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Properties of BMO Functions whose Reciprocals are also BMO

R.L. JOHNSON and C.J. NEUGEBAUER

The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs
t0 (), Ap,and that an arbitrary u € BMO can be written as y = w -~ 1/w, for w as above. This leads
then to some observations concerning the John-Nirenberg distribution inequality for F ou,u € BMO
and F € Lip «.
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1. Introduction

We will consider the question of when a function w and its reciprocal 1/w are in BMO. If we
assume that w : R® — R, and consider this question for various spaces X, we obtain distinct
results. The answer for LP(R") is that if w,1/w € LP(R"), then p = oo while w,1/w € L™
implies that w =~ 1 which is also equivalent to the fact that w, 1/w € Ay (for the precise definition
of the A, classes see below). It is known that BMO is the right space to consider in place of
LP as p — oo in a number of situations and we will give the answer to this question for BA{O
in this paper.
The definition of BMO is that f € BMO if

1
sup 137 /() = Jalde = [l < +oo

where fg = Tzlﬂ Jq f(z)dz, and Q is a cube with sides parallel to the coordinate axes. It is
important to know that the L! norm can be replaced by the LP norm for 0 < p < oo,

1/p
sup (137 o 12) = JaPdz) = kg = 11

We need also to recall the John-Nirenberg lemma, the reason for the above result, for functions
of bounded mean oscillation. If f € BMO, there are constants ¢1,¢; > 0 independent of f and
Q such that

{t € Q: 1f(t)~ fal > M| € x|,

for all A > 0. Of course, bounded functions are in BMO and In 1/|z| is an unbounded function
in BMO. The precise space we will study is

BMO. = {w: R* » Ry : w,1/w € BMO}.
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We need to recall the A, weights which are defined by the condition

wir=p 3 [ (o) <o

where Q is again a cube. The A, weights solve the problem of characterizing when the Hardy-

Littlewood maximal function maps L%, into L%, where M f(z) = sup,¢q Té'lfQ | f(v)| dy, and
the result is

[ 1MS@)Puie)dz < 7 [ I(a)Pu(z)dz — w € 4,.

We will also need to consider 4y = {w|Mw(z) < Cw(z)}, with the smallest such C being
denoted A;(w) and A = Up>1 Ap- Since the A, constants decrease by Hélder’s inequality, we
can set Ago(w) = lim,_.co Ap(w). We have the set inclusions

AlgApgAquoov

where 1 < p < ¢ € 0. The A, weights also solve the corresponding problem for the Hilbert
transform

Hf(z) = lim 1) 4

=0 /ec|z-y|<1/e T — Y

It is known that if w,1/w € A,, then w € A3, and we may limit our study to the case 1 < p < 2
by the inclusion properties of Ap. It is also known that [1, p. 474]

w,1/w € () Ay < Inw € clospmo L™. , ()
p>1

We say that w € RHp,(reverse Holder) if

()" <l

and we abbreviate by RH,(w) the infimum of all such C. We will use the fact, due to Strémberg
and Wheeden, that w € RHp, if and only if w™ € Ay. An alternate proof of this fact can be
found in [3, Lemma 3.1].

2. Preliminary results

’

Our first result shows that Hélder continuous functions operate on BMO.

Lemma 1: If F is Hélder continuous of order o, where 0 < a < 1 and f € BMO, then
Fofe BMO and ||Fo fll. < 2||F||Lip oll fII2-

Proof. If there is a constant ¢ such that qu |f(z) - c|[dz < A, then it is well known that
I1fll. £ 24. We compute

(2 R ~ o)™ < (e f 01— se)
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Thus we obtain with p = 1/a, ||F o f|l. < 2||F|ILipallf1I2.

This has been, at least partially, observed by many people. If f € BMO, then |f|* € BMO,
for 0 < a < 1 and max{f,g} and min{f,g} are in BMO if f,g are in BMO.

We haven’t noticed the converse observed, but it is true. If ||F o f|l. < A||f]|2, then F €
Lipa. The proof may be found in (2], but as this is not generally available, we give the proof
here. Without loss of generality, we may assume F(0) = 0 and consider only cubes centered at
the origin since BMQ is translation invariant. Suppose that Q@ = [-%, %]" and that

fz) = z1 on the double of @
~ ] 0 outside the double of Q.

One checks that
F(z,) for z € 2Q,

F(f(z)) = { 0 outside the double of Q.

d .
and since [|f|l. < l|fllo < %, one finds iffg |F(zy) — Fg,| dzy < Ad?®, where Q; is the one-

dimensional cube [-$%, $], and by the Campanato-Meyer theorem (4], this proves the result.

We can use the lemma to show that there is a close connection between BMO and BMO..

Theorem 1: A real valued function u is in BMO <«=> there ezists a w € BMO. such that
u=w-1/w and ||w|l. +|]1/w]l. = ||u]l..

Proof. If u admits the decomposition, it is clear that v € BMO. If we are given a u €
BMO, it is easy to see that the equation for w leads to a quadratic equation with a solution
of w= 1(u+ vuT+4). The function F(z) = }(z + Vz* + 4) is everywhere differentiable with
derivative bounded by 1. By Lemma 1, w € BMO.

Remark. We note that the same proof proves the corresponding result for functions of vanishing
mean oscillation, which are defined as is BM O but when the sup is taken over cubes of side r,
and the resulting sup goes to 0 as r — 0+.

Another application of Lemma 1 is to the determination of conditions under which the square
of a function belongs to BMO. By Lemma 1 with F(z) = /z, it follows that such a function
belongs to BMO. We show that more is true.

Lemma 2: If f = F(u), F € Lip a,u € BMO, then
a la
l{z € @ :1f(z) = F(uq)| > A} € cxe™ ¥/ */IFli olllk )
Proof. Because u e BMO, by the John-Nirenberg lemma, there are constants ¢; and ¢ such
that | {t € Q : [u(t) — ug| > A} | € c1e=*Ml¥ll+|Q|. Hence, since

1/a
{teQ:lf(t)-F(uo)ln}g{teQ:lg(t)—ua|>("—Fn%;-) }
we have the inequality |

It € Q : 1£(t) = F(ug)| > A}| € cxe™ M2/l



6 R.L. JOHNSON and C.J. NEUGEBAUER

which is the desired result.

Corollary 1: For any € < ¢3,

(e2=f(2)=Flug)it/®
1
/ ST T
Q

-1] drga (22 jou

€

Proof. Let ¢(z) = e4="/° _ 1, which is increasing with ¢'(z) = éz‘/"“e""/". Aslong as A is
positive,

| eME-Fea’ 4z g

2 [7 1z € Q:11(2) - Flug)l > Aat/e-1ea 43
a Jo

A /°° e_ <||Pu‘,_7,.; oIl ") ae

< —q AVe=145Q].
(4]

If we choose A less than the fraction, we can use the fact that
00 00
1/ e""”"ez\ll"'"'d,\:/ edu=1
a Jo (+]

to obtain the above estimate.

If we modify the choice of ¢ slightly by putting P(z) = e“”", we see that fora < 1, ¢ is
convex and we can apply Jensen's formula to Q,p = 1, f = |f(z) — F(uq)] and if we note that

[fq ~ F(uq)l =

1 1
TIAGOR F(ua))| < @1 o 1@ - Fuo)l,
we can make the estimate -
1
vllo - Feua)l) < ¥ (i [ 2/0) - Flua))

1 / AP/ N @) -Fluq)Me
1@l Jo

We now combine this with Corollary 1 and obtain.

/eAll(r)-qu"‘ = / eAll(2)-F(ug)+F(uq)-fql!°
Q Q

IA

/ eA?/°11(z)=Fluq)lM*+ 42" /| fg- F(uq)t/*
Q

AP/l =F(ug)pi/e / Ao 1S(z)-Flug)t/e
Q

If we choose A2'/% = (c; — €)/(I[FII/S ,lull.), we can estimate this and

[ ere-tel® < (o (22) +1) @Ialfa - Flua))
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by using Corollary 1 and now we apply Jensen's inequality to get

/ eAlf(@)-Sal'l® (c1 (c2 ) + 1) 1Ql:=; / Ml/amz) Flua)lf®
Q € 1@l

(+(25) +1) ot

We can now state and prove the following.

IA

IA

Theorem 2: Consider the set of f = F(u),u € BMO,0 < a < 1. The following two statements
are equivalent.

(i) F € Lip o
(ii) there ezists 0 < ¢1,¢2 < 0,0 < A < o0, independent of Q,u € BMO such that

Al/a
I{z €Q:1f(z)- fol > M} S cre - |QI.
and then A ~ ||F||}e

Lip o

Proof. We will first prove that (i) implies (ii). By restricting the range of integration in the
inequality derived after Corollary 1, we see that

E\|={z € Q:|f(z) - > A} < e=ANe [ LAU(ER)-1al e gy
|Exl = {z € Q:1f(2) - fol > A}l < A ,

since e-AN/%eAlf(z)-fal'® 5 | on E,. This is the desired result if we choose € = % and A as
above.

We next show. that (i) implies (i). We first observe that (ii) implies that for some constants
0 < c3,64 <00 p
e3lf(z) - fal'/®
_— 1 < .
Joo (M) <eia

_ 1 [ alf@) - folt
Lo= o f, S A — S

Hélder now gives us, since 1/a > 1,

1/a
L (IQI/ _Iﬁng)uu‘—afq')

31 Jo () - Jal < CAllule

The proof is now completed by an application of (2]; see the argument after Lemma 1.

This implies that

Hence -

Corollary 2: Ifb* € BMO, then

l{z € Q : |b(z) = bgl > A}| < cre=X/BHlleQ).
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Proof. Apply the above theorem with u(z) = b*, F(z) = z!/* which is Lipschitz continuous of
order 1/k with Lipschitz constant 1.

Remark. The argument actually shows that if

l{z € Q : |u(z) - ug| > A} < ere=2*|Q,

then
g1/a \klo

{z € Q:15(x) - fol > A} < (ar +1)% "Waa |

Our main result connects the behavior of functions in BMO. with the A, classes.

Theorem 3: The set of nonnegative functions which are BMO along with their reciprocals is
contained in the intersection of all the Ap classes forp > 1, i.e. BMO, C MNp>1 Ap-

Remarks.(1) Of course, if b€ BMO., then 1/b € BMO, C Np>1A4p and (1) above implies
In b € closgpo L°.

(2) The class BMO. is non-empty. For exami)le, bi(z) = max(In 1/|z|,e) € BMO and
1/by € L™ C BMO. Moreover, if we take

ba(z) = max(In 1/Jz],1/In(jale?))

we get an example of a function which is unbounded and whose inverse is unbounded, yet both
b2,1/b2, € BMO.

(3) The result is sharp in the sense that the function b in the theorem cannot be in A, since
if it were, 1/b would also be in A; and then by a result of Johnson and Neugebauer {3, Lemma
22], b 1.

(4) The converse is, however; not true because with the same function b, as a.bove b? satisfies
/b2 € L™ and Inb? = 2Inb, € cIosBMoL°° and therefore b € N, A, and -, € Np>1 Ap, but
b ¢ BMO.

We will prove Theorem 3 as a special case of a more general result, but let us indicate how
it can be proved directly. The first step is a lemma.

Lemma 3: Let us denote by

1
fo= 5 /Q f(z)dz,

(f9)o - fagq = Wl| /Q (f(2) - fo)o(z) - gg)dz.

then we have

Proof. Compute and use the fact that g — gq has mean value zero.

We are ready for the first step in this version of the proof of Theorem 3.

Theorem 4: Suppose b € BMO., then b is in A,.
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Proof. Apply Lemma 3 to b and 1/b which gives
1 .
1~ bo(1/8)a = 7 [ (=)~ ba)(1/b(z) - (1/b)q)es

and allows us to make the estimate |1 - bg(1/b)q| < ||b]l.]|1/b||.. Holder’s inequality shows that
1 < bg(1/b)q and the above becomes 1 < bg(1/b)g < 1 + |[b]l.1]1/8]]..

Theorem 5: Ifbe BMO., then b€ Ay,.

For the proof of this statement we have to estimate
(@) (o)
IQlJe /\IQIJg 82/
.Lemma 4: With the same notation as in Lemma 3, we have

121 o) = 7060 - 5)(h0) - ha)U) - et

= (fghl)q — fq(ghl)q — 9o(fhl)q — hq(fel)g — lo(fah)q + fqaq(hl)q
+fqhq(gl)q + fola(gh)q + 9qhq(fl)q + 9qlo(fh)q
+hqlg(f9)q — 3fq9qhqlq.

Proof. We expand the integrand and compute the resulting terms.
Take f = h = b,g = = }. We obtain

First we require another lemma.

1-b0(3)a - (3)aba - ba(3)e - (3)aba
+{ba(z)a+ 0a)'()a + balpa + (laba + (})a)'()e + ba(Fe }
~3(60)"((3)0)*
1

= o1 -0 =37 (30~ (o) et

This allows us to estimate
2 1 1 ? 2 2 1 2 2 1 2
1+ GV (e + (1)) (o =3060)* (()a) < MBIl
which means that
2 1 1 2 2 2 1 2 2 1 2
1+ G (e + ((3o) e <36a) (o) + IBIEIFI
In particular, bg(f)g> < I1bll|1}]l. + v3A2(b), which proves that
1
Aspp(b) S V3+ (V3 + DNzl

The remainder of the direct proof of Theorem 3 proceeds like this. To prove that b,1/b are
in A4y3 do the corresponding formula with 8 terms of which 4 are b and 4 are 1/b, etc. ....
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3. A, weights whose reciprocals are 4, weights
We will now obtain Theorem 3 as a special case of the next result.
Theorem 6: Suppose 1 < py < 2. Then the Jollowing are equivalent.

~ wyl/weApo (2)

1 iy 1 1 /
L =—/ w— wolPo~ = — (= Po~! < ¢ < +00. (3)
Q IQ[ Q«I Ql |w (w)Ql
PROOF. Suppose (2) holds. Let r = pj — 1 > 1. Note that
1 1 1
L <—-—/w’—w'~———-'
@ S g fo v - (wayllg - (3l
o1 1 L1
s 1+(w)el(Pla +walgr)e +wa(Sl
1
< 14 Am(;u-) + Ap(w) + A2(w) < c < 400,

because w € Ap, implies w € Aj.

Conversely, if (3) holds, then we first note that w € A,. This follows from the next sequence
of inequalities:

/r l/r w _
RV IQI/Iw on (= )ol
> @ / (v wa)(g )q-—)

= we(= )Q‘l—wo( )Q+w0( =e-

We use the fact that if » > 1, then |a” — 87| > 8 2,_ — b". Write

(v = wa)( = (5)a)| = [ )o + £wa - (wa( Lo + 1)

which allows us to estimate the integrand below by
1 1007 o 1 1 1 T 1 r
- - (- > — Bl - - Nl
(w-va)g - (3o 2 g {wd )o+ cva} ~ (wa(gle +1)
1 1 1 T
7= 1{ (= )Q+ }-(WQ(;)QH) »

Now we take the average of this over @ which gives
1 r r r r
777 {()e(3) + (Zrawh} S o+ (4a(w) +1)',
and we conclude that w,é € Ap
Theorem 3 follows from this result; in fact, we obtain the estimate

v

Po—1 P
Lqo < ||w”.?,(,,5_1)“ 125 #'(ny=1)

and as BMO is characterized by || f|l. » for any p > 0, we can have any pg > 1 which proves the
result.
Although we proved Theorem 6 for 4,, it immediately implies a result about RH,.
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Theorem 7: The following statements are equivalent for 1 < r < o0:

w,1/w € RH, (4)
w)l/w € Al+l/r (5)
w’ € Aj. (6)

Proof. (4) — (5):Since w",1/w" € Ao, we have that w", 1/w™ € A3,and hencew, 1/w € Avir/re
(5) = (4): w € Ayyyy — 1/w € RAH,. Similarly, w € RH,.
(4) — (6): Since w",1/w" € Ao, we have that w™ € A7 as above.
(6) — (4): Since w™ € Ay, we A141/r = 1/w € RH,. From the fact that w” € A,, it follows
that w™" € A; and this implies that we can apply the above remark to 1 Jw.

Theorem 8: Suppose u € BMO anda > 0. Thenu®+a € Np>1 4p-

Proof. For any A > 0, write Au = wy — 1/wy, for some wy € BMO.. Then A?u? = wi+ 2y -2

By Theorem 7, w} € Ao and since wy € (5, Ap, by Lemma 2.4 in (3], w} € Nps1 Ap and a
similar result holds for . This shows that A?u? + 2 € Mp>1 Ap and hence, u? + & €N

Ap.
. . 3 A . p>] p
Since A is an arbitrary positive number, the result follows.
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