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On a Theorem of Rooney

Concerning the Spectrum of the Singular Integral Operator 

A. BöTTCHER and 1. M. SPITKOVSKY 

The authors have recently described the spectrum and the essential spectrum of the singular in-
tegral operator on spaces with general Muckenhoupt weights. In this note we show how these 
results imply a sharpened version of a theorem by Rooney on the spectrum of the singular integral 
operator on spaces with a "weakly" perturbed power weight. 
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1. Introduction. A famous theorem of Hunt, Muckenhoupt, and Wheeden [3] describes 
all the weights v on R for which the singular integral operator S on il', given by 

1,00 
( Sf)(x ) = - J (t - x)f(t)dt	( E 

00	

R) 
irz - 

is bounded on LP (ll, v) (1 < p < oo). Because for such weights S 2 = I, the spectrum of S 
on LP (I., v) is the doubleton {-1,1}. The much more interesting problem of identifying the 
spectrum on LP (iF,v) of the compression S of S to the positive half—line iL'. = (O,), 

1 
(S+ f)(x) = - I (t - x) 1 f(t)dt	(x e 

rz Jo 

has attracted many people for a long time, including Widom [9], Duduchava [2], Schneider 
[7], Rooney [6], Roch and Silbermann [4], and the authors [1,8]. 

The operator S+ is the simplest example of a Wiener—Hopf integral operator with a 
piecewise continuous symbol: the symbol of S+ is —sgn, and it has two jumps, namely 
at the origin and at infinity. It is well known in Wiener—Hopf theory that for determining 
the spectrum of a Wiener—Hopf operator it suffices to describe the essential spectrum of the 
operator (i.e. its spectrum modulo compact operators) and to establish an index formula 
for Fredholmian Wiener—Hopf operators. For operators with piecewise continuous symbols, 
and so in particular for S, the latter problem can be solved in a standard way once only 
the essential spectrum is known. 

Widom [9], Duduchava [2], and Schneider [7] studied S on L(ll+, v) for certain special 
classes of Hunt—Muckenhoupt—Wheeden weights v and arrived at the conclusion that the 
essential spectrum of 5+ is the union of two (possibly coinciding) circular arcs with the 
endpoints ±1 whose shape is determined by the value of p and the behaviour of the weight 
v at the origin and at infinity. 
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The case of general Hunt-Muckenhoupt_Wheeden weights was disposed of only recently 
in [1, 8], where we showed that the essential spectrum of S + is the union of two so-called 
horns; a horn is a closed subset of C bounded by two circular arcs joining -1 and +1. 

However, exactly as it is by no means a triviality to check whether a given weight satisfies 
the Hunt-Muckenhoupt_Wheeden condition, it is in general no easy matter to describe the 
concrete shape of the horns constituting the essential spectrum of S+. It is not difficult to 
show that the two horns degenerate to circular arcs in the Widom-Duduchava-Schneider 
cases, and we were also able to produce Hunt-Muckenhoupt-Wheeden weights for which the 
horns do not degenerate to circular arcs (see [1,8]). An interesting intermediate case is the 
weights considered by Rooney [5,6]. These weights are of the form w(x) = x''/'v(logx), where IL E (0,1) and v is an Hunt-Muckenhoupt-Wheeden weight. Although these weights 
involve besides a power of x a "proper Hunt-Muckenhoupt-Wheeden portion", Rooney [6] 
showed that the spectrum of S+ on L(u+, w) is a subset of a certain circular arc. 

The purpose of this note is to prove that in Rooney's case the spectrum of S is actually 
all of the circular arc and secondly, to clarify why in the case of Rooney weights the two 
horns collapse to a single circular arc. 

2. Hunt-MuckenhouptWheeden weights. Let v be a non-negative function on R 
which does not vanish identically. The function v is said to belong to A (1 <p < 00) and 
is then called aHunt-Muckenhoupt-Wheeden weight if v and v 1 are locally in L(1I) and L(R) (i/p + 11q = 1), respectively, and if 

	

/ 1'	\ '/' (Jabsup	(b - a)' ( 	v(x)dx) 	v(x)_dx) <00. 
—oo<a<b<oo	 a	 /  

It was shown in [3] that S is a bounded operator on L"(R, v) with the norm 

11111 := (j 
00 

If(x)v(x)IPdx) 
1/p 

if and only if v E A,,. In case v E A,,, the compression S of S is clearly bounded on the 
space V'(IR+,v) := L"(I+,vIr+). 

Theorem 2.1 [1]: If v E A,,, then each of the sets 

Io(p , v)	{a E IR:	- zI_ av(z) e A,,), 
I00(P, v) := Ice E ll: Ix - i 1°v (x ) E A,,} 

is an open interval of a length not greater than I which contains the origin, i.e., for	0,00 
we have 

I(p,v)=: (-u(p,v),l -v(p,v)) with 0< ii(p,v) 15 1" + (p, v) <1. 

Given a number 0 E (0, 1), we denote by ag the circular arc with the endpoints ±1 
passing through the point i cot ir/3. For 0 < -y :5 S < 1, we define the horn fl(y,5) as the 
union of all the arcs cr such that -y < 9 < S. 

Theorem 2.2 [1]: If v E A,,, then the essential spectrum of S on L"(R+,v) equals 
fl(v(p, v), z.'(p, v)) U ?1(l - V.+ (p , v), 1 - V,, (P, v)).
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3. Rooney weights. In [5,6], a non-negative function w on 11+ which does not vanish 
identically is defined to belong to; (1 <p < oo) if w and w are locally in LP (R+) and 
L(R) (i/p + 11q = 1), respectively, and if 

sup	(log -	
—1 (jb 

w(Y)PdY/Y)	(f.	
1/q 

w(y)d/
)oo<a<b<oo	c a  

It is readily seen that w E ; if and only if w(x) = v(log x) for some v E A. 

Lemma 3.1 [5, p.2611: If w E ; and p E (0, 1), then the weight w, defined by 
wM (x) = IxV lh'w(IxI) for x E R belongs to A. 

This lemma yields in particular the boundedness of S on L 7'(I1+, w). The following 
theorem sharpens the result obtained by Rooney in [6]. 

Theorem 3.2: If w E ; and p E (0, 1), then both the spectrum and the essential 
spectrum of S on L(ll+, wM ) coincide with the circular arc o. 

Proof: In [6], it was shown that the spectrum of S is a subset of o. Our Theorem 2.2 
implies that the essential spectrum of S. is connected, and since the essential spectrum is 
contained in the spectrum, it follows that both spectra are equal to all of c, which com-
pletes the proof. • 

In what follows we give a more direct proof of Theorem 3.2: we show how this theorem 
can be derived from the Theorems 2.1 and 2.2 without having recourse to [6]. 

Lemma 3.3: Let w E2L and p E (0, 1). Then 

10(p , W" ) = ( -p,i -p),	I(p,w,) = (-1 +p,p). 

Proof: Given a weight v on R, define a weight p on the complex unit circle T by 

p(t) = v(i(t + 1)1(i - 1))It - li 12/P	(t E ii'). 

One can show (see e.g. [1, proof of Theorem 2.10] ) that v E A if and only if p satisfies 
the Hunt-Muckenhoupt-Wheeden condition A(T) on the unit circle, i.e. if and only if we 
have

1 1/g 
sup -y (J1 p2'dm) (J1 pdm) <00, (1) 

where the supremum is taken over all subarcs I of T whose arc lenght III is less then any 
prescribed S > 0 and dm refers to arc measure on T. From Lemma 3.1 with p - i/p : we 
so infer that It + 11t - 1 3 i - 1 i 2/Pw (I t + lj/ji - i i) is in A(T) for all 3 E.(-l/p, 11q). 
Taking S > 0 sufficiently small, so that no I in (1) contains both -1 and 1, we see that 
It + lIIt - 1 I 12' 'w (i t + l i/l i - i) and it - 11'1t - 1

I 12/ 'w (i t + l/t - i i) are also in A(T) 
for all	E (-l/p, 1/q). Hence once more using (1) with sufficiently small 5, we obtain 

It + l Ii t - 11lt 1112w (It E A(T) Vfl,y E (
-i, ).	

(2) 
It - 11
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We now have 

Io(p, w,) = (c E JR : lx l°I x - iI 0 IxI1h /w(IxI) E A) 

=	
E JR: It + 11/1t l I 1 Ij - 1I12w ( 

+	
E A(T)} 

and so (2) gives that ( — iz , 1 -,a) is a subset of Io(p, tv). Analogously, 
I(p,w,) = {c E JR :	- i I°lxI"7'w(fzI) e A,} 

= 
f

	

a E R: t + 1I1Il - 1IIt - 1I1_2/9w ( I t 
+	

E P 00 
and (2) shows anew that (-1 +JL,i) is contained in	Since, by Theorem 2.1, the lengths of I(p, w) and I,,,(p, w) are not greater than 1, we arrive at the assertion. • 

Second proof of Theorem 3.2: Lemma 3.3 gives z4(p, WA) = u, u,(p, w) = 1 - 
and hence the essential spectrum of S on L(R, w,) is	t) U fl(z, ) = c due to 
Theorem 2.2. Because the winding number of the curve obtained by tracing out ct,, from 1 
to —1 and then back from —1 to 1 is zero with respect to every point in C \ o, it follows that o is also the spectrum of S.,.. • 
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