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Numerical Solutions for Some Free Boundary Value Problems 
Occuring in Planar Fluid Dynamics 
R.P. GlLBERT' and WEN GUO-CHUN 

In the paper [I], we consider the solvability of some free boundary value problems occuring in 

planar fluid dynamics. The object of the present paper is to present numerical methods for 
solving free boundary problems. It was shown in -Lii that such free boundary . problems may be 
transformed into a mixed boundary value problem for a linear or nonlinear elliptic complex 
equations, which in turn, might be reformulated into a conformal mapping or quasiconformal 
mapping from a general domain onto some canonical domain. In this paper we direct our dis-
cussion to the numerical solution of mixed boundary value problems for generalized Beltrami 

equations 
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§ 1 Numerical solutions of mixed boundary value problems 

Let Dbe a (N+1)-connected domain with the boundary F =	U, where the Sets 13 = {z: I  - 
z, I i} (j	N) are situated inside F.	z: I 	1} and z 0 € D. We consider, in D, the€
nonlinear elliptic complex equation 

w = F( z, w, tv5 ) F = 01 w +	+ A 1 u. + A 2 W + A3 ,	 (1.1) 

in which Qj = Q(z,w,w5 )(j = 1,2) and A r A(z,t)(j 1,2,3). Suppose that the complex equa-
tion (1.1) satisfies condition 

(C) 1. The functions Q(z, w,U)(j = 1,2) and A(z, w) (j 1,2,3) are measurable in z € D for all€
continuous functions w and all measurable functions U in D and satisfy the bounds 

L[A(z,w(z)),D1 !^	< o (j =1,2,3) 

where p (2 < p < co) and k0 (0 !^ ko < co) are real constants. 

2. The complex equation (1.1) satisfies the uniform ellipticity condition 

IF(z, tv, U1 ) - F(z, lV,U2 )I s qU1 - U2 1 for a.e. z € D and w, U1 , U2 € C,	(1.2)€

where q0 (0 s q. < 1) is a constant. 

3. The functions Q(z, w,U)(j = 1,2) and A(z, w)(j 1,2,3) are continuous fdr u' € C for 
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a.e. point z e D, and F(z,w,U) satisfies the condition 

I F(z, IV,, U) - F(z. uI'2 U)I :^ R(z)I a 1 - ti,2 1 for ii's, tI'2 U € C,	 (1.3) 

where L(R(z), b) s k0. 

4. The function 

G(w,V)[w!-F(z,w,wZ)][VZ-FWV-F,V-F.V-FV.j 

satisfies the condition 

G( W1,tV1- u'2 ) - G( w2 , w, - u'2 )	w1 
2 - 

F(z, W a' 1 , 1 ) - (a'22 - F( z, w2 , a'2 ))I 2(1.4) 

In particular, if the complex equation (1.1) is linear, i.e. Qj = Q(z) (j 1,2) and A	A(z) (I 
1,2,3), then the conditions (1.2) - (1.4) obviously hold. 

Problem A: The so - called mixed boundary value problem for (1.1) is to find a bounded so-
lution w E D satisfying the boundary condition 

Re[A(t)w(t)] r(t) h(t) (t € 1),	 (1.5) 

in which I A(t)I = 1, A and rposses discontinuities of the first kind at the points t, ... , t,,., D 
t,,,} and r F\ It,_., tm} consists of the arcs ...... . r" with end points from the set 

t1 ,..., t,, 3}, where the t i ,..., t,, are arranged in with a positive orientation. If A is continuous 
on 1 (0 s j :5 N), then we add an arbitrarily chosen point t F,,, to the set (t1 . ..., t,,,} and rela-
bel this set as {t......tm) Moreover A and r satisfy the conditions 

A(t) m e"'J,	pr, 0 :5
	

<2 

r(t) = rj(t), Ca[I)(t),FJ] , 1< co, j	I..... n 

where 1/2 < a < I and I3/are nonnegative constants. Besides, 

h,t€r,J =1..... N 
h(t) =	0,t€,j=0	forx0 

h,f€I),j=0,l.....N for x-1, 

where h (j 0,1.... . N) are unknown constants to be determined appropriately, and x = 0 or x 
- I is the index of Problem A (see [1,2]). If x 0, we may require that the solution w satisfies 
the point condition 

Im[.)w(aj)] = b, j {i} = 1 (1.6) 

in where a 1 (t tk) E 1, b 1 is a real constant with the condition I b1 1 :5 1. The mixed boundary va-
lue problem in [1] can be reduced to the Problem A above. 

By H 1(D)we denote the Sobolev space H'(D) = W21(D) z {wIw,w2 ,w € L2(D), and denote 
by Problem B the extremal problem for the functional / = 1(u), i.e. we find a bounded function 
VV € H'(D)fl C(D ), such that 

1(w)	mm	1(u),

u  H1(D)rC(D)
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where 

1(u) = jftD u2 -F(z,u,u)J2do j (1.7) 
j

IReX(t)u(t)- r(t) - h(t)I2ds +	(Im3)u(a)- b)2 r 

It is easy to see that the unknown constants h = ReX(a)u(a) - r(a), in which a (* tk) is a 
point on Fj (j = 0,1,2.... . N), which we sometimes denote as h(t) = h(t,u). In the formula (1.7), 
the double integral is over Dr =	 - t,I < }, where s is an arbitrary small positive 

number. 

Theorem 1.1: The function w is a solution of Problem A if and only if it is a solution of 
Problem B. 

Proof: Substitute the solution w of Problem A for u in (1.7). Obviously 1(w)	0, which

shows that w is a solution of Problem B. 

Conversely, let wbe a solution of Problem B. Then it is clear that 1V satisfies the first order 
complex equation (1.1) for almost every point z € D, the boundary condition (1.5) on 1 and the 
point condition (1.6). If we can prove that w E W,(D), 2 < p0 < p, then w is also a solution of 
Problem A. According to [3: Theorem 2.11 and [4: Chap. 4/Theorem 1.31, w can be expressed 
as tv(z) = (I[ç(z)]e" + 1Y(z) , where , p, f1 £ W,(D), w W[t(Dfl and 1 is analytic in (D). 
It can be shown that w W(DC)U 

PO 

We use a regular triangular net to subdivide the domain D, such that the diameter of each 
triangular unit Aj is not greater than a positive constant h. Denote the vertices by z1 ,..., z so 
that a E { z1 ,..., z} (j = 0,1,2.... . N). Moreover, we insist that tk 4 { z . ..... z} (k = 1,2.... . m). 
We introduce the space E of complex linear splines, 

E = (v I v is linear in z,2 on each Aj and continuous at z € D). 

It is not difficult to see that E C H 1(D)fl C(D ). We use Pk E E, where cpk(zJ) 1 for j k and 
(p k( zJ ) = 0 for jt k(j,k = 1 .... . n). A basis for the space E consists of the function set {91,..., 
cp,,ip2.....ip}, where i is the imaginary unit. 

Theorem 1.2: Suppose that R e L(D) in Condition C. Let w be an exact solution of Pro-
blem B and ii E E be a linear interpolation function of w. Then Problem B has a solution. 

Proof: We first prove 1(a) :5 M1 h 2, where M1 is constant. In fact, we have that

WZ 1(lv) = ffDIZ' Z 

+f IRe .( t )/(t)-r(t)-h(t)I 2ds +(lmX.)(a)-L)2 
I-	 jc{j 

-F(z,t,iv)l2do, + j'r I Re7X t;'( t)_ w(t))I2ds. 

Noting that w € H 1(D)flC(D), it may be extended to a function we H'(R2)flC(D), i.e. 
iv(z) = w(z), for z £ D, and IIwIIH l(R 2 ) :5 A4IItvIIH 1 (D) where M2 is a constant. From the trace 
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theorem, it follows that 

I I ReX ( t )( t ) -	t))I2ds :5 iVf lkW - W II H t(n)	M3 II - WIIH1(n) 

^ /vI3hIIwIIir., ^ Ma h 2 DwIl 1(n)-' M, h2, 

where M3 , M4 are constants. Moreover, 

IJn	-F(z,-,)I2do i

ffD (i' - w)2 - (F(z, it', I') - F(z, w, 
jj 

1J$ I(a - W) - (F(z,,)-F(z,ii,)) -(F(z,)-F(z,w))2 
D	

do2 

:5IfD (( -	+	-	+ IR(z)I	 - u'I2)do, 
iJ  

^ M5 lw - VII1(D) :5 
M6h, 

in which M5 , M6 are constants. 
Secondly, using reductio ad absurdum, we can prove that there exists a positive constant 

M7 (h), such that 

ff') I	- F(z,u,u)+F(z,O,O)I2do 

N C	 - 
+	

Jr	
- Re X(a)u(a)I2ds +	lmX(a)u(a) 

j=o j 

10(u) a Ml(h)flUIl1(D)flc(n.) 

where Hull H 1(D)nC(D) 11U11 1 1(D) + C(u,D), and if  = 0, ReXC)u(a.3 ) is represented by 0. 
Obviously, 

min L3(u) r	min	10(u). 
&ac E	 ue E, I( u)^P-4h2 

It remains to be shown that (1.8) possesses a minimum. As a matter of fact, 

L(u) = ffD I U-V -F(z,u,u)+F(z,O,0)I2do 

+j* (Re7)u(t)-r(t)-Re)u(aj)+r(aj))+r(t)-r(aj)ds 
j=o j 

((Im5	u(aj ) - b) + b)2 
jcjj) 

:52(h2 

+j*f IF(z , O , 0) I 2do z +f r(t) - r(a)I2ds +bJI2) M8(h).

(1.8)
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Consequently, max ZCD . I u I M9(h) < . We consider next u = . 1 c 1 q1 + E,2-',+1c1(iq); we 
notice that max 1152 Ic1 I M9 (h). Hence there exists a wh € E, such that 1(w,) min,,CE 1(41 

If u = W1,, the variation of 1(u) is equal to zero, i.e. 

61( wh) = 2Rejf (wh - F ( z , wh, %vh Z ))(UZ - 1;,1 u - Iyh U - F,,,, u.F	u)do 

Ne
(ReX(t)tv,,(t) - r(t) - ReX(a)w, 1(a) +r(a.))(ReX(t)u(t) - ReX(a)u(a,))ds 

j=o ') 

+ (Im)1vh(a- bj)lm3)u(aj) 
jc(j) 

= a(wh,u) = 0. 

Variational Problem C: Find a complex function w1, € E, such that a(w,,, u) 0 for all u E E. 

Theorem 1.3: A necessary and sufficient condition that Wh is a solution of Problem B, is 
that it is a solution of Problem C. 

Proof: The necessity of the hypothesis is obvious. Now suppose wh is a solution of Pro-
blem C. By Theorem 1.1 and by the necessity put of this theorem, w13 is a solution of Problem 
B. If the solution of Problem C is unique, then sufficiency is proved. Suppose to the contrary 
that Wl h, W2 h are two solutions of Problem C. Since a(wjh,u) = 0, a(w,u) = 0, for all u € E, it 
follows that a( wjh, u ) - a( wsh, u ) = 0. Setting w1 = Wi b - %v2h and using Condition C, it can be 
seen that 

ffDI1hz - 
F ( z , wlh , lvlhZ ) - (W2 h - F(z,w2h,w2hZ)I2doZ 

Ni' +J I Re?.(t X wlh(t) - w2h( t )) - ReX(aJXwlh(aJ)-w2h(aJ))I2ds 
j=o 5 

+	lmX(a)(wi,(a,) - W2h(aj ))I	0, 
jc(j} 

and w13 is a bounded solution of the following boundary value problem: 

= Q(z)w, 2 +A(z)tv
	

(IQ(z)P :r q. < 1, A € L(D)) 

Re(t)w,(t)) = Re( X(a)w,3(a))
	

(a € 5 , 0 £ j.!5 N) 

lm ( X( aJ. )(wh(aJ )) =0
	

(j = 1, for x = 0). 

According to the uniqueness theorem, we conclude tv1	0. i.e. U'jh = 

Similar arguments can be used to obtain error estimates. 

36*
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§ 2 Numerical method for some quasiconformal mappings 

A quasiconformal mapping may be shown to be a homeomorphic solution of an elliptic com-
plex equation of first order 

w2 = F(z,w,w), F = Q1 w + Q2 T2 = Q w	 (2.1) 

defined in the domain D, where Q Q1(z)w1 + Q2(z)W2 1w. We assume that (2.1) satisfies 
Condition C stated as §1. In [4: Chap. 3], we proved that there exists a unique solution w of 
the complex equation (2.1), and that this solution quasiconformally maps the domain D onto 
some canonical domains. The conformal mappings and quasiconformal mappings may be redu-
ced to Boundary Value Problem Q for the complex equation (2.1), i.e.we improve the condition 

Re(X(t)w(t)) = r(t) + h(t), t el',	 (2.2)€

where

[i tEl,j=1.....N	 [r(t), teF\Fo,reCa(F\Fo) 

X(t) = 1, te

	

r(t) = 1rj(t);telj,rj eCa	 cx (F)	(0<<1) 

1	

r,j 
t	 S	 S	 [r2(t), t	', r2 € 

h(t)	 hi, t € Fj , j = I.....N 

1h0 , t € 1, if x = 0, 

in which the h (j = I.....N) are unknown constants to be determined, l and 1' are some su-
barcs of E. Similarly to §1, the indexes of Problem Q are x = 0 or x = -1. If x = 0, we take h0 
= 0. In some cases, the solutions w of Problem Q are not bounded. Using the method of [2: 
Chap. 3/Theorem 6.1], Problem Q can be transformed into another boundary value problem. 
Applying the method mentioned and the representation theorem therein for solutions of the 
complex equation (2.1), we can be proved that the solution of Problem Q under certain condi-
tions is a homeomorphism from D onto the desired canonical domain. 

Next, we construct a homeomorphic solution of (2.1) that quasiconformally maps D onto a 
strip lying between 1mw 0, 1mw = I and having N level rectilinear slits deleted from in 0 
1mw < 1. In this case, the boundary condition (2.2) of Problem Q may be put in the following 
form:

	

0,	it<<0 

Re(X(t)w(t)) = r(t) +h(t)	1,	0<	<it	
e €	(w(i) = lit),	7) = -j, t € r.€

h, teF,j1..... N 

We choose an analytic function H(z) = l/it(In- + in/2) such that H(0) = i/2, which con-
formally maps IzI <1 onto the strip 0< ImH< 1. Setting w IW+H, Problem Q for (1.1) can be 
reduced to the following boundary value Problem R: 

WE = G(z,W), G = Q1(z)W - Q2(z)W - L4(z), A Q1 H 1 +Q2 H'	 (2.3) 

1 0	 t €	
(WO) = 0). ReW(t) = R(t) t -  ImH(t) +h(t), t € r\(r\(o}) 

We assume that A e L(D), p > 2.
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Theorem 2.1: The function w is a quasiconformal mapping for Problem Q if and only if W 
= -i(w - H) is a bounded solution of Problem R. 

Proof: It is clear that if wis a quasiconformal mapping, then W -i(w - H) is a bounded 
solution of Problem R. Conversly, if Wis a bounded solution of Problem R, then w = iW +h 
can be expressed as w(z) = CD (ç( z )), where C is a homeomorphism which quasiconformally 
maps D onto a bounded circular domain 0 and, D() ia an analytic function in the domain 0, 
satisfying the boundary condition Re()D()) r(z()), c E r = àO, where z() is the inverse 
function of (z). Using the method of [2: Chap. 3, § 3] we can prove that 'D(ç) conformally 
maps the domain ç(D) onto the strip domain with the boundary 1mw = 0, 1mw = I and N level 
rectilinear slits lying between 0 < 1mw < I U 

In order to find the numerical solution of Problem R for the complex equation (2.3), we 
introduce the extremal Problem S for 1(U): 

1(W) =	mm	- JffD1u -G(z,U5)12do5 + I IReW(t) - R(t)I2ds + IW(i)12
u€H1(D)C(D) 	 jr 

and the variational Problem T: 

aI(w) = 2 ReJ'f lW - G(z,W')I IU - G(z, U)Ido 

+21
r IReW(z) - R(z,W)IIReU(z) - R(z,U)Ids +2ReW(i)iJ(), J 

where R(z,W)=O for t€I and R(z,W)=-lmH(t)+ReW(a)+1mH(a),j=I..... N. Using the 
finite element method, we can construct a numerical solution W,, of Problem T and Problem S. 
The function Wh is also a numerical solution of Problem R. Therefore wh = iWh + His a nu-
merical solution of Problem Q. 
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K. STREHMEL (ed.): Numerical Treatment of Differential Equations. Proceedings of the Fifth 
Seminar "NUMDIFF-S" held in Halle 1989 (Teubner-Texte zur Mathematik: Vol. 121). Stutt-
gart - Leipzig: B.G. Teubrter Verlagsges. 1991; 372 pp. 

With the present Volume 121 of the series "Tcubner-Texte zur Mathematik", Teubner-Verlag 
continues the publication of proceedings of the by now traditional NUMDIFF workshops which 
have been hold at the Martin Luther University of Halle-Wittenberg since 1981. As can be 
estimated from both the list of speakers, and the papers presented, NUMDIFF-5 has found 
considerable resonance among the European mathematical community. The central goal of the 
workshops, to support the exchange of the latest scientific developments in the broad field of 
numerical analysis for ordinary differential equations including its relationships to other 
mathematical disciplines and to applications in modelling real-world processes, is reflected by 
the papers selected for the proceedings by the editor (and chairman of the NUMDIFF semi-
nars) K. Strehmel. 

The first and main part of the proceedings is devoted to the analysis of numerical 
methods for ordinary differential equations. Initial value problems for algebro- differential 
equations are discussed in the contributions by Arnold, Griepentrog, Hanke, März, Niepage, 
Reich, and Roche, who cover almost all aspects of this topic of current research interest. The 
survey article by Hairer and the paper by Strehmel/Weiner focus on the relation between 
algebro- differential equations and certain classes of singularly perturbed stiff systems of ordi-
nary differential equations. Efficient solvers for stiff problems are dealt with by Auzinger/ 
Frank/Kirhinger (extrapolation schemes), Kaps/Ostermann und Scholz (methods of Rosen 
brock type). Houwen addresses parallelization aspects in the implementation of block Runge--
Kutta methods, and Hout/Spijker contribute some results on algorithms for delay equations. 
The papers on numerical methods for boundary value problems for ordinary differential equa-
tions are relatively isolated from each other, and cover very different methods and problem 
classes: shooting algorithms for parameter dependent nonlinear two -point boundary value 
problems (Hermann/Ullmann) and algebro-differential equations (Lamour), the analysis of the 
t-method (Pfeifer/Roos), iterative techniques using a formulation as integral equation (Quin-
ney/Croft), and issues of grid selection in finite difference discretizations (Schmitt/Schild). 

The second part of the proceedings is concentrating on the application of numerical tech-
niques for ordinary differential equations to the discretization of partial differential equations. 
The most typical such problem class, the method of lines for evolution problems, is discussed 
in the papers by Farago, Grigorief, Hundsdorfer, Mann, Oliveira and Verwer/Hundsdorfer/ 
Soriirneijer. A convergence concept for weak solutions of certain flow problems including en-
tropy conditions is introduced by Ansorge. Some further contributions deal with finite element 
and finite difference methods for singularly perturbed Convection -diffusion problems (Groen/ 
Veldhiuizen, Stoyan, Tobiska) - 

The concluding third part contains applications of differential equations and of Corre-
sponding solution methods to the numerical modelling of real-world problems arising in differ-
ent fields of natural sciences. Models involving ordinary differential equations are discussed 
by BohI (transport of information in cells), Denk/Rentrop (simulation of electric circuits by 
the software package SPICE), Fuhrer/Leimkuhler, Rdsch/ Kretzschmar (mechanical motion 
with restrictions), and Grollmann/Juggi (heart physiology). The numerical determination of 
invariant tori for reaction- diffusion equations is investigated in a paper by Holodniok/Kubi-
cek/Marek, thematically close to this topic is the note by Veldhuizen from Part 1 on the 
Josephson equation. Particular problems of fluid modelling (Abia/Sanz-Serna), models for 
chemical kinetics (Erhardt/Klusacek), solitons (Ortiz) and electrical field problems (Luchit/ 
Radke) are treated using partial differential equations. 

Concluding remark after this short survey of the papers included into the proceedings of 
NUMDIFF-5 NUMDIFF-6 will be held in Halle in September 1992! 

Jena	 P. OSWALD


