 

= {i E {1,...,1} 1 )(t) > o}, 
1. e.

hTM(t)h <0 on R(t)\ {0}, t E 11.	 (25) 

Proof. Firstly we remark that the conditions (23) - (25) are a natural generalization of the 
classical second—order conditions for strict local maximality of an (x°(t), u°(t)) with respect to
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the objective functional fo and the constraints f;(t,e,v) ^! 0, t E fl [10). For that reason, 
there exists an e(t) > 0 such that there holds 

fo(i, , v) < fo(, z°(t), lh°(t)) for all (, v) E Y(t) fl K t) (z° (t), u°(t)). 
It remains to prove that 

inf E(i) = CO > 0
	

(26) 

exists. This was done in [13, Assertion 3). The proof is based on the property of strict stability 
in the sense of KOJIMA [12) which is an immediate consequence of the validity of the condition 
(LICQ) U 

Assertion 5. Let us consider the parametric optimization problem (P(t)), for which the 
condition (W) is fulfilled. If (z°, 0) is a continuous optimal solution for which the condition 
(LICQ) is satisfied on ci , then the multipier ) is unique and depends continuously on t € ci 

Proof. This is a standard result of nonlinear parametric optimization, see e. g. Theorem 2. 
3in[15]	I	 ...-	 - 

After these preparatory assertions, we can formulate the main result of this paper. 

Theorem 2. Let (z°,u°), with u0 € COT(l) , bean admissible process to (P). Assume that 
there exists an e > 0 such that the condition (W) is fulfilled for the corresponding Pontrjagin 
function H(t, •, .,p(t)) and for f1 (t,.,.) and that the condition (LICQ) is satisfied in (z°, u°) 
If there are vector functions pQ E C'(Il), multiplier functions A i and matrix functions Q' € 
C 1 ""(ci)(a = 1,.. .,m; i = 1,. ..,l) such that,for t € 11, 

-	
p° (t) = grade { H(t, z°(t), u°(t), p(t)) + > )(t)f(i, x°(t), u0(t))},	(27) 

)(t) ^! 0,	A 1 (t)f1 (t, r°(t), u°(t)) = 0 (i = 1. . . , 1),	 (28) 

0 = grad5 { H(t, z°(t), u°(t), p(t)) +	A(t)f(t, z°(t), u°(t)) I	(29) 

and each matrix m(t), 

M(t) € '6(t)) +)(t)df1(t, z°(t), u°(t)),	t € 0	 (30) 
iEI4(t) 

with

a(i) 
=	

Q (t) + 0H(t, x°(t), u°(t), p(t)) +E Q(t)O ,c H ( t , x°(t), u°(t), p(t)) 

+	8	H(t, x°(t), u°(i) p(t))Q(t) 

+ 	Q a (t)a2. 	x°(t), u°(t),p(t))Q(t) 
a,1 

i3 ( t ) =8 5 H(i, z°(t), u°(t), p(t)) + F Q(t)8 5 H(t, r° (t), u° (t), p(t)), 

(t) =OH(t, z°(t), u°(t), p(t)) + E 8,. H(t, x°(t), u°(t), p(i))Q°(t), 

5(t) =8, 5 H(t, x°(t), u°(t),p(t)) 

38 Analysis. Rd. 1i. Heft 4 (1992)
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is negative definite on R + (t) \ {O} , i. e. 

hTm(t)h < 0 on R(t) \ {0}.	 (31)

Then (x°, u°) provides a weak local minimum of (P). 

Proof. The idea of the proof is also to apply Assertion 4 with the quadratic statement (20) 
for S in (P(t)). Indeed, we can choose a' (a = 1,. ..,rn) in such way that the condition (Hi) 
in Assertion 3 is satisfied on ci, namely 

a' (t) 
=
	p(t)x' (t) - H(t, x°(t), u°(t), p(t)) .t. t.

Now we shall prove that,for an € > 0 , S satisfies the assumptions of Assertion 3. Obviously, 
this is true if (x°(t),u°(t)) maximizes fo(t, ., .) on YE (t) for all t E ci . We want use As-
sertion 4. Therefore, we choose p° (a = 1,. . . , rn) and ) (j = 1,. . . , 1) in such way that 
(x° (t), u°(t), .A(t)) is a stationary point of (P(t)) for all t E ci . According to (22) and (23), this 
is true if the canonical equations (27) and (29) as well as the complementary conditions (28) 
of the theorem are satisfied. Further on we verify condition (25) of Assertion 4. From [5) the 
inclusion

(a(t) /3(t) 8 , fo(t, x°(t), u°(t)) ç	y(t) b ( t ) ) 

holds. If now for each m(t) fulfilling (30) it follows 

hTm(t)h < 0 on R' (t) \ {0}, 

then, according to (32),for each n(t) with 

n(t)	8,fo(t, x°(t), u°(t)) +	j(t)d.,f1(t, °(t), u°(t)) 
iEI4(t) 

it holds

hTn(t)h < 0 on R+ (t) \ {0}. 

Thus we finally conclude condition (25). Taking the regularity assumption (W) into account 
Assertion 4 can be applied to our situation and the proof is complete U 

Remark. The matrix (a ) appearing in (31) is symmetrically because of the definition 

of the generalized Hessian. Therefore it make sense to reformulate condition (31) in special cases. 
Preparatorily we use the following 

Assertion 6. Let be given a symmetric block matrix (T ) =: K , where A is an 
n x vi matrix and D is an m x rn matrix. Then K is negative definite on Rn" if and only 
if D and A - BD_ 1 B T are negative definite on K". 

Proof. It follows from the fact that a symmetric block—matrix 

(A B 
B T D

(32)
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is negative definite if and only if D and the Schur complement A - BD - 'B' of this matrix 
are negative definite, see [8]. 

Remark. Considering the interesting special case of problem (P) where the mixed state-
control restrictions are missing and the Pontrjagin function H belongs to C 2 with respect to 
all its arguments. Then condition (31) of Theorem 2 can be replaced by a classical second order 
condition: Let the matrices 

C(t) := a(t) - b(t)d'(t)b(t) and d(t)	 (31')

be negative definite on R' \ {O} or lR tm \ {O}, respectively, where 

a(t) = F t. (i) + dH(t, x° (t), u° (t), p(i)) 

+ >1 Q(t)d	H(i, x0 (t), u° (t), p(i)) 

+ 1 d	H(t, x°(t), u°(t), p(t))Qa(t) 

+ 1 Qa(t)d5H(t,XO(t),UO(t),p(t))QP(t) 
a ,= 1 

b(i) = dH( t , x°(t), u°(t), p(t)) + >1 Q(t )dH( t , x°(t), u°(t), p(t)), 

and
d(i) = a,H(t, x°(t) u°(t),p(i)). 
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Book reviews 

M. BEALS, R. B. MELROSE and J. RAUCH (eds.): Mlcrolocal Analysis and Nonlinear Waves 
(The IMA Volumes in Mathematics and its Applications: Vol. 30). Berlin - Heidelberg - New 
York: Springer-Verlag 1991; XIII + 199 PP., 18 fig. 

The volume is based on the proceedings of a workshop organized by the editors. This meeting 
was an integral of the 1988 - 1989 IMA program on "Nonlinar Waves'. The 14 articles included 
in the volume offer a useful overview of recent trends in the current research in this field. The 
majority of these papers is devoted to the propagation and interaction of nonlinear hyperbolic 
waves. There are used two kinds of substantial ideas: Results on the propagation of suitably 
strong singularities of suitably smooth solutions are proved by microlocal arguments developed 
in the study of the corresponding linear problems and, in addition, by a simultaneous analysis 
of interactions. Since weaker singularities in solutions of nonlinear problems show nonlinear 
effects different methods are else needed. Results of this type are crucially based on commu-
tator relations satisfied by vector fields from a Lie Algebra and the underlying differential 
operators. These commutator methods are closely related to similar ideas used in the analysis 
of the long-time behaviour of solutions to nonlinear hyperbolic equations. Each of the contri-
butions is well thought out, but we can only sketch the content, by grouping them for conve-
nience. 

A. SA Barreto describes interactions of conormal waves for semilinear wave equations. He 
uses spaces of distributions associated with the geometry (conormal disteibutions). A more 
general approach to conorinality, cusps and nonlinear interaction in seniiliiiear hyperbolic 
problems is presented in a paper of R. B. Melrose. The discussion shows how microlocalization 
and blow -tip techniques are mixed in the framework of C m -varieties. M. Beals also deals 
with conormal regularity of nonlinear waves associated with a cusp in solutions to partial dif-
ferential equations of the same type, but in a different way. Here, the commutator techniques 
of Bony and extra regularity arguments yield the results. Moreover, the methods are adapted 
to conormal nonlinear Tricomi problems. Commutator relations and microlocal energy estima-
tes enable J. Y. Chemin to study the evolution of a punctual singularity in an Eulerian flow. 
The propagation of stronger singularities of solutions from Sobolev spaces Hc(Q) s dim 
0/2, to semilinear wave equations is analyzed by Liu Linqi. His paper contains the trick to 
reduce the loss of smoothness of microlocal products of the solutions. M. Williams considers


