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A Stochastic Nonlinear Evolution Equation

W. GRECKSCH

A stochastic evolution equation for processes with values in two orthogonal subspaces of a
Hilbert space is considered. Such types of equations arise in the study of quasistatic processes
of elastic viscoplastic materials with random disturbances. Using the theory of Hilbert-space
valued Ito equations an existence and uniqueness theorem is proved. Finally a time discrete
approximation is discussed.
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1. Introduction

Abstract first order stochastic evolution equations are very important for applications in
physics, statistics, engineering and neurophysiology. Navier-Stokes equations with random
exterior forces [15,18], the continuous limit of a random walk in random velocity fields [7],
stochastoc partial differential equations related to non-linear filtering [14], diffusion-reaction
equations with random interior disturbances [12] and stochastic differential equations for
neuronal behaviour [9] are examples for such stochastic evolution equations.

Here we study random nonlinear evolution equations which arise in the study of quasi-
static processes of elastic viscoplastic materials with random disturbances (for the determini-
stic case see [4,8]). Let us start with an example. We discuss a special random constitutive
equation of quasistatic processes of elastic viscoplastic materials. Let G be a bounded domain
in R9(d = 1,2, 3) with a smooth boundary I, let I be an open subset of T', [, = I‘\ﬁ, and T> 0.
Real independent Wiener processes (w;(t), F;) (i = 1,2) are defined on a complete probability
space (), F, P). We consider the following problem:

(P) Find a random (adapted) displacement function u: [0, T] x G = R and stress function o:
[0, T] x G— S (being the set of second order symmetric tensors on R) such that

div, o(t,x) = 0 (in [0.T) x G, P-a.s.)
_1 T in (O.T)x G, P-a.s.; strain
E(U) - E(VU +v u) ((eosor of small deformations)

. . random disturbances
de(u(t,x)) = e(u(t,x))dt +yw,(dt) with ye S (in o sense) )
constitutive equation in Ito’s sense
A-forth order tensor, 5, constitut-
dE(u(!,.\’)) = Ado(f,.\') *B,(U(', -\'))df *’Bz(o(f,:\'))wl(df) ive function, B,(o( r.x))u{‘(dr) de-

scribes rand. dist. in I1to’s sensc
. = - . - P-as.
u( t,.\)|(o, Ty~ 0 and of tv'\)V('\ )|(0, )=~ 0 (v is the exterior unit normal at F)

u(0,x)=0 and o(0,x)=0. (in G, P-as.)
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We will define Problem (P) in a generalized sense for which we introduce the following spaces:

K = {t = (t,-j),fij:l: 1 € LAG), vy =‘I:J~i} K= {v =(v)2,:v;e Lz(G)}
ot;; 4
V= {t e K: a—;lj € L2(G),divt =0, tv=0o0n I'z} V= {ve K: ;:l; ¢ L3(G),v=0o0n I',}

The scalar products on K and K are defined by the formulas (o, t) =Zi'jfc 0;;1;; dx and
(u, v = Z,»JG u;v; dx, respectively. We note that (see [4])

(3(Ov+9T, 1)k + (v,divi)g =0 YveVand te Kwithdivie Kandtov=0onT, (1.1)

Consequenfly, (elv), 1) = 0 (for all t ¢ V) by the definition of K. A scalar product on Vis in-
duced by (-,-)x. By A(o,1) we denote the multilinear form > k_,JG A; ik 10kiTij dx,
where A =(A; ; x ;) is the forth order tensor from (P).

So we can define Problem P in the following way:
(P") Find adapted V-valued processes (u(t)),¢[o, 7 and (6(t)),c[o, 7 Such that

(elu(t, N, e Ny = (e(u(0, ), 1)y +(Aolt,-),2(-)y

t t

+ [(Byols, ), 1Ny ds +[(Bylots, ), () w,(ds)

o o

(1.2)

" forallteVand te[0,T], P-a.s. Because equation (1.2) holds for all 1 € V, the operator equation

¢ t
e(u(e,x)(t) = e(u(0,x)) + Aclt, x) +fB‘(o(s)) ds *fBz(o(s))wx(ds) (1.3)
o o

is fulfilled for all t € [0, T'], P-a.s., where the integrals with respect to w, are Ito integrals.

Problem (P) in sense of (1.2) is a system of random partial differential equations with ho-
mogeneous initial and boundary conditions. The case of non-homogeneous initial and boundary
conditions can be obtained by an easy transformation, which is analogous to the deterministic
case [16].

If a solution of (1.3) exists, then the equation (e(u(t,-)),0(t, )}y, = 0 (for all t ¢ [0,T], P-
a.s.) follows from (1.1), that is the processes (e(u(t,-))), [0, 7] and (o(t, Decfo, T have values
which are orthogonal in V. Thus, the following abstract random evolution equation is motivated:

Let Hbe a real separable Hilbert space, with scalar product (-, ), and let H,, H, C H be
two orthogonal {closed) subspaces with H = H, # H,. We introduce a linear bounded operator
A: H—> Hand continuous operarors B,: [0, T] x H, x H, » H. By (w(t), F;) we denote a Wiener
process with values in a separable Hilbert space K, and with a kernel operator Q as covariance
operator. Let L be the Hilbert space of linear operators B: O’/zK, - Hso that BO2is a
Hilbert- Schmidt operator and let lIBIlo be the Hilbert~Schmidt norm of BQ2. Furthermore
we introduce an operator B,: [0, T} x H, x H, > L. We are looking for adapted continuous
H,- and H,-valued processes (X(t)), (o, 77 and (Y(¢)); o, T With

dY(t) = AdX(t) + B,(t, X(t),Y(t)) de + B,(1, X(¢), Y(t)wlde), X(0) = X, Y(0) = ¥, (1.4)
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in the [to sense

t t
Y(t) - Yo = AX(t) ~ AX, + [B,(s, X(s), Y(s))ds + [ By(s, X(s), Y(s))w(ds) (1.5)
o o .

for all t e (0, T), P-a.s., where X, and Y, are given F,-measurable H,- and H,-valued ele-
ments with El X, |7 < @ and EllY, lif; < ®, and where the stochastic integral in (1.5) is defined
as H-valued Ito integral.

Obviously, Problem (P’) is an example for the abstract problem (1.3). If we choose
B,(6,X(t), Y()) = -x(Y(r) - S(¢, X(+))) (X > 0) and if B,(t, X(t), Y(¢)) doesn't depend on X(t)
and Y(t), so we have the viscoelastic case with additive random disturbances (for the deter-
ministic case see, e.g., [4]).

In Chapter 2 of this paper we prove an existence and uniqueness theorem of a Hilbert-
space valued Ito equation. In Chapter 3 we use this result to prove the existence and uni-
quenéss of a solutuion of (1.5): Chapter 3 contains some -a-priori estimations, too. In Chapter
4 we discuss a time discretization of (1.5).

2. A Hilbert - space valued Ito equation

We consider progressive measurable operators
C,:Ox[0,TI1xH > H and C,:Qx[0,TIxH > Lg

for which there are constants x,, x, > 0 such that

IC.(t, 0 5 s %, (1+1Ix02)  (P-as)
(2.1)

E "jc(s a(s))wids)

t
* s )(1(1 + Eflla(s)ll,"; ds)
H . °
and

IC(t,x) - Ct, )y s % Hx -yll,, (P-as)
(2.2)

t

J(Cals. als) - Cyls, bls))wlds)

3]

t
E s x2E[lla(s) - b(s)I}, ds
o

2
H
for all t € [0, T)and x,y ¢ H and for all progressive measurable H-valued processes

T T
(a(t)rero, 73 With Eflla(s)l ds < and  (b(t)),cro, 77 With E[lib(s)lds < .
o [+]

Let X, be a F;,-measurable H-valued element with E || X, ||}, < . We introduce the Ito equa-
tion

dX(t) = Ct, X(£)dt + C,(t, X(t)wldt), X(0)=X, (2.3)

in the sense
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t t
X(t) = X, + [Cls, X(s) ds + [Cy(s, X(s)w(ds). (2.4)
o o

Remark 2.1: Sufficient conditions for the validity of the second inequalities in (2.1) and
(2.2) are ”Cz(t x)”o s x‘(l + lix “H) and ”Cz(t x) - Cylt, y)l!o < xolix ~yligy, respect:vely
Then these inequalities follow from the property E”fo C,(s, n(s))w(ds)”H Efo IC (s, a(S)”OdS
of the Ito integral.

Remark 2.2: There are many other papers dealing with abstract Hilbert-space valued Ito
equations. For example, Ito equations with monotonous opeartors and Ito equations with an
infinitesimal operator of a semigroup are discussed in [6,13,14] and in (3,9]. Random partial
differential equations are examples for such equations. We will see that the above strong
assumptions are suitable for the discussion of (1.3).

Remark 2.3: An equation of the type (2.3) in the finite-dimensional case is discussed in
[11], under the assumptions that the first inequalities in (2.1) and (2.2) and the inequalities of

Remark 2.1 are satisfied.

We can prove by the same technique as in the proof of {6: Lemma 3.2.1.3] the following

Teorem 2.4: There is a unique (with probability 1) H-valued continuous adapted process
(Xt ero, T3 such that (2.4) holds for all t ¢ [0, T) with probability 1 and E sup, X < .

We obtain by the Schwarz and Doob inequalities that the solution of the equation (2.3)
depends on the initial conditions in the following sense.

Theorem 2.5: Let (X,(t)) and (X (£)) be solutions of equation (2.4) with the initial condi-
tions X,(0) = X,, and X,(0) = . Then

Esup, | X,(t) - X, ()| s 2E [ X,, - Xo, |5 (exp {4x2(1 + T} -1).

3. Existence ‘and uniqueness theorem

Now we prove an existence and uniqueness theorem for (1.4). For this we make the following
assumptions:

(A1) There is a constant v > O such that (Ax, x) 2 vl x II;{ for all x ¢ H.
(A2) There is (Ax, y)y = (Ay, x) for all (x,y) € Hx H.
(A3) There is a constant r’> O such that
IBLtx N + 1Blex, NG s £°(1 +IxlIZ + llyI3) for all (t,x,y) € [0, T] x H, x H,.
(A4) There is a constant r > 0 such that

I B,(t, xy, 3,) -B,(t,xz,yz)IIH Byt x,, 33) 'Bz(r'xzv-yz)llo
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r(llx1 - Xl + Ny, - yzllH) for all (¢, x,, ¥,),(t, x5, ¥,) € (0, T)x H, x H,.

The inverse operator A™! is linear and bounded. There exists a number ¥ > 0 such that 47y i,
2 ¥yl for all y ¢ H. The last inequality follows from the remark to [10: Theorem 2/(2. V)]
Let y ¢ Hbe arbitrary. We conclude that, for all x ¢ Hwith Ax =y,

(A7, y)y = (x, Ax)y 2 Yllx G = YIA Y I 2 Y32y i,

Let us introduce the Hilbert space Z = H, x H, which is isomorphic to H = H, & H,. We define
over Z the scalar product

(2,,2,); = (AX,, X))y + (AT, y, )y forall z; = (xjy)e 2 (i =1,2).

Then (Z,(+,+),) is a real separable Hilbert space. We define an operator £,: [0,T] xZ—>2Z
by the scalar productequation : R

(Ex(rv 21)’22)2 = _(Bl(t’ X Yih '\'2)}-{ + (A_le('v xxv.yl)y.V2)H (3.1)

¢
and a Z-valued Ito integral fo E,(s, z)w(ds) by the scalar product equation

(j‘Ez(s, z,)w(ds), zz>z' = -(sz(s, Xy, yy)w(ds), xz)H+ (A"jbz(s, xy, yypw(ds), yz)H (3.2)

o
forall z; = (x;, ;) e Z(i=1,2) andz ¢ Z.
Theorem 3.1: Adapted processes (X(t))ser0, 71 and (Y(t)rcl0, 7) With values in H, and

H,, respectively, are solutions of (1.5) if and only if the Z- valued process (Z(t));cr0, T] With
Z(t) =(X (), Y(¢)) is a solution of the equation

t t
Z(t) = Zy + [E(s, Z(s) ds + [Ey(s, Z(sDw(ds) (3.3)
o o

in the sense of the scalar product equation

t t '
(2(0).2)7 = (Z2)7 * [(Eils, 2(6),2) 05 *(JEz(s, Z(s))w(ds),z)z ST
for all z = (x,y) € Z, where Z, = (X,, Y,).

Proof: Step 1. Let (X(t)ycr0, 73 and (Y(£)), [0, 7] be a solution of (1.5). Then, for x € H,,
¢ ¢
(AX(1) - AXo, )y = ~[(By(s, X(s), Y(s),x),, ds - (fBz(s, X(s), Y(s)w(ds), .\')H. (3.5)
o o
If we apply A™! to both sides of (1.5), then for all y ¢ H, we obtain

t

t
(A (Y ()-Y)p)y = !(A"Bl(s,X(s),Y(s)), ¥)ds +(A-‘ofaz(s,X(s),y(s))w(ds), y)H. (3.6)
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If we sum up the equations (3.5) and (3.6), then the equation (3.4) follows from the definition
of (-, )» and from the formulas (3.1) and (3.2).
Step 2. Let (Z(t)eco, 1) = (X(t)Y(¢)rcr0, 7] be a solution of (3.4). Then

t

t
(AX(0). )y = (AXor3)yg - [(B(s X(5) Y(5), ) ds - ( [B,(5. X(5), V(swias), .\')H
o [¢]

follows from (3.4) for z = (x,0) by the definition of (+,-), and the formulas (3.1) and (3.2).
Obviously (Y, x)H =0 and (Y(¢), x)H =0 hold for x € H,. Then we have (R(r),x)H =0 with

t t
R(t) = A(X(6) - X,) +(Y(2) - ¥o) + [B(s,X(s), Y(s) ds + [B,(s, X(s), Y(s))w(ds).
o] 0
Consequently the process (R(r))re[o, 77 has values in H, and

0 =(X(t)R(t))y = (ATPAX(1),R(t)), and 0 =(X,, R(t)), = (A'AX,, R(t)),.

Then for y = R(t) we obtain from (3.6)
0 - (A“[A(X(t) X)) +(Y(0) - Y)

t t
+[B(s,X(s), Y(s)) ds + [By(s, X(s), Y(s))w(ds)],R(t)) .
<] o H

The term [ ... ] equals R(t). Since A’ is a positive operator, we get R(t) =0, that is; the
equation (1.5) holds B

The last theorem shows that we can consider equation (1.5) as a Hilbert-space valued Ito
equation of type (2.3). We introduce the following positive constants:

D, =2r'r, and D, =2rr,, with 1, = max {1/y, l4*12/v¥2} max {1, 1/v, 17777}

Lemma 3.2: For all t ¢ [0,T]) and x,x,,x, ¢ H, as well as y,y,,y, ¢ H,, and all progressive
measurable H, - valued processes (a(t)) and (a;(t)) (i = 1,2) as well as for progressive measu-
rable H,- valued processes (a(t)) and («;(t)) (i = 1,2) the norm squares of which are integrable
over 1 x [0, T] the following inequalities hold:

IELt, x, )13 s D,(1+|[(x,3)])3) (3.7
r 2 L

E”JEz(s, als),als)wids)| s 01(1 Efj(als) als)| 2 ds) (3.8)
o 4 o

[E(t. 5,0 %) = Ex(t,X5, ¥l 7 5 Doll(xy, 5 = (32, 72| (3.9)

E ”f(fz(s, afs)ay(s)) - Ez(s,az(s),az(s)))w(ds) 225 D, Ef"(a,(s), a,(s)) - (az(s),az(s))”é ds.(3.10)
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Proof: We choose z = (x,y) and 1 = (n,,n,) € Z. Then, by the definition of (-,-)z,(A3), the
equality (u +v)? s 2u? +2v2 (u,v e R) and the properties of the operators A and A™* we get

NELt,x. )12 s sup {(E(t, x,7)m) 5 Inllz =1}
= sup {[(-B,(t, X, yhn)y +(AB(¢, .\',y),nz)HJZI inllz = 1}
s sup {lIn, Iz + Ing 2 1A% linllz = 1)r(1 i + Iy 0Z)
< max {1/7, na%/yy "'}r'max {1,1/7,1/7? 2}(1 + ||(.\',y)||§),

that is, inequality (3.7) holds.
In a similar way, with the second moment of the norm of an Ito integral and (A3) we get

, A
E|| [Ey(s. a(s), a(s))wlds)

2
z

. sup{—( ofrBz(s,a(s), a(s))w(ds),nl)H* (A" of B,(s.a(s), a(s))w(ds),nz):l: Inlly = 1}

t
< 2 max {I/Y, ||A""2/Y"?2}J”Bz(s’ a(s), u(s))"é, ds

t
< 2max {1/‘Y, A~ t1%/yy 2}r' max {1, 1/v.1/v% 2}(1 + EJ [(a(s), ot(s))"zZ ds),
o]
that is inequality (3.8) holds. The inequalities (3.9) and (3.10) are proved analogously B

Theorem 3.3: There is a unique (with probability 1) adapted Z-valued solution process
(X (), Y(t)), 10, 77 Of (1.5) with continuous paths and E sup o, T [I(X (1), Y(t))"zz < .

Proof: Lemma 3.2 shows that the assumptions (2.1} and (2.2) are satisfied for C, = E,,
C, = E, and H = Z. Then the existence of a unique (with probability 1) solution process (X(r),
Y(t)) of (3.3) with the above properties follows from Theorem 2.4. The process (X(e), Y(t))is
the solution of (1.5), too. This statement follows from Theorem 3.1 B

Corollary 3.4: Let (X(t), Y(t)) be the solutions of (1.4) with the initial conditions (X,;,
Y,:) (i =1,2). Then

E X(8) - X, |2 + Vi) - V()|
“E‘g?ﬂ(ll (8) = X (Ol 5 + 1Y) - YOl )

< exp{4D(1+T)T} -1
min{y,Y¥?}

4 - 2 )
(LANE (X, = Xoallfy + AT IE| Yo, - Yool fy)-

Proof: We obtain from Theorem 2.5 for the solution process (X (¢), Y(r))“[o. 17 °of (3.3)

E sup [(X,(£), Y,(1)) - (X (). Yo ()|, s (exp{4 D21 +TIT} - DE|(Xoy. Yor) - (Xoz You)l 2
te{0, 7]
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The statement follows from the two inequalities
(X)) Y (2)) - (X,(2), Yz(t))”; 2 || X(t) - Xz(t)"z, +y¥ 2||Y,(e) - Yz(t)“:,
. . 2 , . o2 - 2
(Xos: You) - (Xoz: Yoo llz s HAW[IXNG, - Xop [y + NATHI[Yo, - Yool @

Now we consider an a priori estimation for the special case of viscoelastic materials with
additive disturbances. Therefore, we assume (X, p > 0 given)

B(t,x,¥) = My - S(t,x)) and B,(t,x,y) = B,(t) V(t,x,y)e[0,T)xH, xH,
and

(SCt,x,) - S(t,x,), 5, - x,) 2 plix, - x,lif ¥V (6,x,),(t,x,) € [0,T] x H,. 3.11)

Lemma 3.5: Ler (X (¢), Y;(¢)) be the solutions of (1.4) with the initial conditions (Xo;,Ys;)
(i=1,2). Then

E|X(0) - XDl s LALE X, - X, |17 exp{-222 ) . (3.12)
EIY(0) - V0l s exp{-ae}fha il v

+2lAlllA *n%‘?ﬁ”—f’(l - eXp{-x(%B I)t}):'

(3.13)

Proof: We introduce X, = X,, - Xo0, Yo = Yo, - Yoo X(t) = X,(£) - X,(2),Y(2) = Y (1) - Y,(¢).
So we get from (1.4)

dX(t) = A *dY(e) - [B(t, X,(0),Y,(1)) - B(t.X,(1),Y,(t))]dt (3.14)
d(AX(e) = d¥() - [B(t, X(0),Y,(2)) - B(t, X,(6),Y,(t))]dr. (3.15)
Then d(AX(t), X(£))y = (AX(2), dX(t))y, +(X(2), d(AX (1)), follows from the Ito formula.

Consequently, (X(t),Y(t))yy = 0 and (Ax, A"y )y = (x, y)y yield d(AX(t), X(t))H = -2 (X(¢),
S(t, X,(£)) - S§(t, X,(£ )y dt, and we obtain by (3.11) and Assumption A4

t
i 1 , 20X ey
EJ X(O]f; s 7E(AXo, Xo)py - —-‘Y’—ofs||x(s)|1f_,ds.

Hence the function ¢(t) = E|| X(r)”; fulfils the inequality () s (2pX/y)e(t) with o(0) = y*
x E(AX,, Xy) - The function @(1) = Y 'E(AX,, X,)p; exp{-2pXt/y} solves the initial value
problem ¢(t) = (2pX/y) o(t) with ¢(0) = Yy 'E(AX,, X,) g4~ Then the inequality

ENXF s LALE|x, |7 exp {-282 ¢}

holds. We get from (3.14) by (X(r),Y(t))y = O the relation
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(Y(1), A1 dY () = -X(ATY (), Y )y dt + X(AT[S(, X, (1)) - S(t, X,(2))], Y(2)),,dt

and from the Ito formula we get

t
E(Y(1). AY(6)yy = E(Ye, A"y - 2XE J(A71Y(s), Y(s))sds

+2AE [{A7'[S(s, X,()) - S(s, Xp(s))],Y(s))psds

t
E(Y%, A™'Y,)r - 2XE [(A7'Y(s), Y(s))yyds

t
+20E flA2[S(s, X(s)) - S(s, Xa(s)], A2Y(s)) pys.

Then

n

t .
E(Y(1), A7V (0))y s E(¥%, A7)y - 2XE[(A7'Y(5),Y(s))yds

t t
+ MA T P2E[| X (s)|}ds +XEJ(AT*Y (), Y(s))yds
[¢] o

follows from Assumption A4, the Schwartz inequality, the properties of the operator A and the
inequality 2ab < a® + b2 (a, b ¢ R). Hence the function §(¢t) = E(Y(t), A 'Y(t))g fulfils the in-
equality §(¢t) s A(t) + 1A 172 E|| X(2)|| & with $(0) =E(Y,, A '¥,)y. Consequently, we have

¢
W(t) = exp {-Xt}[l!A"lI A ¢)\IIA“IIr2EJ‘| X(s)|| 7 exp {-2s} ds:'

E || X2
< exp{-)\!}["A"” A +x||A||nA-*n7”p—$—”Yﬂ(1 - exP{-x(%YB 1)r}):| "

4. Approximation by difference equations

We will discuss here approximations for equation (1.4). In Chapter 3 we had seen that we can
consider this equation as a Hilbert -cpace valued [to equation of type (2.3). Therefore let us
start with some known approximations for equation (2.3). Let (h,,) C Hbe an orthonormal base.
Let (X*(¢), ..., X™(t)) be adapted real processes with E(X'.(r))2 <o (i=1..,n;te[0,T]
which are the solutions of

n n
dX(1) = S (CLt Xl ), b)) pa by + S Colt, X () wlde), b) g (4.1)
i=1 =1
where X, (t) = Z?=’A'i(1)hi and X,(0) = > (X,, hj)y h; . Formula (4.1) is a Galerkin ap-

proximation of (2.3) and we obtain by the properties of the Fourier coefficients and the Ito in-
tegral, by (2.2) and Gronwall’s lemma the following
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Theorem 4.1: The limit lim,,_, E|| X, (t) - X(t)||:l equals 0 for all t ¢[0,T].

We introduce a partition (t,»N),’:g of [0,e] with te [0, T], f;5=iKn(i=1,...,N), tan = 8,
Kpn > 0 and Kpn—> 0 for N> . Let us consider the difference equations
=n =n n
’\i*xN = ‘\iN * Z(Cx('iN' N)' J)H h_) K
J=t
(4.2)

n v
+ Z(Cz('iNv Nin)w(toy ) = wlting), hj)H h;
=

"

withi=0,...,N-1 and X\ = X,(0).

Then lim Ny oo E | XNin = Xo(t)]|17 = O follows from a stochastic version of the Euler approxi-
mation for the finite- dimensional case [11]. We have together with Theorem 4.1 the following

Theorem 4.2: The limit lim, ,e limN_,wE”)T,\',’N X(t)|1 equals O for all t € [0, T].

Now we consider the difference equations

Xiein = Xin + C(tiny Xin)Kn + Calting, Xin)(wtiay n) - witiny)
withi =0,...,N-1 and X p = X,.

Corollary 4.3: The limit lim,, .o E||X;n - Xin |l 5 equals O for all i = 0,...,N and N ¢ N.
We can prove this assertion by induction using the following

Lemma 4.4: Let @ be a Lipschitz continuous function from H into H. Then

=0 V sequences (a,) C H with limlla, - ally = 0.
n—>c

n
li ®(a,), h)p h; - ©
300”2( (an), h)es - 00a)]

Now we discuss two types of approximations for (1.4). For this we consider partitions
(t:in)i of [0,t] with N = 29 (g e N), Kpn = IUN, tin = iKpt (i =1,..., N). We introduce the
following recursive system (j=0,...,N-1; Ne N):
=X Yon =Y )?jn'N €H, Z’lN € H,

(4.3)

Yioun AKX N = Vin - AXN + KBt K, ;N)
*By(tin, Xins ;n)(w(t o ) - wlting).
We obtain by the definition of Z, E,, E, that problem (4.3} is equivalent to the following one:

Zon = 2oy ZjuN € 2 : (4.4)

Zjan = Zin * KaE(tine Zin) * Ex(tin Zin)(w (. N) - wltiny)).
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(j=0,...,N-1; Ne N). We obtain with Corollary 4.3 and Theorem 4.2 the following
Lemma 4.5: The limit lim npoo E|| Zany - Z(t)||2 equals O for all ¢ € (0, T].
Furthermore we get by the definition of Z the following

Corollary 4.6: The limits lim n_yco E | Xy - X(2)]| 7 200 1im oo E || Foypy - Y(t)||5; equals
0 foralltef0,T].

Now we consider a different approximation of (1.4). Let H,,, (h >0) be a closed subspace
of H, with the following property: Let x € H, be chosen arbitrary. Then there exist elements
hy € Hyp with limy, 5 llx), - xlljy = 0. We choose H,,- and H-valued elements X, and Y.,
respectively, with lim,_, o E||(Xpo, Ypo) - (X, Y, )”z = 0. We define the following recursive
system (j=0,...,N-1; Ne N; x ¢ H,,,

N = Xhor TYom = Yho
(AgjﬁtN' X)H = (AX'J'I'(I»X)H -K,,( B(tin: ,N: ,N) )
- (By(t i X Vi R (wt; i) - WA, X )y (4.5)
VAN = T+ AR L - R + KBty K T)
By R TR (e - witn).

We want to show that (4.5) gives an approximation of (1.4). Summing up (4.5) from j = 0 to Jj=
m we obtain for all x € H,j,

(AR N X) g = FA(x) (4.6)
with
Bz (aRh o 5 h Shy
f(x) = (AXoN . X) g - ZOKN(Bx(ij» Xino Yin)s ")H
5

m

J=o( N' _]N' JN)(W( é;N)'W(ij)).‘\')H

Taking the scalar product of (4.3) with v ¢ H, and summing up from Jj=0toj=m we get
(A’\’}mﬂNv u)H = gm(u), - (4.7)
where
~ m -_— -_—
Em(u) = (AXon, U)g - KNZ;(Bt(thr Xn YN u)
j=

( in JN' JN)(W( i+ N - W(ij)). ”)H

o

J=

37 Analysis. Bd. 11, Heft 4 (1992)
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. . . ooh . '\;h 2
The existence and uniqueness of F,,,.,),\ - measurable solutions X,,., v With E|| X+ vl 4
< @ and X,.n With E[|[ XNl < @ fol]ow from the abstract Browder-Minty theorem

about monotonous operators (see [19: Theorem 25.1]). We obtain by (A1), (4.6) and (4. 7
Y| Kresn - X (e (A()‘mﬁN X) KN 'X)H
S EMR e =) - (AX K 0 AR Ry X0t = B Retny - %)
S CICAMIVER I ANVVEP) IRV L6 ANVES) R MM O AOVESY)
SHAN Kmea v = X g [ Remos v = %llpg (o - &m)(Kmeanv - %)
Then, using' ‘
”'\qu X gy "’\mﬂN Xy * 1 Xmean - Xy
(£ - &) Kmwany = X0 5 122 - @anll | Komesrv = ¥y
we get [Kmoin = Xopean iy S (Y AN+ D[ Xain =% llgg * |12 < |l 5y and, consequently,
Ell&man - Xmanliy s 20 AN E| Rppoun - ¥ Iy +2E |68 - gy (48)
The inequality

. o h o
Elfh - gmllfy s (14 + mKN)EA(KoN - Kon)
"KNZE”Bx( tine Xin Vin) - B(tin: Xinv, ,N)”H
+2mTK ZE”B,( tine Xin. Vin) - Btine Xin _]N)”H

=Zn ICBotin: Kinv: Vi) - Boltines Xins Hi)) (Wt un) = wlt;n) 3

follows from the inequalities 2ab < a* + b2 (a, b ¢ R) and (Zj':r:, aj)2 $2™MmM3 . af (3g,.ram,
¢ R) and from the independence of the increments of the Wiener process. Then, using (A4) and

E"( B,(tin: Xin Vi) - Bo(tins Xins ,N))(W( ﬂN)'W(th))”}z-l

"( By(tins Xin Vi) - Bo(tins Kinvs ,N))"O'
we have

S h v 2
Ef - 8mllzr s (1+ 0+ mKN)EJA(XoN - Xon)llgy

m+ 2% gh & g2 g2
* Kn(2 22 Kt 2 (E IR - Konllg *E DT - Ui ls)-
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Therefore we have proved that
ElRmeanv = Reeanvlliy 5 204 1AN+1)2E| Kpuiy - x|
+2(1+ (1 + mK)IAIZE| Koy - Kon |l (4.9)
*2Kn2 227 K ) SEIR - Ky EITR - Tl
In a similar way we obtain
P ASINED AN

< 2¢[EVon - Tonlliy + NAIPEI RN - Kon 7y +IAIPE|R 2 i - K2l (4.10)
. me1 g 2 Ll o h o 2 o h o 2 . - -
* 2Kn(2 227 Kn)r? S E(IRGm - Kl + 178 - Tinl)-
J= .

We introduce

> h

% =EIXN - Kl b EITR - Ty and d = s, 08)

C = 2¢max {2(v"*lAll+1)%, 2(1+2T)lANZ, 2(1 +2T)}.
From (4.9) and (4.10) we get

amer S CE|Xman - x[3; + Knr2dy,+dp) and by ey s Capma * Knridy, +dy), (4.11)
and from (4.11) we get

Imes S dp(1+ CKNr?) + C(dy +E(| Xy - X [|7)-
Recursively we see that,for m=0,...,N -1,

Ay S —K—’\‘?(do YE|| Rpesnv = X |2 )(exp(Cr2T) -1) + dy exp(Cr2T)
and we obtain by (4.11)

Amaer* Oy S CU+CE|X N - x5

+C@ + Cf(do *E| Rmasnv - X |1 )(exp(Cr2T) -1) + Knyr2dy exp(Cr2T)).

So we have proved the following

Theorem 4.7: There are constants D >0 and C >0 such that

> h G 2 ~ h = =
E”’\mﬂN - ’\mﬂN"H * E"YmﬂN - YmﬂN":l s DexP(crzr)E"»’\mﬁN -,\'",2.,

~
7

— ~ h —_
+ (I RN - Konlliy +ENVn - T I5)(1 *Knyr®)(exp(Cr2T) -1)

37+
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Remark 4.8: With the help of Corollary 4.6 we see that problem (4.3) defines an approxi-
mation of (1.4). Problem (4.6) is an elliptical one. We consider an example for H, 5. Let (¢,) C
H, be a complete orthonormal system and let H, ./, (n ¢ N) be finite -dimensional subspaces
which are generated by ¢,,...,¢,. Then (4.5) is the Galerkin approximation of an elliptical

equation.

REFERENCES

(1] BUcCAN, G.P.: Stochastic semigroups (in Russian). Kiev: Naukova Dumka 1977.

[21 CI1ARL ET, P.: The Finite Element Method for Elliptic Problems. Amsterdam - New York
- Oxford: North- Holland Publ. Comp. 1978.

(3] CURTAIN,R. and A.J. PRITCHARD: Infinite - Dimensional Linear Systems Theory (Lect.
Notes Control Inform. Sci.: Vol. 8). Berlin- Heidelberg - New York: Springer - Verlag 1978.

(4] DUVANT, G. and J.L. LIONS: Inequalities in Mechanics and Physics. Berlin- Heidelberg
-New York: Springer - Verlag 1970.

[s] GICHMAN, I.I. and A.V. SKOROCHOD: Controlled Stochastic Processes (in Russioan).
Kiev: Naukova Dumka 1977.

{61 GRECKSCH, W.: Stochastische Evolutionsgleichungen und deren Steuering (Teubner
- Texte zur Mathematik: Vol. 98). Leipzig: B. G. Teubner Verlagsges. 1987.

[7] HONKONEN, J.: Renormalisation of random walks memory. Nordisk Inst. Teor. Atomfys.
Nordita Preprint 26 8 (1989), 1 - 24.

[(8) IONESCU,l.R.: Error estimates of a numerical method for a nonlinear evolution equa-
tion. Anal. Univ. Bucuresti - Mat.--Inf. 37 (1988)2, 64 - 74,

(9] KALLIANPUR, G. and V. PEREZ-ABREU: Stochastic evolution equations driven by
nuc lear -space - valued martingales. Appl. Math. Optim. 17 (1988), 237 - 272.

f10] KANTOROWITSCH, L.W. and G.P. AKILOW: Funktionalanalysis in normierten Rdu-
men. Berlin: Akademie - Verlag 1964. ’

l11] KLOEDEN,P.E. and E. PLATEN: A survey of numerical mehtods for stochastic differ-
ential equations. Report - Reihe Inst. Dyn. Systeme Univ. Bremen 204 (1989), 1 - 3.

[123 KOTELENEZ, P.: Gaussian approximation to the nonlinear reaction -diffusion equation.
Report - Reihe Inst. Dyn. Systeme Univ. Bremen 146 (1986).1 - 57.

{13) KRYLOV,N.V. and B.L. ROZOVSKIJ: On stochastic evolution equanons (in Russian). In:
Itogi nauki i techniki 14. Moskva: VINITI 1979, 71 - 146.

[14] OCONE, D.: Probability distributions of solutions to some stochastic partial dlffcrentwl
equations. Lect. Notes Math. 1236 (1987), 184 - 199.

[15] SCHMALFUSZ, B.: Invariant attracting sets of nonlinear stochastic differential equa-
tions. Math. Research S4 (1989), 217 - 228. .

t16] SOFENEA, M.: On existence and uniqueness of the solution of a dynamical elastic-
visco -plastic problem. Anal. Univ. Bucuresti - Mat. - Inf. 37 (1988)1, 53 - 59

[17)] TUDOR, C.. On stochastic evolution equations driven by continuous semimartingales.
Stochastics 23 (1988), 179 - 195.

{181 VISHIK, M.l. and A.O. FUSIKOV: Mathematical Problems of Statistical Hydromecha-
nics. Dortrecht: Kluwer Acad. Publ. 1988.

[19) ZEIDLER, E.: Vorlesungen iiber nichtlineare Funktionalanalysis.Vol. 1I: Monotone Ope-
ratoren (Teubner - Texte zur Mathematik: Vol. 9). Leipzig: B. G. Teubner Verlagsges. 1978.

Received 03.09.1990; in revised form 10.03.1992

Prof. Dr. Wilfried Grecksch

FB Mathematik und Informatik der Techn. Hochschule
Geusaer Str.

D (Ost) - 4200 Merseburg



