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Some New Classes in Topological Sequence Spaces Related to Lr-Spaces
and an Inclusion Theorem for K(X)-Spaces 

J. Boos and T. LEIGER 

The aim of the present paper is to get inclusion theorems for K(X)-spaces, that is, sequence spaces 
over any Frchet space X endowed with a K-topology (e.g. domains of operator valued matrices). Since 
Kalton's closed graph theorem is an essential tool to get inclusion theorems in the case that Xequals the 
set of all complex numbers and since domains of operator valued matrices are not necessarily separable 
FK(X)-spaces we can no longer make use of FK-space theory. Therefore, it is necessary to develop new 
ideas to get inclusion theorems. For this we introduce two new classes of K(X)-spaces and prove a closed 
graph theorem for inclusion maps. One of them is closely related to the class of L -spaces introduced by 
Jinghui Qiu and to the closed graph theorem of J. Qiu, the other is connected with a well-known result 
of K. Zeller in summability theory. As an immediate corollary of the inclusion theorem proved in this 
paper we get a generalization of a theorem of Mazur-Orlicz type due to the authors. 

Keywords: Topological sequence spaces (over an F-space), summability in abstract structures, (operator 
valued) matrix maps, inclusion theorems, consistency of (operator valued) matrix maps, closed 
graph theorems	 - 
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1. Notations and preliminaries 

For a given dual pair (E, F) we denote by a(E,F) and r(E,F) the weak topology and the 
Mackey topology of the duality (E, F), respectively. If (X, TX) is a given locally convex space, 
then X and X' denotes the algebraic dual of X and the topological dual of (X, TX), respec-
tively. Furthermore, if S is a linear subspace of X, then we use the following notations: 

S := {g E X . 1 3 (g,) in 	gn -+ g ((X,X))},

'l 
fl {v < x s c v =	(where '<'stands for 'is a linear subspace of'); 

Li 
in particular, S is the smallest linear subspace of X containing S and being sequentially closed 
in (X,a(X,X)). Note, S C X' if S C X' and if (X,rx) is barrelled on account of the 
Banach-Steinhaus Theorem. A locally convex space X is said to be weakly compactly generated 

(denoted WCG-space) if there exists an absolutely convex weakly compact total subset of X and 
it is called sub WCG-space if it is topologically isomorphic to a linear subspace of a WCG-space 
(see [8]). 

If X is any vector space, then w(X) denotes the set of all sequences x = (xk) in X. A 

subspace of w(X) is called sequence space (over X). Throughout the whole paper we assume 
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that (X, TX) and (Y, ri') are (locally convex) Fréchet spaces (F-spaces) and, as usual, B(X, Y) 
denotes the set of all ccntinuous linear maps from X to Y. In the sequei we use the notations 
m(X), c(X) and (X) for the set of all sequences being bounded in X, convergent in X 
and finite, respectively. In the classical case, that is X := 1K (1K := JR or 1K := () we write 
w, m, c, cp instead of w(X),.. ., ço(X). Furthermore we use the notation by for the set of 
all sequences in 1K having bounded total variation. On c(X) we consider the mapping urn 
CM —+ X, (zk) _—+limxk where the limit is taken in (X, r4. 

Now we remember the notion of FK(X)-spaces (see [11], [1] and [5] ). To that we consider 
on (X) the product topology r, which is the topology of coordinatewise convergence. A locally 
convex space (E, r) is called K(X)-space if E is a sequence space over X and the inclusion map 

(E,-,) — (w(X), r) is continuous. If in addition (E, r) is an F-space, then it is called FK(X)-
space. Furthermore, a normable FK(X)-space is called BK(X) -space. For example, (w(X), r) 
and m(X) and c(X) provided with a suitable topology r are FK(X)-spaces. If X is a Banach 
space, then m(X) and c(X) together with the obvious supremum norm are BK(X)-spaces. We 
remark that the limit function lim : (c(X),r) -p (X,) is continuous (see [5, Example 
2.3(c)]). In [5] distinguished subspaces of FK(X)-spaces are examined by the authors. 

We recall the notion of weak sectional convergence. Let (E, rE) be a K(X)-space containing 
(X). Then we consider the embedding map 

e : X —i E, a —* (0, . . ., a, 0,...) 

where a stands in the i-th position, and for each z = (xk) E (X) and n € IN the sequence 

= >ek(zk) 

which is called n-th section of x. Then 

WE := {z € El [n]	x (o(E,))} 

= {X = (xi) E E I V I € E': f([n]) =
	

f( ek (xi))	1(z) } 

is the set of all members of E being weakly sectionally convergent. For a sequence space G over 
X we define the /3-dual of G by 

G' : { (At ) E ca(X') I V (5k) € G : E Ak(xk) converges
 I 

and the space 

M(G) := { yk€wI V(x)€G : (Ykxk)€G} 

of all (scalar) factor sequences of G. 
Let A = (Ask ) be an infinite matrix with A.k E B(X,Y) for k,n € IN. Then 

WMA:= { ( 5k) € w(X) V n € IN:	Ak(zk) converges in (1', ry) } 

:= { ( 5k) € '(X) I V n € IN:	Ak(zk) converges in (Y, o(Y, Y'))
 I
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are called application domain of A and weak application domain of A, respectively. Therefore 
the matrix map 

A :	- w(Y), x = (xk) -p Ax := (EA.k(xk)) 

and the weak matrix map

x = (xk) -, Ax	(cr(Y Y')-	Aflk(xk)) 

are well—defined, If E is any sequence space over Y, then the domain of A and the weak 
domain of A (with respect to E) are defined by 

EA := { x € W(Y)A Ax € E } and EA,., := { x E W(Y)A ,, I A,,x E E }, 

respectively. In the special case E := c(Y) we call it simply domain. For the limit function 
corresponding to the domain c(Y)A of A we use the notation lim, : = lim oA. From [1] and 
[5] it is known that C(Y)A is an FK(X)—space and lim : C(Y)A -i Y is a continuous linear 
map. For the distinguished subset Wc(y)A of the FK(X)—space C(Y)A we write WA. In case of 
Y := 1K we write CA instead of C(Y)A. 

2. Questioning 

The authors proved in [4] that in the classical case (that is X = 1K = Y) the implication 

MflWECF	MflWECWF	 (1) 

holds for every separable FK—space F, for every FK—space E containing the set V of all finite 
sequences, and for each sequence space M having suitable factor sequences. For this, they first 
showed that (1) is true in the special case that F is the domain cB of any complex valued 
matrix B. Then the general case was an immediate corollary of the following inclusion theorem 
of G. Bennett and N. J. Kalton. 

Proposition 2.1 (C. Bennett and N. J. Kalton [2, Theorem 5]) . If ço C G < w, then 
the following statements are equivalent: 
(a) (GO , a(G, G)) is sequentially complete. 

(b) The inclusion map i (G, r(G, G O)) -i (F, TF), x - x is continuous for each separable 
FK-space F with GCF. 

(c) The implication G C F	G C WF holds for each separable FK—space F,. 

(d) The implication G C CB 	G C WB holds for each (infinite) matrix B. 

We remark that in the proof of this inclusion theorem the assumption of the separability 
of F is decisive since G. Bennett and N. J. Kalton used Kalton's closed graph theorem. 

Now, it is obvious to ask whether (1) remains true in the more general setting of sequence 
spaces over an F—space and, in particular, for separable FK(X)—spaces. With the aim of providing
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a positive answer to this question the authors proved in [6], on the basis of the proof of the 
corresponding clascicai result, that (1) reniaius even true if F is the domain of an operator 
valued matrix. To reformulate this theorem in detail we need the definition of a special class 
of '(scalar) factor sequences' and the 'gliding humps property' of sequence spaces (over 1K), see 
Definitions 2.1 and 2.2 in [6]. 

Definition 2.2 (see [4]). Let y = (Yk) E w , then, by definition, y E ( if 

(Yk - Yk+1) E Co and Yk ^! 0 (k E IN) 

and if there exist two index sequences (ks ) and (k) with the following properties (j, p E IN) 

10 if k2 _ 1 < k ^ k 
k; <k, <k 1 , Yk	1 if k2M < k < 

Yk y, if k < k < n < k2	and	y :5 yk if k 1 <k <n < k21. 

Definition 2.3 (see [12] and [4]). Let V be a sequence space containing W. Assume that 
for each index sequence (Pn) and for each sequence (y(i)) in w satisfying y = 0 for k 
[Ps, P,+i] and (y(i)) bounded in by , there exists a subsequence (y(q,)) of (y(j)) such that the 
pointwise sum E j y(i) is an element of V. Then V will be said to have the gliding humps 
property. 

Now, we recall the main result of [6] which generalizes Theorem 1 of [4]. 

Theorem 2.4. Let M be a sequence space over X containing (X) such that £ C 

M(M) or such that M(M) has the gliding humps property. Then the implication 

MflWECC(Y)B	MflWECWB 

holds for every FK(X)-space E containing (X) and each matrix B = (B k) with Bk E 
B(X,Y). 

Using Theorem 2.4 we may prove the validity of (1) in case of separable FK(X)-spaces 
but the obtained theorem would not contain Theorem 2.4 since domains of operator valued 
matrices are not necessarily separable FK(X)-spaces as the following simple example shows: the 
domain c(m)J of the identity matrix I (together with its FK( m )-topology) is not separable as 
the BK-space m is not separable. 

The main idea of the present paper is to find a class of K(X)-spaces containing both the 
separable FK(X)-spaces and the domains of operator valued matrices and such that the inclusion 
theorem presented in Proposition 2.1 remains true in the case of general sequence spaces and if 
F is any member of this class. In the next section we will motivate and present such a class. 

3. Lr K(X)spaces and some related classes of K(X)-spaces 

Kalton's closed graph theorem [9] says that every closed linear map T : E -p F is contin-
uous whereby F is a B,. -complete' -complete locally convex space and E is a Mackey space such that
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(E', u(E', E)) is sequentially complete. Introducing the notion of Lr -spaces, Jinghui Qiu gen-
eralized in [10) Kalton's closed graph theorem and he proved that the class of all Lr -spaces is 
the maximal class of range spaces F in this result (see [10, Theorem 3]). A locally convex space 
(E, r) is called L,. -space if S fl E' E' for each u(E',E)-dense subspace S of E'. We recall 
Q iu's closed graph theorem and we will refine Qiu's proof since some details of his proof seem 
to be incorrect. 

Proposition 3.1 (see [10, Theorem 1]) . Let (E, r) be a Mackey space such that the dual 
(E', c(E', E)) is sequentially complete, (F, TF) be an L -space and T : (E, r(E, E')) - 
(F, TF) be a linear map with closed graph. Then T is continuous. 

Proof. Let D := If € F loT E E'} and DT := 'D. n F'. Then DT is o(F',F)-
dense in F' since T is closed. The continuity of T is proved if we can show DT = F'. To that I '	 LJ 
end we will prove D. = D. thus DT = DT fl F' which implies DT = F' since (F, rF) is an 
Lr-space. Let I E F* be given and (f,,) be a sequence in D. such that I,, -i I (a(F, F)). 
In particular, f, o T E E' and there exists g E E such that 1 o T -i g (a(E, E)) Thus 
(fo oT) is a o'(E',E)-Cauchy sequence which converges tog since (E',a(E',E)) is sequentially 

1 

complete, therefore g = f o T E E', that is f E D.. Altogether, D = D. is proved U 

II 

Remark 3.2 . J. Qiu proved DT fl F' = F' and derived from this fact that DT is se-
quentially closed in (F, o(F, F)) which fails in general: Let (E, 7-):= (, r(,w)), (F, TF) := 

'I 

(s,, r(, )) and let T : -* ç. be the inclusion map. Then obviously Di' fl F' = F' = and 
U	 - DT = ço =w in (F,o(F,F)). 

Furthermore, Jinghui Qiu proved in Theorem 2 of [10) that every separable B,--complete 
space is an L,. -space. Thus Proposition 3.1 generalizes Kalton's closed graph theorem. As every 
separable locally convex space is a subWCG-space (see [8]) these considerations are contained 
in the following result. 

Theorem 3.3. Every Br -complete sub WCG-space is an L,. -space. 

Proof. Using a result of R. J. Hunter and J. Lloyd [8, Proposition 3 . 11) the proof is quite 
similar to the proof for separable spaces. Let E be a Br -complete subWCG-space and S be a 
ci(E',E)-dense subspace of E'. We'll prove S fl E' = E'. Note, S nE' is a a(E',E)-dense 
subspace of E'. Let U be a neighborhood of 0 in E and U° be the polar of U in E'. If we 

U	 Li 
can show that (S fl E') fl U° (= S fl U°) is c(E', E)-closed, then we are done an account of 

Li 
the B, -completeness of E. Let I be an fixed element in the a(E', E)-closure of S fl U° in 

Li 
E'. Then, because of [8, Proposition 3 . 11) we may choose a sequence (In) in S n U° being 

Li 
o(E', E)-convergent to I. From the definition of S and the fact that U° is a(E', E)-closed 

Li 
in E' we conclude f  SflU° U 

In Example 3.13 we will prove that the domain of an operator valued matrix is not nec-
essarily an L,. -space. Therefore, the class of L,. -K(X)-spaces is not the desired class described 
at the end of Section 2. The way out is the consideration of topological sequence spaces closely 
related to L,. -spaces. The definition of these spaces is motivated by the following theorem.
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Theorem 3.4. Let E be a K(X)-space. Then ç(X') and therefore EflE' is o(E', E) - 
dense in E'. 

Proof. This statement is an immediate corollary of the fact that the polar of (X') 
equals {O} • 

Definition 3.5. Let (E,TE) be a K(X)-space. 
(a) E has W -sequentially dense dual [or fl-sequentially dense dual] if ço(X') [or E0 fl E'] is 
sequentially a(E',E)-dense in E'. 
(b) E is called L, -space if W(XI) fl E' = E'. 

Remarks 3.6. (a) On account of Theorem 3.4 and '(X') C E'3 C (X') we get the 
following relations for K(X)-spaces containing (X) 

(i) If E has ç-sequentially dense dual, then E has fl-sequentially dense dual. 

(ii) If E has fl-sequentially dense dual, then E is an L.-space. 

(iii) If E is an L -space, then E is an L. -space. 

In Examples 3.12 - 3.14 we will learn that the inversion of each of these implications fails in 
general. 

(b) A K(X)-space is an L, -spaceif and only if it fulfils E0 fl E' fl E' = E'. (This is an 
immediate corollary of (X') C E O C (X') and of the definition of an L,-space.) 

(c) If E is any separable (or even sub WCG-) FK(X)-space, then E is an L,. -space thus 
anL-space.	-	--

(d) Any subspace of an L, -K(X)-space (E, 7-) containing o(X) is an L-K(X)-space, 
and E remains an Lç, -space if we replace r by any weaker K(X)-topology. 

There is a characterization of spaces with fl-sequentially dense dual which is closely related 
to a result of K. Zeller [13] saying that each continuous linear functional on a matrix domain 
may be represented by the limit functional of a suitable matrix. Furthermore, we get also a 
similar characterization for K(X)-spaces with so-sequentially dense dual. 

Theorem 3.7. Let E be a K(X)-space and let E P C E' (for example if E is an FK(X)-
space). Then the following statements are equivalent: 

(a) E has fi -sequentially dense dual. 

(b) For each f E E' there exists a sequence () in (E' 5flE') such that i',, -.- f (c(E', E)). 

(c) For each f E E' there exists a matrix B = (B k) with Bk E X' such that E C c(IK)B 
and flimBlE. 

If E0 0 E', then (a).== (b) . (c).
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Theorem 3.8. Let E be a K(X)-space. Then the following statements are equivalent: 
(a) E has y -sequentially dense dual. 

(b) For each I E E' there exists a sequence (f,,) in ç(X')) such that ,, -i f (c(E', E)). 

(c) For each I E E' there exists a row finite matrix B = (Bk) with Bk E X' such that 
ECC(IK)B and f=limBIE. 

The proofs are straightforward and therefore we omit them. 
Using the idea of the proof of the mentioned result of K. Zeller [13] we may prove that 

domains of operator valued matrices and of row finite operator valued matrices are FK(X)-spaces 
with /3-sequentially dense dual and p-sequentially dense dual, respectively. 

Theorem 3.9. Let A = (Ak) be a matrix with Ak E B(X,Y). Then C(Y)A has f3-
sequentially dense dual. If, in addition, A is row finite, then c(Y) A has p -sequentially dense 
dual.

Proof. For a proof of the first statement we apply Theorem 3.7'(a) = (c)'. Let F 
c(Y)A and f E c(Y). Then f has a representation 

f(x) = 14lim A x ) +	tn (X:A.k(Xk)) +	hk(xk)	(x E F)	 (2) 

where (ta ) E 1(Y'), jz € Y' and (hk ) E F13 are suitably chosen (see [1] and [5, Theorem 2.15]). 
If the matrix D = (Dak ) is defined by 

Ifork=n 
D k :=tk	fork<n 

o	for k>n, 

then we obtain 

D(y) = p ( yn) + E t,(y,) 
for the n-th row functional of D 

Cm = /40 A 1 + E tk 0 Ak, 

Thereby we get

(yEc(Y)) 

Furthermore we put C := DA, that is 

(n,i E IN). 

C(x) = ,z(A(x)) + E tk(Ak(x))	(x € F) 

(Ak denotes the k -th row functional of A) and thus 

urn cx = /4(lim Ax) + E tk( Ak(Z ))	(x E F). 
Ic 

So we proved F C c(Y)c. Finally, we define the matrix B = (Bk) by 

Bk
	{

hk	for n=1	
(n,kEIN).

 
C_I,k+hk for n>1
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Obviously B has the desired properties and the first statement is proved. 
To prove the second statement we adapt the pioof of Lite first statement. For this, we 

assume A to be row finite. Then we may choose a representation (2) of f with the additional 
property (hk) E (X). Therefore the matrix B constructed above is row finite and the second 
statement follows from Theorem 3.8'(a)	. (c)' U 

In the classical case it is known that the domain EA with respect to a separable FK-
space is a separable FK-space. Therefore, it is obvious to ask whether in the general case of 
operator valued matrices the domain EA with respect to an L,'-FK(Y)-space E is an L ,- 
space. (Trivially, it is an FK(X)-space.) We are able to prove this supposition in case of an 
FK(Y)-space E with /3-sequentially dense dual. 

Theorem 3.10. Let A = ( Ank) be a matrix with Ak E B(X,Y) and E be an FK(Y)-
space with /3-sequentially dense dual. Then the FK(X)-space EA is an L, -space. 

Proof. Let I E E 41 . We may choose g E E' and a E,(Y)! with f = g o A + a 
and, because E is sequentially dense in (E', a(E', E)), a matrix B (B k ) with Bk E Y' 
(n, k E IN), CB i E and g = limB I E . Therefore, for each x = (x i ) € EA we get 

	

1(z) limB Ax + ax = lirn	B
k( 

Aki(z )) +	a(x).	 (3) 

For all n,r,i € IN we define	by C= E	B0k o AkI .Obviously we get 

	

:= (c))
 

.IN € EA	(n, r E IN). 

On account of (3) for each n E IN the linear functional 

EA - 1K, x = (xi) - lirnC(ThT)(x) = 
E Bk (EAk1(z) 

is well-defined and we obtain C('' )	C(°) in (E',U(E',EA)) for each n € IN; in partic-



ular,

	

E El and therefore	+ a € El	(n € IN). 

Altogether, we get from (3) the statement C(n)+ a fl-n-,
 - I in (EA,u(EA,EA)) and thus 

f€Ej,thatisEf=E • 

We complete Theorem 3.10 with the following 

Remarks 3.11. (a) We don't know whether Theorem 3.10 remains true if we (only) 
assume that E is an L,-FK(Y)-space. If E is a separable FK(Y)-space (therefore an L ,- 
space), then the FK(X)-space EA is separable too and hence it is an L,-space. 

(b) From Example 3.14 we will get that, in general, the domain EA in Theorem 3.10 need 
not have /3-sequentially dense dual. 

Now, we are going to give the counterexamples promised in Remark 3.6 (a).
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Example 3.12. P. Erdös and G. Piranian [7, Theorem 11 gave an example of a regular 
real valued (row infinite) matrix A such that there exists no row finite regular matrix B with 
CA C cB . (Thereby, a matrix A is called regular if c C CA and lim Ax = urn x for each x E c.) 
Thus, if we put E := CA, then because of Theorem 3.9 the FK-space E has 13-sequentially 
dense dual but, combining Theorem 3.8(c) in case of I := limA and the argument of Erdös and 
Piranian, we obtain that the FK-space E does not have p-sequentially dense dual. 

Example 3.13. (a) The BK-space (m, fl II) is not an L,-space thus not an L,. -space. 
To prove this statement we consider the FK-space E := a and put C := m in WE = in. From 
the Mazur-Orlicz Theorem 2.4 and the Inclusion Theorem 2.1 we know that (G'i(G0,G)) 
is sequentially complete (which is a well-known result). Thus uW = G O = Li implying that 
(in, II) is no L,-space thus no L, -spaceon account of Remark 3.6(a). 

(b) The BK( in )-space c(m) has -sequentia1ly dense dual, but it is not an L -space. 
The first statement is an immediate corollary of the second statement in Theorem 3.9 because 
c(in) is the domain of the identity matrix. Furthermore, the BK( in )-space c(m) is not an 
L, -spaceas the BK-space (in, II II) may be embedded by ej isometrically isomorphically in 
the BK(m)-space c(m) (see [10, Theorem 2]). 

Example 3.14. Now, we give an example of a domain EA where E is an FK-space with 
13-sequentially dense dual, EA is an L, -spacewhich fails to have /3-sequentially dense dual. 
In case of the matrices M = (innk) with 

I  
mk	

2	if  = 2 1 (2p— 1) (p,n € IN) 
:=

0	otherwise 
and

0 0 1 1 0 0... 

? 
P. Erdös and C. Piranian [7, Theorem 1 and 5] proved the following statements: 

(a) If C is any regular matrix such that cm C cc, then C ' is not row finite. 
(b) If B is any regular matrix with CA C CB, then B is row finite and fulfils, 

3koEIN Vk>k0 VnEIN : bn,2k+I=bn,2k+2.	 (4) 

We put E := CM and F := EA = ( CM)A . The FK-space E has /3-sequentially dense dual 
(Theorem 3.9) and the FK-space F is an L,-space (Theorem 3.10). The map 

T : F -p C, x = (xk) - Tx := (Fl mnk E akiXi 
k	i	) 

is well-defined, linear and continuous (with respect to the FK-topologies). Furthermore, we have 
lim := limoT € F' and limTx = lim x for each z E c. We are going to prove that there 
does not exist any matrix B with 

F C CB and lima IF = limr.	 (5)
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(Thus, on account of Theorem 3.7 the FK-space F fails to have /3-sequentially dense dual.) We 
assume that R is a matrix satisfying (5). It is rguiar and because of CA C F and the above 
statement (b) it is row finite and fulfils condition (4). We consider the matrix B = (b k) with 
b k := 2 b 2k—! (n, k E IN). As B also B is row finite and regular. Therefore, on account of 
statement (a) there exists a y E CM \ CB- . Putting x := (2y1, 0, 2Y2, 0,...) we get Ax = y, thus 
rEF. On the other hand, 

yCB. and 1: b.k Xk = > b kyk (nEIN)
k	k 

implies x V cs and ailtogether x E F\CB. Therefore, the FK-space F fails to have /3-
sequentially dense dual. 

Collecting the results of the present section, we state that the class of all L. -K(X)-spaces 
contains both the separable FK(X)-spaces (see Remark 3.6) and the domains of operator valued 
matrices (see Theorem 3.9). 

4. A general inclusion theorem for K(X)-spaces 

For the proof of the aspired inclusion theorem we need that matrix maps between suitable K(X)-
and K(Y)-spaces have closed graph. Furthermore, we need the continuity of the inclusion map 
in case of special K(X)-spaces. 

Lemma 4.1 . Let X and Y be F-spaces and G be a sequence space over X containing 
p(X).

(a) If Bk E B(X,Y) for each k E IN and Ek Bk(xk) converges for each x = ( xk) E G, 
then

s: (G,r(G,G)) —p (Y,ry), (xk ) —p

k

is continuous. This statement remains true if we replace Ek B,(x) by O(Y, Y') -k Bk(zk). 

(b) If F is a K(Y)-space, then each matrix map A : (G,r(G,G13)) —.+ (F,rp) has 
closed graph. This is also true in case of weak matrix maps A. 

Proof. The statements in (b) are immediate corollaries of the statements in (a) and the 
property of F to be a K(Y)-space. For a proof of the (weak) continuity of s it is sufficient to 
show that for any f € Y' there exists a g E GO such that g = f o s. It is easy to verify that 
g := (f o Bk)k is the desired member of G. (Note, we have identified GO and the dual of 
(G,(G,Ga)) in an obvious way.) I 

Theorem 4.2. Let F be an L, -K(X)-space, let G and H be subspaces of F and G, 
respectively, such that (H, o-(H, G)) is sequentially complete and (C, r(G, H)) is a K(X)-space. 
Then the inclusion map i : (G,r(G,H)) —* (F,rs. ), x —+ x is continuous. 

Proof. The proof is quite similar to that of the closed graph theorem of J. Qiu (see Propo-
sition 3.1). Let i': F' — G be the transpose of i and D : (i')(H) = {f E F' I f 0 i E H)
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As an inclusion map between K(X)-spaces z has closed graph, that is D1 = F (see [9, 
Lemma 21 ]). For a proof of the (weak) continuity of i it is sufficient to prove D1 = F. To that 
end let I E F and a sequence (f5 ) in F with f,, 0 i E H and I,, -i I in (F,c(F,F)) 
be given. Then there exists g E G such that f,, o i - g in (G, a(G*, C)). In particular, 
(In o i) is a a(H, G) -Cauchy sequence, that is g E H as (H,a(H,G)) is sequentially com-
plete. Thus g = 1 o i which proves that D = If E F 10 i E H} is sequentially closed 

in (F,o(F",F)). In particular, this implies Di flF' = D,. Since F and (G,r(G,H)) are 
K(X)-spaces we get ço(X') C H n F' (= Di). Using that F is an L,-K(X)-s pace we get 

LJ 
F'= ço(X')nF'c Di nF'=Di U 

Remark 4.3. Similar to the argument in Theorem 3 of [10] we may prove that in Theorem 
4.2 L, -spaceis the best assumption for the range space in the following sense: Let (F,rF) be 
a K(X)-space. If the inclusion map i : (C, r(G, H)) - (F, rF), x -p x is continuous for 
each subspace G of F and H of G* such that (H, u(H, G)) is sequentially complete and 
(C, r(G, H)) is a K(X)-space, then (F, rF) is an L,-space. (As a hint for the proof we remark 

GOC

Now we are in a position to formulate and prove the announced inclusion theorem. 

Theorem 4.4. If C is a sequence space over X containing ço(X), then the following 
statements are equivalent: 

(a) (G O , a(G, G)) is sequentially complete. 
(b*) Each weak matrix map A : (G,r(C,C)) -' (F,TF) ,x -p Ax is continuous whenever 

(F, TF) is an L,, -K(Y)-space, where Y is any F-space. 

(b) Each matrix map A: (C, r(G, G O)) -i (F, rF) , z - Ax is continuous whenever (F, rF) 
is an L,,-K(Y)-space, where Y is any F-space. 

(c) The inclusion map i : (C, r(C, G
O
)) - (F, rF) , x -p x is continuous for each L,, - 

K(X)-space (F, TF) containing C. 

(d) The implication C C F	C C WF holds for each L, -K(X)-space F. 

(e) The implication G C c(Y)B	: C C WB is true for each matrix B = (Bnk) with 
Bk E B(X, Y) whereby Y is any F-space. 

(f) The implication G C CB' =	G C WB is valid for each matrix B = Bk) with 
B5,, E X. 

Proof. First of all, we prove the implications '(a) =. (c)	(d) . (e) = (f)	(a)', 
then '(a)	(be) = (b) = (c)'. 

'(a)	(c)' is Theorem 4.2 in case of H := C". (Note that (C, r(G, G")) is a
space.) 

'(c)	(d)' is obviously true since the continuity of i implies the weak continuity and 
xN—* x in (G,cr(C,C")) for each xEG.
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'(d)	(e)' is trivially fulfilled as every domain is an L. -K(X)-space (see Theorem 3.9). 

`(e) =. (f) since (f) is contained in (e). 

'(f) (a)': Let () with 4D. = ( k) be a Cauchy sequence in (Ga,(G/,G)). Then 
the functional valued matrix B = (nk) fulfills G C CB and furthermore for each x E G we 
get on account of (f) 

lim < , x > = limx >2(limB ° eJ)(xk) = >2 pk(xk) = <, x>	(x E G)	(6) 

where ço := hmB oek (e X') and ' := (k) E G. By (6) the sequence ('h) is r(G0 ,G)-
convergent in GO and altogether we proved (a). 

'(a) = (b*): Let (G,c(G,G'3)) be sequentially complete, F be an L,-K(Y)-space and 
A: (C, r(G, G13)) -+ (F, rF) be a weak matrix map. We have to prove the continuity of A. 
Let DA, := If E F' I 10 A E G(= G')} . Since A is a closed map (see Lemma 4.1), DA, 
is dense in (F',u(F',F)). Since (G,c(G'3,G)) is sequentially complete, DA , is a(F',F)-
sequentially closed (see [9, Lemma 2.2]). On the other hand W(X) fl F' = F' since F is an L-
K(Y)-space. Therefore the weak continuity of A is proved if we can show (X') C DA. because 
this implies DA, = F (that is 'P 0 A. E C' = G0 for all 'P E F'). Let IF = ('I',,) E ç(Y') and 
let f E F;. be defined by 

1(x) := ('P0 A)(x) = t w (,(Y, r')— E Ank(Xk))	(x E FA 3 C). 

Then for each x E FA,, we get 

1(x) = >2 >2 'P(Aflk(xk)) >2>2 'P(Ak(xk)) = >2 Bk(xk) 
n=lk	 kn=1	-	-	k	 - 

where Bk .=>2'PfloAflk for each k E IN. Obviously, (Bk)E G O , that is f = 'PoA € C0. 
Therefore we have shown 'P e 

. (b) =. (c)' is obviously valid U 

As an immediate corollary of Inclusion Theorem 4.4 we get the desired generalization of 
the theorem of Mazur-Orlicz type presented in Theorem 2.4. 

Theorem 4.5 . Let M be a sequence space over X containing o(X) such that L C 
M(M) or such that M(M) has the gliding humps property. Then the implication 

M fl WE C F	M fl WE C WF 

holds for every FK(X)-space E containing (X) and each L ç, -K(X)-space F. 

Proof. If we put C := M fl WE C F, then Theorem 2.4 says that statement (e) and 
therefore (d) in Theorem 4.4 is true. But (d) is in the present case the statement of the theorem 
being submitted U 

We don't know whether we may replace in Theorem 4.4 (b) the matrix map by any linear 
map with closed graph. But, the following theorem holds.	 -
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Theorem 4.8. Let G be any sequence space over X containing (X) and let (F, Tp) 
be a K(Y) space and let T: (G. , r(G, G

O
)) -p (F, rF) be a continuous linear operator. Then T 

is a weak matrix map, that is, there exists a matrix A = (An,,) with Ak E B(X, Y) such that 
Tx = Ax for each x E G. 

Proof. Let T := rn o T (n E IN) where rn denotes the n-th projection from F to 
Y. We define the Matrix A = (A5k ) by Ak := T5 0 e k (n, k € IN). Since T and e k are 
weakly continuous, Ak is weakly continuous and thus continuous, that is A5k E B(X, Y). 
Furthermore, we get 

T(x) = (T(x))5 = (u(YY1)(Tn 0 ek)(xk)) =. A,x for each x E G 

from the weak continuity of Tn and the AK-property of (G,o(G,G'3)), that is x = >k ek(xk) 
in (G, o'(G, Ga)) • 

We complete the paper with some remarks to the relation of the present paper to [6]. 

Remark 4.7. The authors gave in Theorem 3.3 of [6] an inclusion theorem connected with 
weak domains of operator valued matrices. Because the assumptions as well as the statement (a) 
in Theorem 4.4 of the present paper and in Theorem 3.3 of [6] are identical, we may complete 
Theorem 4.4 by statements (b) - (e) of Theorem 3.1 of [6]. 

Example 5.1 and Remark 5.2 of [6] tell us that we cannot deduce the Mazur-Orlicz Theorem 
3.3 of [6] from Inclusion Theorem 4.4 if we consider the natural topology on weak domains which 
makes it to an FK(X)-space (see [31). 

It is obvious to ask for suitable K(X)-topologies on weak domains such that the domain 
becomes an L-K(X)-space and the limit map becomes continuous because in this case there is 
a little hope that we can deduce theorems of Mazur-Orlicz type - and consequently consistency 
theorems in case of weak domains - from Inclusion Theorem 4.4. 

The authors wish to thank the referee for helpful hints. In particular, the example in 
Remark 3.2 is due to the referee. 
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