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The main result of this paper provides an essential intermediate step for the proof of the au-
thors theorem on left and right Blaschke - Potapov products which yields more insight into the 
structure of f-inner functions. The goal of this paper is to prepare an appropriate backward 
Schur - Potapov algorithm by solving a weighted approximation problem. 
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Let	:= CU{oo},ID := {zE C : l z I< 1},ID_ := {zE: 1 <IzI:500},T= {t E C: I t l= 11,
and let m be the normalized Lebesgue measure on T. Suppose that w : r -* [0,00] is an m-
integrable function on 'F which satisfies f... ln[w(t)]m(dt)> —co. Let L, be the set of all square 
integrable functions with respect to the weight w with norm 

Ill II:= IT I f(t) 2 w(t)m(dt). 

Further assume that (zk)kgj is some sequence of points from ID+ which satisfies the Blaschke 
condition	l[1— I Zç fl < oo. For n E IN there will be considered the closed linear hull (in 
L) R :=	-5 of the functions	k n. Clearly, then R1 D R2 J	.... It turns 
out that fl,, R,, C PCH,, 2 where PCH 2 denotes the set of all functions f: D+ U ID -+ C 
with the following properties: 

(i) f is holomorphic in 1114. U ID_. 

(ii) The restrictions of f onto 1114. and 11)_ belong to the corresponding Smirnov classes in 
those domains. 

(iii) lim..., 1 _o f(rt) = lim..., i +o f(rt) (=: 1(t))	m—a.e. on T. 

(iv) fT I f(t) 1 2 w(t) m(dt) < 00. 

The main result in this paper is that, for each weight function w with the above stated properties, 
a Blaschke sequence (Zk)kEIN can be constructed such thatnnE IN R = PCH2 is satisfied. 
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1 Motivation of the Problem: Left Blaschke-
Potapov Products are not Necessarily Right 
B laschke-Potapov Products. An Arov- singular 
World. 

This paper is concerned with particular aspects of rational approximation. Our main 
problem has been arosen in the process of investigating some questions related with fac-
torization of analytic J-contractive matrix functions. A reader who is not interested in the 
origin of the weighted rational approximation problem considered in this paper can omit 
Section 1 and start to read this paper beginning with Section 2. The following question 
stands in the background of the considerations: Let W be a meromorphic in x in matrix 
function in the open unit disc which is J-contractive, i.e. 

J - W(z) J W(z) ::^ 0, z E ID := {u E C: Jul < 11 .	(1.1)

Here J is a matrix satisfying the conditions 

J=J J2 =I,	 (1.2) 

where I is the m x in unit matrix. (The matrix J is called a signature matrix). 
Assume that W is a left Blaschke-Potapov product, i.e., 

W(z) = 11 B(z; zk, p,l))	 (1.3) 

where B(z; zk , P,') is a Blaschke-Potapov factor with pole at zk where I zk I 1. Splitting 
off from this matrix function W Blaschke- Potapov factors on the opposite side, i.e. on 
the right side, we obtain a representation 

W(z) = E(T)(z) fJ B(z; , p(r)) ,	 (1.4) 

where B(z; zk, p(r)) are some Blaschke- Potapov factors (with the same poles as the factors 
in (1.1) but in general with different residues in these poles). After successive splitting-off 
from this matrix function on the right side all possible Blaschke- Potapov factors (which 
correspond to all poles of W and W' in the unit disc) we obtain some matrix function 
E(r) which is J-contractive in the unit disc, i.e., 

J - (Et (z))J . E r (z)	0	(z e ID.f )	 (1.5) 

and for which both E(T) and [E']' are holomorphic in the unit disc. It is a well-known 
fact that such a matrix function can be represented as a multiplicative integral. In the 
scalar case (i.e. if W is a complex-valued function) and even in the definite matrix-valued 
case (if J = I or J = —I where I is the unit matrix) the function obtained after the 
mentioned splitting-off procedure turns out to be constant. Hence, in the definite case 
a left Blaschke-Potapov product is at the same time a right Blaschke- Potapovproduct.
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However, in the indefinite case, i.e. the signature matrix J is not definite, it can happen 
that the matrix function E (r) is not constant. Hence, there are matrix functions which are 
a left Blaschke-Potapov product but not a right Blaschke- Potapov product. Furthermore, 
it proves to be possible to give a function-theoretical description of the class of all such 
functions E which occur in the right multiplicative representations of left Blaschke-
Potapov products. In order to give an exact formulation of this result we need the 
following definition: 

Definition 1.1.: Let J be a fixed signature m x rn matrix. An m x m matrix-valued 
function, A which is defined in the unit disc 1D and has a non-identically vanishing 
determinant is called Arov-singular if the following conditions are satisfied: 

(i) Both matrix functions A and A 1 are holomorphic in ID. 

(ii) The matrix function A is J-contractive in ID+: 

J—A(z)JA(z)^ 0 (Vz E ID+), 

and its boundary function A(t) = lim0_. i _o A(2t) (which exists for rn-almost every 
t E T) is J-unitary for rn-almost every t E 'I': 

J - A(t) J A(t)	0 (rn - a.e.) 

(iii) The family {in(IlA(et)II + Il(A (et )II)}o<Q<l defined for t E T is uniformly in-
tegrable with respect to the Lebesgue measure m ( io is a parameter indexing the 
family). In other words, both matrix-valued functions A and A 1 belong to the 
Smirnov class N.. (Details concerning the Smirnov class N. of complex-valued 
functions are given below in Section 3). 

We want to recall that a matrix-valued function A, which is meromorphic in the unit 
disc, is called a J-inner function if it satisfies only the condition (ii) of the previous 
definition. 

In the definite case (if J = I or if J = —I) any Arov-singular matrix function is 
necessarily constant. In the indefinite case there always exist non-constant Arov-singular 
matrix functions. 

A more detailed analysis of function-theoretical properties of Blaschke- Potapov prod-
ucts yields the following result: the factor E(T) in the right multiplicative decomposition 
(1.3) of a function W representable as a left Blaschke-Potapov product (1.3) is an Arov-
singular matrix-valued function. 

A much more delicate result is the converse statement: 

Main Theorem on left and right Blaschke- Potap ov products. Let E be an 
arbitrary Arov-singular matrix-valued function. Then there exists an infinite convergent 
right Blaschke- Potapov product 

B(T)(z) := fl B (z; zk, Pk)	 (1.6) 
1<k<oo 

(whose poles are located in the interior 111+ of the unit circle '11') such that the matrix-
function W defined by

W(z) := E .	 (1.7)
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is representable as a left Blaschke- Potapov product (1.3). 

What concerns a detailed treatment of this circle of questions we refer the reader to 
[19)-[21]. 

The core of proving the just formulated theorem lies in reducing it to weighted approx-
imation by vector-valued rational functions with prescribed poles. The tools for realizing 
such a reduction are Nevanlinna-Pick interpolation and reproducing kernel Hilbert spaces 
of analytic functions. 

The main goal in this paper is a detailed investigation of the announced weighted 
approximation problem. As well the problem as the method to solve it are interesting 
themselves. Taking into account the interests of the large group of analysists, which are 
far away from studying vector-valued functions, we confine our investigations in this paper 
to the case of complex function, i.e. the so-called scalar case. This case arises naturally 
in the study of the links between left and right Blaschke- Potapov products of size 2 x 2. 

In this section, we will not carry out an exact derivation of the reduction of the problem 
concerned with left and right Blaschke-Potapov products to a problem of weighted rational 
approximation. Even we will not give an exact formulation of the approximation problem 
in this section. The main aim of this section is to motivate this problem and the choice of 
Hilbert spaces of analytic functions related with them. These spaces will be introduced 
in Sections 4 and 5. The exact formulation of the approximation problem and its full 
solution will be presented in Sections 6 and 7. Now let us consider for the 2 x 2 case the 
announced reduction to a scalar problem of weighted rational approximation. Without 
loss of generality, we can choose the particular 2 x 2 signature matrix 

.10 := 
(

0, -1 
) .
	 (1.8) - 0 

(Every indefinite 2 x 2 signature matrix proves to be unitarily equivalent to Jo.) Denote 
C(ID + ) the Carathéodory class in the unit disc, i.e. the set of all holomorphic functions 
P : ID+ -* C having nonnegative real part: 

P(z)+P(z)=O (zEID+). (1.9) 

Now we will explain what Nevanlinna-Pick interpolation in the class C(ID+) means. Given 
is a non-empty index set A and a family ([z0, pa])aEA of ordered pairs of numbers z0 E ID+ 
and P. E C with p0 + 0. Furthermore, we suppose that z0 z0' for all a, a' € A 
with a 0 a'. Then the problem is to describe all functions P belonging to C(ID) which 
satisfy

P(z0)=p0, a€A.	 (1.10)
The Nevanlinna-Pick problem with interpolation data ([za,pa])0EA will be denoted in the 
sequel by NP(([z0 , p0 ] )06A ). Every function P € C(ID+) which satisfies the interpolation 
conditions (1.10) for all a E A is called a solution of NP (([zp01)0EA) . Depending on the 
concrete data of interpolation there are three possibilities: The problem NP(([zQ,pQ])OEA) 
can have no solutions, a unique solution or an infinite set of solutions. In the case that 
NP(([z0 , p0 ]) 0EA ) has infinitely many solutions the whole solution set can be parametrized 
via a fractional linear transformation: 

P = (ru I a + r12 ) (r21 a + r22 ) 1	 (1.11)
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where R = ( r k)k=l is a 2 x 2 matrix-valued function which is meromorphic in ID+ and 
which is only built from the interpolation data ([Za,pa})OEA. Formula (1.11) realizes a 
bijective correspondence between the extended Carathéodory class (which consists of the 
class C(ID) supplemented by the constant function in ID+ with value oo) and the set of 
all solutions P of NP(([Za, pe])oeA). The matrix generating the fractional linear trans-
formation (1.11), which yields the set of all solutions of NP(([z0 ,p0 ])0EA ), is called a 
resolvent matrix of this problem and will be denoted by R(z; ([Za,pQ})OEA). 
If NP (([za, pa])OEA) has an infinite set of solutions, then the family ( ZO)OEA forms neces-
sarily a discrete subset of ID+ (and, hence, is finite or countable) and satisfies necessarily 
the Blaschke condition. 
The resolvent matrix of a nonuniquely solvable Nevanlinna-Pick problem can be chosen 
as a Jo-inner function in the unit disc the poles of which are located in the interpolation 
knots. Such a resolvent matrix is essentially unique (i.e. up to right multiplication with 
a constant Jo-unitary matrix). 
The strategy in proving the Main Theorem on left and right Blaschke- Potapov products 
is as follows: A left Blaschke- Potapov product W, for which the factor E(T) in its right 
multiplicative decomposition (1.6)—(1.7) coincides with the given Arov-singular Jo-inner 
function E, will be constructed as a resolvent matrix of an appropriate Nevanlinna-Pick 
problem in the class C(ID + ), i.e. 

V(z) := R (z; ([zk,pk])kE) .	 ( 1.12) 

(Observe that in the scalar case TUMARKIN [44] studied various questions of approxi-
mating singular inner functions by sequences of Blaschke products.) It is important for 
us that the index set is not only a countable set but even an ordered set. This means we 
will essentially use the natural order in IN. Clearly, the sequence (Zk)kEP4 of interpolation 
nodes must fulfill the Blaschke condition 

[1 - Zk(} < 00 .	 ( 1.13) 
kEN 

This is one of the necessary conditions of nonunique solvability of NP(([zk,pk})kj.). Our 
construction of the interpolation data ([zk , Pk))-EA) will be done in such a way that the 
nonunique solvability of NP(([zk ,pk ]) kE ) and, hence, the existence of a resolvent matrix 
R(z; ( [zk, pk])ker.4) will be guaranteed automatically. This is the so-called priming function 
method. This method works as follows. Let (pk)kEA be an at most countable sequence 
of pairwise different points from'ID+ and let Ppr an arbitrary function from C(I)+). For 
k € A, we set

Pk := P(zk)..	 (1.14) 

We will consider the set ([zk, pk])keA as interpolation data of a Nevanlinna-Pick prob-
lem. This problem NP(([zk ,pk])kEA ) has clearly solutions since by construction is a 
solution. The following nonuniqueness criterion is important for us. We set 

w(t) := Rem P r( i )] , t E T.	 (1.15) 

Then the function wpr is defined m-a.e. on 1, has nonnegative values and is integrable 
with respect to m.
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Lemma on priming functions. Let ( Zk)kEA be an at most countable sequence of 
pairwise different points from ID.f which satisfies the Blaschke condition ; ond suppose 
that the priming function P,, E C(ID) has a convergent logarithmic integral, i.e. 

I In wprdm > 00,	 (1.16) 

where wpr is defined in (1.15). Then the problem NP(([zk , pk ] ) ke A ) with (pk)kEA defined 
via (1.1) has an infinite set of solutions. 

Now let

	

E=(a b)
	

(1.17) 

be an Jo-inner matrix function which is holomorphic in ID+ (but not necessarily Arov-
singular). Outgoing from this E we define 

	

P :=[a.(+1)+b] [c.(+1)+d]1 .	 (1.18) 

From the Jo-contractivity of E in ID + it follows that the function Pt,, defined in (1.18) 
belongs to C(JD+ ). Moreover, the rn-a.e. Jo-unitarity of the boundary values of E on I 
implies that the function wp, := ReP satisfies 

= Id(t) + c(t)12	
rn—a.e. onT.	 (1.19) 

Clearly,

/ 

Wpr 	Re [Ppr 	< 00.	 (1.20) 

Furthermore,

J
In	din = 2f [In Id(t) + c(t)I] m(dt) 

Wpr 
T	

21n2+2/ [In IIE(t)III m(dt). 

Since every J-contractive matrix function E satisfies 

J [In II E ( t )II] rn(dt) <00 

the function P. defined in (1.18) fulfills (1.16). Thus, our Lemma on priming functions 
implies the following result: 

Theorem on generating Nevanlinna-Pick problems with infinitely many so-
lutions by holomorphic J0-inner matrix-valued functions: Let E be a Jo-inner 
function which is holomorphic in ID+, and let E be partitioned as in (1.17). Suppose that 
( Zk)kEA is an at most countable sequence of pairwise different points of ID+ which satisfies



Weighted Spaces of Pseuclocontinuable Functions	33 

the Blaschke condition. Assume that the function P, is defined from E via (1.18) (i.e. 
via a transformation of type (1.11) with parameter 1) and let the sequence (pk)kEA 
defined from P,,. via (1.16). Then the interpolation problem NP(([zk,pk])0€A) has an 
infinite set of solutions. 

Our Main Theorem on left and right Blaschke- Potapov products will be proved if 
we will succeed in constructing a matrix-valued function W having the following two 
properties: 

(a) W is a left Blaschke- Potapovproduct only formed from Blaschke- Potapovelemen-
tary factors with poles in ID+. 

(,8) After successive-right hand side splitting off from W all the Blaschke- Potapov ele-
mentary factors which correspond to the set of all poles of W in ID we obtain the 
originally given Arov-singular function E. 

We will construct such a matrix function W as a resolvent matrix of some Nevanlinna-
Pick problem, i.e. via (1.12). The sequence (zk)kEt4 of interpolation knots will fulfill 
the Blaschke condition (1.13). The most difficult part of our construction consists of the 
concrete choice of the sequence (Zk)k1tj. Just this choice leads us to the approximation 
problem which is the central one in this paper. After this choice is realized the inter-
polating values (Pk)kElq will be constructed via the priming function method where the 
concrete priming function is built from the originally given Arov-singular Jo-inner func-
tion (1.17) via (1.18). The above theorem ensures that NP(([zk ,pk ]) kEj.J ) has infinitely 
many solutions and, consequently, there exists a resolvent matrix R(z; ([zk,pk])kE). 

Theorem on multiplicative structure of resolvent matrices (V.P. POtapov): 
The resolvent matrix of a Nevanlinna-Pick problem can be chosen as a left Blaschke-
Potapov product which is only built of Blaschke-Potapov elementary factors with poles in 
the interpolation knots (and, consequentely, in I)+). 

This theorem was proved by V.P. Potapov at the end of the sixties. Its formulation 
was firstly published in the joint paper I.V. KOVALISHINA / V.P. POTAPOV [27] which 
appeared in 1974. A detailed proof is contained in the paper I.V. KOVALISHINA [26] 
from 1983, where she unfortunately forgot to mention V.P. Potapov's contribution. 

This theorem of V.P. Potapov implies the following: 
If we proceed in the above-mentioned way outgoing from a Nevanlinna-Pick problem 
then the corresponding resolvent matrix W can always be chosen as a left Blaschke-
Potapov product. This means that (a) is automatically satisfied. The method which 
V.P. Potapov used to prove this theorem is essentially a matricial variant of the classical 
stepwise algorithm of I. SCHUR [37] or, more precisely, of its modification due to R. 
NEVANLINNA [31]. It will turn out that the right multiplicative decomposition (1.6-1.7) 
of a matrix-valued function of type (1.12) can also be obtained by a stepwise procedure. 
This stepwise procedure can be conceived in some sense as an Schur type algorithm in 
the reverse direction. 
Both types of Schur algorithms are based on the following result:
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Theorem on resolvent matrices for Nevanlinna-Pick problems with one in-
terpolation node. If a Nevanlinna-Pick problem in the class C(1D) with nnly one 
interpolation node in ID + has infinitely many solutions, then some Blaschke-Potapov ele-
mentary factor with pole in this interpolation node can be taken as corresponding resolvent 
matrix. 

Just this theorem of V.P. Potapov was the starting point for his further investiga-
tions on the theory of classical interpolation problems. V.P. Potapov used this result to 
Construct a matricial generalization of the classical Schur algorithm which leads to a left 
multiplicative decomposition

00 

R(z;([zk,pk])kE,) = [J B (z;zk ,P, 0)	 (1.21) 
k=1 

of an appropriately chosen resolvent matrix for a Nevanlinna-Pick problem 
NP(([zk , pkl)kef.J) which has infinitely many solutions, i.e. an interpolation problem with 
interpolation conditions

P(zk)=pk, kEIN.	 (1.22) 
Our stepwise procedure leads us to the right multiplicatice decomposition of the same 
resolvent matrix. 

In the first step of our algorithm we consider the problem NP(([zk,pk])k22) which 
is a truncation of NP(( [zk, pk j )k > l ) . The solutions of this truncated problem satisfy all 
conditions (1.22) of the original problem with exception of k 1. If the original problem 
has infinitely many solutions then, clearly, this is also true for all of its truncations. 
Hence, NP(([zk,pk])k>2) has an infinite set of solutions which can be parametrized via 
a fractional linear transformation of type (1.11) the generating matrix of which is the 
resolvent matrix R(z; ([zk,pk])122), The free parameter c varies here over C(ID + ) U {oo}. 
If we want to extract from the solutions of the truncated problem the solutions of the 
original we have to take into account the removed interpolation condition P(zi ) = pi. 
Doing this we obtain an interpolation condition

(0) c(z1) = Pi (1.23) 

where the interpolation value °) can be obtained from the interpolation data ( [zk, pkI)k>l 
by some recalculation. Thus, the parameter o must necessarily be a solution of the 
interpolation problem NP([zi,p°]) with exactly one interpolation node, namely z 1 . In 
view of V.P. Potapov's theorem the resolvent matrix for such a problem can be chosen as 
Blaschke-Potapov-elementary factor: 

R( z;	1	= B (z; zi ,P)	 (1.24) 
[
z1,p( 0)  

Since composition of fractional linear transformations can be expressed by forming the 
product of their generating matrices we get the identily 

R (z; ([zk,pk])k>l) = R (z; ([zk,pk])k>2) . B (z; z1, piT)) .	(1.25) 

For arbitrary m E IN we obtain analogously 

R (z; ([Zk,pkJ)k> ) = R (z; (k1cP1d1)k_>m+I) . B (z; Zm, P ( Mr) )	( 1.26)
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where B(z; Zm, P,) is a Blaschke- Potapov elementary factor with pole at Zm and arises as 
resolvent matrix of some interpolation problem NP([zm,pL°]). Let n be a fixed positive 
integer. Then writing successively the identities (1.26) for in = 1,2,...,n we get 

n 
W(z) = R (z; ([zk,pk])k>) . J B (z; Zk, p,r)) ,	 (1.27)

k=1 

where W is a matrix function of type (1.12). In identity (1.27) we can carry out the limit 
process n -, no. As usually in such contexts the convergence of the infinite right Blaschke-
Potapov product is based on V.P. Potapov's famous "Theorem on the Modulus". The 
limit process leads us to equation (1.4) where B(T) is a right Blaschke- Potapovproduct of 
type (1.6) and where

E(T) (z) = lim R( z; ([zk , pk ]) >	.	 ( 1.28) 

	

n_	 k=nj 

It only remains to verify that after realizing an appropriate choice of the sequence (Zk)kE1 
the matrix function E(T) where

/ ar b(r) \ 

	

E(T ) =	
C(r) d(r) )	

(1.29) 

coincides with the originally given Arov-singular matrix-valued function E. The key for 
that lies in following: 

Theorem on generating Arov-singular J0-inner functions via nested se-
quences of Nevanlinna-Pick problems. Let E be a given Arov-singular J0-inner 
function. Then there exists a Nevanlinna-Pick problem NP(([zk , pk ] ) ke f.1 ) for the class 
C(ID + ) with infinitely many solutions such that the function E can be obtained as limit of 
a sequence of appropriately chosen resolvent matrices of the 'nested' sequence of trunca-
tions of this problem:

E(z) = lim R (z; ([zk,pk])k>) , z E ID+ .	 (1.30) 

It is exactly the proof of the just formulated theorem which requires considerations 
linked with rational weighted approximation. The bridge between Nevanlinna-Pick in-
terpolation and rational weighted approximation is built by the theory of reproducing 
kernels. A detailed treatment of the theory of classical interpolations problems including 
Nevanlinna-Pick interpolation which is based on reproducing kernels is given in H. DY M's 
monograph [12] which was influenced by the pioneering work of L. DE BRANGES [7] and 
L. DE BRANGES / J. ROVNYAK [8]. 

Let (zo)0EA be a sequence of pairwise different points from ID + which satisfies the 
Blaschke condition. Further let to be a weight function which is m-a.e. defined on 11' 
and fulfills the conditions (4.4) and (4.5) given below. There are two objects which are 
associated with the sequence ( ZQ)OEA and the weight function w, namely first a reproduc-
ing kernel Hilbert space (RKHS) and second some Nevanlinna-Pick problem for the class 
C(ID+) which has infinitely many solutions and, consequently, an appropriate resolvent 
matrix. Denote R((z0)0EA) the set of all rational functions the poles of which are con-
tained in (zo)5 E A whereas R((z0)0EA) stands for the closure of R((zQ)O E A) with respect
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to the Hubert space norm (5.8). The elements of the space Rw(( Za),EA) are naturally de-
termined as functions meromorphic in the (nonconnected) open set ll). U ID_ and not only 
as functions defined m-a.e. on T. The functions belonging to Rw(( Z )aEA) have a lot of 
interesting function-theoretical properties which will be described below. At the moment 
it is most important for us that the evaluation in a fixed point z E ([ID+ UlD_1\[{zQ}EA]) 
turns out to be a continuous linear functional on this space. In other words, the space 
Rw(( Zc,)c,EA) is a RKHS. Denote K(t, z; R,&((Za)aEA)) the corresponding reproducing ker-
nel, i.e. for each f E RW((zO).,EA) and each z E ([1D U ID_]\[{Za}aEA]) we have 

f(z)	f(t) K(t, z; Rw((za)a EA )) w(t) m(dt).	 (1.31) 

On the other side, outgoing from the weight function w we can define the priming function 
Ppr via

Ppr(Z) := / _±__w(z)m(d) , z E ID+ .	 (1.32) 

After that on the basis of F,,. and ( Z EA we can define 

pQ :=Ppr(za), aEA. 

Thus, the sequence ( Z )OEA and the weight function w generate a Nevanlinna-Pick prob-
lem. In view of the Priming function lemma this problem NP(([zQ ,pG j),, EA ) has infinitely 
many solutions. Let 

R (z; ([z0, / a (z; ([zQ,po]),eA) , b (z; ([zQ,pa))EA) )

	
( 1.33) pa1) EA) =	c (z; ( [Za, po})aEA) , d (z; ([z, P])EA) 

be an appropriate resolvent matrix of NP(([ZQ , pa ] ) aEA ). The following Reproducing 
Kernel Formula is of principal importance for us: 

K (t, z; R ( (Z,)-EA))	 - 

= c(; ([Za,p,])aEA) d(z; ([Za PO ])aEA) + d (t; ([Z,pa])aEA) . c(z; ([Z-,P'])-EA) 
1—ti

(1.34) 

Now we are able to perform the conclusive step. Let E be an 2 x 2 Arov-singular Jo-
inner function as in (1.17). Let us assume that the associated priming function P of 
type (1.18) admits an integral representaion of type (1.32), i.e. the measure realizing the 
Riesz-Herglotz representation of P E C(ID + ) is absolutely continuous with respect to 
in. The general case can be reduced to this case by replacing E by UE where U is an 
appropriate constant Jo-unitary matrix. We will not explicitly carry out this procedure 
here since our aim is to elucidate the main ideas but not the details. As already mentioned 
the condition J - E(t)JE(t) = 0 m-a.e. implies 

W(t) =	
1
	 rn—a.e. on T	 (1.35) 

Ic(t) + d(t)12 

Let us fix a function w of type (1.35). Suppose that ( Zk)kEJN is some sequence from ID+ 
which satisfies the Blaschke condition. We will consider the following decreasing chain of 
subspaces:

((z>,)	R ((zk)k > 2) 2 R ( ( zk)k> 3)	....	 ( 1.36)
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Since all subspaces of this chain were constructed from the same weight function w all 
embeddings in (1.36) are isometric ones. Because all the subspaces forming the chain 
(1.36) are RKHS spaces the same is true for their intersection R,,((Zk),Zj. 

From 
elementary properties of RKHS it follows 

K
 (

tz; fl	((zk)k>)) = lim K t, Z;	((zk)k)) .	( 1.37) 
tE1N 

In view of (1.34), (1.28), (1.29) und (1.37) we obtain then 

K	z;n R ((zk)k>))	
cfr) (t) d(')(z) + d( T )(t) . cfr)(z)

(1.38) 
1— '4 

where c(T) and d( ' ) are the elements of the second row of the matrix function E(T) occurring 
in the right multiplivative decomposition (1.4) of a matrix function of type (1.12). The 
space flflE Rw((zk) k > ) consists of all functions which have the following properties. 
They are holomorphic in (the nonconnected) open set ID+ U ID_, are pseudocontinubale 
(see Section 2), belong to the Smirnov class (see Section 3) and are square integrable with 
respect to the weight w. Moreover, it turns out that 

fl &L (cz>) ç PCH,	 (1.39) 
nE]N 

where the Hilbert space PCH J will be introduced in Section 4. The embedding in (1.39) 
proves to be an isometric one. It is important for us that PCH is a RKHS such that if 
the weight function w has the form (1.35), the reproducing kernel K(t, z; PCH,) of this 
kernel is given by

K (t, z; PCH,) = c(i) . d(z)+d(i) . c(z)	
(1.40) 

If, for a given weight function w of type (1.35), we will be able to choose a Blaschke 
sequence (Zk)kEr4 such that the subspaces occurring in (1.39) coincide, i.e. 

n& (>) = PCH,	 (1.41) 
nEIN 

then we will ensure that the reproducing kernels standing at the left-hand sides of the 
equations (1.38) and (1.40) coincide. This means that, for all z E ID.,. U ID_ and all 

E Ill,. U ID_, the identity 

c(e) d( z ) + d(e) c ( z )	C(( . T-) _(z) + d( ' ) () c(r)(z)	(1.42) 

holds true. It is the main result in this paper that it will be shown that the choice of 
a Blaschke sequence (zk)kEN guaranteeing (1.41) is always possible. This concerns even 
nonnegative rn-integrable weight functions w with convergent logarithmic integral (see 
(4.3)-(4.5)) below) and not only weights w of type (1.35). This assertion which has purely 
function-theoretical character will be formulated in terms of coincidence of subspaces in 
Section 6 and, moreover, as a problem of rational weighted approximation in Section 7. 

Clearly, from (1.42) it will not follow that the matrix function E(T) and E coincide. 
However, with the aid of a little more complicate and longer consideration one can also 
verify that for all , z E ID.,. U Il)_ the identity 

a (E) b( z)+ b()5 = a'()bfr)(z) + b( T) (e) . a(r) (z)	 (1.43)
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holds true. Using (1.42) and (1.43) some computations provide 

	

E() Jo [E (z)]* = E '(e) J0 . [E() ( z )]	 ( 1.44) 

for all C,z E ID U ID_. Choosing an appropriate normalization from (1.44) we obtain 
E= 

2 The Class of Pseudocontinuable Functions 
Let us start this section with introducing some notation. Let C be the complex plane, 
whereas C stands for the extended complex plane C U {oo}. Further, let T be the unit 
circle,i.e. T:= { z EC : I z I = 1} and denote 1D+:={zEC:IzI<1} and _: 
{z E C :I z > 1) the interior and exterior of the unit circle, respectively. Hence, 
C \ T = ID+ U ID.... Moreover, m(di) stands for the normalized linear Lebesgue-Borel 
measure on T. (In particular, m(T) = 1.)	 - 

If C is some subset of C, then G# denotes that subset of C which lies symmetric to G 
with respect to the unit circle, i.e.

(2.1) 

If f: G - C, then f# is that complex-valued function which is defined on G# by the rule 

f# (z) := f	 Z E G#.	 (2.2) 

If the function f is holomorphic (resp. meromorphic) in C, then the 'symmetric' function 
f is holomorphic (resp. meromorphic) in G#. Now we introduce some distinguished 
classes of functions. We will be concerned with functions which are meromorphic (in 
particular, holomorphic) in one of the following three domains: the interior ID+ of the 
unit disc, the exterior ID_ of the unit disc or the (non-connected) set ID U ID_ (= C \T). 

All considered classes will be subclasses of the Nevanlinna class of all meromorphic 
functions of bounded type in the corresponding open set. 

We will give some definitions. 
The class NM(H)+ ) consists of all functions 1 which are meromorphic in ID + and satisfy 
the following two conditions

	

 
1n+ 

I 1( n ) I m(dt) <00,	 (2.3) 
r-.1-O

1

I (k(f) 11 < 00	 (2.4) 

where the sum is taken over the set {Ck(f)} of all poles of the function f (regarding their 
multiplicities). 

ma symmetric way, the class NM(I)-) consists of all functions f, which are mero-
morphic in ID and fulfill the conditions 

	

I In' I f(rt) I m(dt) <00	 (2.5) 
r-.1+O

T
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I (i(f) 1'] <00	 (2.6) 

where the sum is taken over the set {(k(f)) of all poles of the function f (regarding their 
multiplicities). 

The class N(ID+) is the subclass of all those functions I E NM(ID+) which are 
holomorphic in ID + . In other words, the class N(ID + ) consists of all functions f which 
are holomorphic in ID and satisfy condition (2.3), which for holomorphic functions I is 
equivalent to the condition

	

sup J 1n I f(rt) I m(di) <00.	 (2.7) 

0r<1 T 

Analogously, the class N(ID-) is the subclass of all functions I E NM(ID-) which are 
holomorphic in ID_. Thus, the class N(ID-) consists of all functions f which are holo-
morphic in ID_ and fulfill condition (2.5), which for holomorphic functions I is equivalent 
to

	

sup f In' j 1(n) I m(dt) <oo.	 (2.8) 
1<roo 

Obviously,

	

I E NM(1D)	4	 E NM(ID-) 

and	 - 

	

fEN(ID)	 f#EN(JD) 

The class N(ID+) of all functions of bounded type which are holomorphic in ID was 
introduced in the paper [29] by the brothers F. and R. NEVANLINNA, whereas the class 
NM(ID+) of all functions of bounded type which are meromorphic in ID+ was considered 
first by R. NEVANLINNA in [30]. In this paper, we will consider functions I which are 
meromorphic in the non-connected open set ID.,. U 111.. (= C\T) and which are pseudo-
continuable. The property of pseudocontinuability is formulated in terms of boundary 
values. 

It is well-known that each function f belonging to the meromorphic Nevanlinna class 
NM(ID+) has boundary values rn—a.e. on r, i.e., for rn-almost all t E 'II', there exists the 
radial limit

f+ (t) := lim f(rt) .	 ( 2.9) 
r-.1-O 

Analogously, if f belongs to the meromorphic Nevanlinna class NM(ID_), then, for rn-
almost all t E 1', there exists the radial limit 

f_(t) := lim 
O 
1(n) .	 ( 2.10) 

r-.i+ 

If g is a function defined on a set K and L is a subset of K then Rsir. Lg stands for the 
restriction of g onto L. 

Definition 2.1.: A function f which is meromorphic in the (non-connected) open set 
Ill,. U ID_ (= C\T) is called pseudocontinuable, if Rstn.0 f and Rstr.0_f belong to the 
classes NM(ID) and NM(ID_), respectively, and if, additionally, the equality 

f+ (0 = f- (0	 (2.11)
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holds for rn-almost all t E T. Here 1+ and f. are the radial limits of f on T from the 
interior and from the exterior of the unit disc,respectivcly. 

Definition 2.2.: PCNM is the class of all functions which are meromorphic in 
ID + U ID_ and pseudocontinuable. 

Definition 2.3.: PCN is the subclass of all those functions belonging to PCNM 
which are holomorphic in ID + U ID_. 

Remark 2.1.: A function f belonging to PCNM is originally defined in ID U ID_ 
but, in view of Definition 2.1, for such a function the interior and exterior radial limits 
f+(t) and f_(t) coincide m—a.e. For this reason, a function f  PCNM can be extended 
to such points t E T where the radial limits f(t) and f_(t) defined in (2.9) and (2.10), 
respectively, exist and satisfy (2.11). For such points t E 1', we define 

f(L) : f+ (0 (= f- (0) .	 ( 2.12) 

If we extend a function f E PCNM in this way, the extended function will be defined 
everywhere in the extended complex plane C with exception of some subset of the unit 
circle having linear Lebesgue-Borel measure zero. (In particular, this subset can also be 
empty.) 

Remark 2.2.: If f E PCNM is such that for all z E ID + we have 1(z) = 0, then, 
obviously, f+(t) = 0 for all t e T. Because of (2.11) then f_(t) = 0 for rn-almost all t E 'F 
According to the unicity theorem for the boundary values, then it also holds f(z) = 0 for 
all z E ID_. Consequently, a pseudocontinuable function is completely determined by its 
restriction onto the connected component ID+. of its domain. 

The class of pseudocontinuable functions was introduced in G.Ts. TUMARKIN's 
paper [45] in connection with the problem of describing the class of functions which can 
be approximated by rational functions with prescribed poles. In the sequel this class has 
been occurred in the paper [10] by R.G. DOUGLAS, H.S. SHAPIRO and A.L. SHIELDS 
on the description of cyclic vectors and invariant subspaces of the backward shift operator, 
in the paper [35] by M. ROSENBLUM and J. ROVNYAK on factorization of operator-
valued functions which are non-negative on the unit circle and, finally, in the work of D.Z. 
AROV [1],[2) and R.G. DOUGLAS and J.W. HELTON [9] on Darlington synthesis. 

3 The Smirnov Class N 
The classes PCNM (resp. PCN) of pseudocontinuable meromorphic (resp. holomorphic) 
functions are too large for our aims and we will be actually concerned with functions from 
the smaller subclasses PCNM. and PCN.. These classes are subclasses of PCNM and 
PCN and outgoing from the smaller Smirnov classes NM and N. they will be defined 
in the same way as this was done above with PCNM and PCN as subclasses of NM 
and N. 

Definition 3.1.: A function 1: ID1. .- C belongs to the Smirnov class N(1D 1.) if f is holomorphic in ID + and if the family (ln I f(rt) is uniformly integrable on IF 
with respect to the normalized Lebesgue-Borel measure -m.
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A function f: ilL - C belongs to the Smirnov class N.(ID_) if f is holomorphic in 
ID_ and if the family (In' If(rt ) I) < < is uniformly integrable on '1' with respect to 
in. Uniform integrability means the following: For each e > 0 there exists a 6 = 6(e) > 0 
such that for every Borel subset e of the unit circle 'I[' which satisfies 

m(e) <6	 (3.1)

and for all values of the parameter r indexing the family the inequality 

In' f(ri) I m(dt) <e	 (3.2) 

is satisfied. (In particular, 6(e) is independent on r.) 

We have not assumed a priori in Definition 3.1 that the function I has to belong to 
the Nevanlinna class N(ID+) (resp. N(ID-) but the given Definition 3.1 easily implies 
that

N.(ID) ç N(ID+ ),	N.(IIL) ç N(ID_). 

We will be touched not only with the holomorphic Smirnov classes N.(ID + ) and N(ID-) 
but also with the meromorphic classes NM.(I)+) and NM(ID_). 

Definition 3.2.: A meromorphic function fin ID (resp. ID_) is said to belong to the 
merornorphic Smirnov class NM.(ID + ) (resp. NM.(11)-)) if the following two conditions 
are satisfied: 

(i) f belongs to NM(ID+ ) (resp. NM(ID_)). 

(ii) The family (In I f(rt) I), is uniformly integrable with respect to the Lebesgue 
measure on T. If we speak about NM.(ID+), we take r E [, 1), whereas in the case 
NM. (ID-) the parameter r runs over (1, 2]. 

Obviously,

I € N(ID.1.)	*	f# E N(1D-) 

and

fENM.(ID)	.	f#ENM.(ID+). 

The Smirnov classes are additive and multiplicative, e.g. if Ii, 12 E N.(ID+ ), then 11+12 E 
N.(ID+ ), 11 : 12 E N.(ID+). 

The fact whether a function f belongs to some distinguished subclass of NM can be 
characterized with the aid of the Riesz-Nevanlinna-Smirnov factorization. Assume that I 
belongs to NM(ID+) and that f 0. Then it is well-known that f can be represented in 
the form

J 

___	
i B, (z)	p 

VT
i 

_ 6a (dt)} exp 
{i —l

+z 
n I 1(t) I m(di)} (z E ID), =C• f(z)	 • ex 

B2 (z)
 T

(3.3)



42	V. E. KATSNELSON 

where C is some unimodular constant, B1 and B2 are Blaschke products which are built 
from the zeros and poles of f in respectively, and 6 is some signed Borel measure 
on '1' which is mutually singular with respect to the Lebesgue-Borel measure m. (If a 
function I belongs to NM(ID+), then the sets of their zeros and poles satisfy necessarily 
the Blaschke condition so that the Blaschke products B1 and B2 are well-defined and the 
function I In I f(t) 11 is integrable on 11' with respect to m.) Obviously, the Blaschke 
products B1 and B2 and also the singular measure 8 are uniquely determined by f. Of 
course as well both Blaschke products as the singular measure can be missing in (3.3). Let 
f be a function belonging to NM(ID + ) with multiplicative representation (3.3). Clearly, 

I E N(ID+)	•	B2	1.	 (3.4)

The following assertions are little bit less obvious, but nevertheless well-known: 

I E NM(1D+)	 6	0	 (3.5) 

and
I E N.(ID+ )	 (B2	1 and 83 0) .	 (3.6) 

Suppose p E (0, 00). 

Definition 3.3.: A function 1: ID+ — C is said to belong to the Hardy class HP(B)+) 
if f is holomorphic in ID+ and if 

	

sup 
j I 

1(n) I m(dt) < 00.	 (3.7) 
FE [0 1)

T 

We say that a function f : 1D. —+ C belongs to the Hardy class HP (ID-) if f is holomorphic 
inID_ and if

sup I

	

I f(ni) j m(dt) < cc.	 (3.8) 
rE(1,00)

 

A function I : ID — C is referred to as belonging to the Hardy class H°°(I) + ) if f is 
holomorphic and bounded in H)+ , i.e. if 

	

sup If(Z) 1<00.	 (3.9) 
ZEID+ 

Finally, a function f : ID_ — C is referred to as belonging to the Hardy class H°°(ID-) if 
I is holomorphic and bounded in ID_, i.e. if 

sup	f(z)j<co.	 (3.10) 
zEID_ 

Obviously,

f E H(1D)	 f E H(ID-). 

The following fact due to V.I. Smirnov is of principal importance for us.
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Maximum principle of V.I.Smirnov: Suppose that the function f belongs to 
N(ID) and suppose that for its boundary values f(t) := lim,... 1 _o 1(n) and for some 
p E (0, cc) the condition

1 
f(i) ' rn(dt) < cc	 (3.11) 

is satisfied. Then f E H(ID+). If

ess sup I f(t) < cc ,	 (3.12) 
tET 

then f E H°°(ID+). 

The class N.(ID) was introduced by V.I. SMIRNOV in [40]. There is also contained 
that theorem which we have called "maximum principle of V.I. Smirnov". (Smirnov 
himself had chosen the symbol D for the class which we have denoted by N.. For this 
class one can also often find the symbols N+ or N+.) To our knowledge, the meromorphic 
Smirnov class (which we have denoted by NM.) was not considered before. What concerns 
basic facts on the classes of Nevanlinna, Smirnov and Hardy we refer the reader to the 
monographs P.L. DUREN [11], J.B. GARNETT [14] and P. KOOSIS [25]. In particular, 
the maximum principle of V.I. Smirnov occurs as Theorem 2.11 in [11]. A selection of 
papers by V.I. Smirnov on complex analysis including comments on further progress is 
contained in the work of N.K. NIKOLSKII and V.P. KHAVIN [33]. The monograph by 
W. RUDIN [36] deals with classes of functions of several variables in the polydisc which 
can be conceived as natural analogues of the classes of Nevanlinna, Smirnov and Hardy. 
The results presented there have also sense for functions of one variable. In [36] there is 
also a well-written representation of special questions concerning functions of one variable 
(see Chapter III). Several aspects of the theory of Hardy spaces are also contained in the 
monograph by K. HOFFMAN [18]. 

4 The Smirnov Class of Pseudocontinuable Func-
tions. Weighted Spaces PCH of Pseudocontinu-
able Holomorphic Functions 

Let us turn our attention to the function class PCN.. 

Definition 4.1.: By the class PCN. we mean the class of all holomorphic pseudo-
continuable functions f : ID 4. U ID... —+ C for which Rstr. jrj f E N.(ID+) and Rstr. D_f E 
N.(IIL). 

The class PCN. is invariant with respect to changing to the symmetric function: 
I E PCN. if and only if f# E PCN.. 

Remark 4.1.: If f E PCN. and if the boundary values 1(t) of this function on the 
unit circle are integrable with respect to m, i.e. 

II f(t) I m(dt) < oo	 (4.1)
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then in view of the maximum principle of V.I. Smirnov applied to Rstr. D f we get that 
this function belongz to H'(+). Analogously, by virtue of the corresponding version of 
the maximum principle of V.I. Smirnov for the exterior of the unit circle we obtain that 
Rstr. 1jj_f belongs to H1(ID_). 

Hence, there are two functions defined in the interior and exterior of the unit circle 
'F, respectively, which belong to the corresponding Hardy classes H 1 (ID + ) and H1(ID-) 
and for which the boundary values coincide m—a.e. on T. Consequently, a variant of 
Painlevé's Theorem on removing singularities implies that these functions can be analyt-
ically continued through '1' into each other (see KOOSIS [25, Theorem III.E.2]). For this 
reason, the original function f is holomorphic in the extended complex plane and has to 
be constant. 

However, there exist non-constant functions f E PCN such that for all p E (0, 1) the 
condition

	

/11(t) I P m(dt) <00	 (4.2) 

is satisfied. For example, all rational functions, the poles of which are located at the unit 
circle and have the order one, have this property. 

Suppose that w is a Borel-measurable function on '1' which satisfies the following three 
conditions:

w(
>

	

t) = 0,	m - a.e. on T ,	 (4.3) 

fw(t)rn(dt)<00	 (4.4) 

and

	

fln[w(t)] m(dt)> -00.	 (4.5) 

We will call such a function a weight function or, for short, a weight. 
Of course assumption (4.5.) implies that the function w is m—a.e. on 11' positive: 

	

w(t) > 0	m - a.e. on 'F.	 (4.6) 

Definition 4.2.: Let w be a weight function. Then by the class PCH, J we mean the 
set of all functions f E PCN. which satisfy the condition 

	

II f(t) 1 2 w(t) rn(dt) < 00.	 (4.7) 

Remark 4.2.: If the weight w satisfies 

	

I[w(t)] - 'm(dt) <00,	 (4.8) 

then (4.7) implies (4;1). In view of Remark 4.1, this means that f is constant. Hence, the 
space PCH, J can be non-trivial in the sense that it does not contain constant functions 
alone only in the case

	

J[w(t)]_'m(dt) = 00.	 (4.9)
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By virtue of a 'theorem due to C. SZEGO [42], a weight function satisfying (4.3)-(4.5) 
admits a factorization. Namely, define 

11	t := exp	+zJ 
i- ln[w(t)]m(dt)} , z E ID+ 

T 

and

= exp I I I z + t In[w(t)] m(dt)
I
	z E 1D 

Then, obviously, 4_ = (I+). The functions I. and _ satisfy 

+ E H2 (ID + ),	_ E H2(ID_)

and are outer, i.e., we have

E N.(ID + ),	E N.(ID_).

(4.10). 

(4.11) 

(4.12) 

(4.13) 

Moreover, the boundary values of these functions fulfill the factorization identities 

I +(t) 1 2 = w(t),	I '_(t) 12 = w(t) m - a.e. on 11' .	(4.14) 

Clearly, we say that two functions fi E PCH,, and 12 E PCH.2 coincide, if fi (z) = f2 (z) 
for all z E ID + U ID- . The space PCH Q equipped with the natural linear operations 
is a complex vector space. The null element of this vector space is the null function in 
ID + U ID.. 

Lemma 4.1.: The expression

1/2 

I iii : = I I I f(t) 1 2 w(t)m(dt) I	(4.15) 

is a, norm in the complex vector space PCH .2. 

Proof: The homogenity property (II Af	A 111 f 11 for all A E C and all I E PCH) 
and the triangle inequality (II 11 + fz f II + II 12 II for all 11,12 € PCH, J ) are 
obviously satisfied. Assume now that f E PCH J satisfies 11 f 11 = 0. In view of (4.15), 
then it follows I 1(t) 1 2 w(t) = 0 m - a.e. on T. By virtue of (4.6) then 1(t) = 0 
rn - a.e. on T. The unicity of the boundary values implies then that 1(z) = 0 for all 
Z E 1D U ID_ I 

Theorem 4.1.: The normed space PCH.2 is complete. 

Proof: Suppose that	is a Cauchy sequence in PCH, i.e. 

f I f(t) - f1(t) 12 w(t) m(dt)	0	(1, n	co).	 (4.16)
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Using the first factorization identity in (4.14), we can rewrite (4.16) in the form 

	

J I f(t) - fl(t) 1 2 1 +(t) 1 2 m(dt)	0	(1, n	oo).	(4.17) 

For n E IN, we introduce the function h+ : ID + - C defined by 

h. ,+ (z) := f(z)	+ (z), z E ID + .	 (4.18) 

Because of Rsir. D f, E N,(ID+) (compare the definition of PCH, J ) and + E N.(ID+), 
then	E N(ID+ ),n E IN. In view of f. E PCH,, we have 

/ I 
f(t) 1 2 w(t)m(di) <00. 

This means

f I h.,+ (t) 1 2 m(dt) <00.	 (4.19) 

By virtue of the maximum principle of V.I. Smirnov applied to the function E 
N.(ID+ ), from (4.19) we obtain h ,+ E H2 (ID) ,n E IN. The limit relation (4.17) can be 
written in the form

	

f I h,,+(t)—h,+(t) I 2 rn(di)-0	(1,n _oo).	 (4.20) 

This condition means that (h,+)flEIN is a Cauchy sequence in the Hardy space H2(ID+). 
As H2 (ID + ) (equipped with the standard norm) is complete there exists a function h 
belonging to H 2 (ID + ) such that 

J I h(t) - h+ (t) 1 2 m(dt)	0	(n	00).	 (4.21) 

We define
f(z)	h+ (z) . [+(z )] -1 ,	z E ID.4. .	 ( 4.22) 

In view of h+ E H2(ID), ;1 E N(ID) and (4.18), it follows 

	

1+ E N.(ID) .	 (4.23) 

The boundary values f+(t) of the function f are given by 

f+ (t) = h(t) . ['+( i)] 1 .	 (4.24)

In view of this relation and the first one in (4.14), the condition 

f I h+(t) I' m(dt) < oc, 

takes the form
II f+ (t) 2 w(t)m(di) <00.	 (4.25)
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Clearly, from (4.18) it follows

	

= h. ,+ (t) . [ tI+(t)j' ,	i E T,	 (4.26) 

where

	

f5,+(t) := urn f(ri), t E 11' .	 (4.27) 
r-.1-O 

From (4.21), (4.24), 4.(26) and the first relation in (4.14) we infer 

	

J I h,+(t) — f(t) 12 w(t) m(dt)	0	(n	oo).	 ( 4.28) 

Analogously, using the second of the factorization identities (4.14) we rewrite (4.16) in 
the form

f I f(t) - f1(t) 1 2.	(t) 2 m(dt)	0	(l,n	oo).	(4.29) 

We introduce the function h5,_ : 111.. —i C defined by 

:= f(z) . (z), z E ID_ .	 (4.30) 

In a similar manner, as we have derived the corresponding facts for the sequence 
we obtain that h , _ E H2 (ID_) and that	is a Cauchy sequence in H2 (1D_). As
H2 (ID-) is complete, (h,)IIEIN converges to some function h_ E H2 (ID_), i.e. 

	

/ h
,_( t) — h_(t) 1 2 m(dt) ; 0	(n	oo).	 (4.31) 

We define

	

f_(z) := h_(z) [_(z)]' , z E ID... .	 (4.32) 

In view of h_ E H2 (ID_), :1 E N.(ID_) and (4.18), we get 

	

f_ E N.(ID_).	 (4.33)

The boundary values f_(t) of the function f are given by 

	

f(t) = h(i) . [&(i)].	 (4.34)

In a similar manner as we have verified (4.28), we obtain 

	

f I f(i) — f(t) 1 2 w(t) m(dt) — 0	(n - oo)	 (4.35) 

where

	

f,, , -(t) := urn f(rt) .	 (4.36) 
r-1+O 

We define f: 1114. U Ill.. —' (C by 

1(z)	
ff+(z), z E ID	 (4.37) 

f- (Z), ZEID_
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where 1+ and f are given in (4.22) and (4.32), respectively. We have already obtained 
(compare (4.23) and (4.33)) that Rstr. D4 f E N(1D+) and Rstr. Tn  E N(TD_). Now we 
show that the function f is pseudocontinuable, i.e. f+ (t) = f-(t) m— a.e. on T. The 
functions f,. forming the original Cauchy sequence are pseudocontinuable as elements of 
the space PCH,, (note that PCH C PCN.). In other words, we have 

f ,^(i) = fn,_(t)(=: f(t)) in -	 (4.38) 

Taking into account this relation the limit relations (4.28) and (4.35) have the form 

I f(t) - f+ (t) 1 2 w(t) rn (dt)	0	(n	 (4.39) 

and

	

fI f. (t) - f_ (t) 1 2 w(t) m(dt)	0	(n	oo).	 (4.40) 

From here it follows

fI f+ (t) - f_ (t) 1 2 w(i) m(di) =0:	 (4.41) 

Using (4.6) from this we get f(t) = f_(t)(=: f(t)) in— a.e. on T. 
.Hence, f is pseudocontinuable and in view of (4.23) and (4.33) we obtain f E PCN.. 

Condition (4.25), i.e.	 - 

fI f(t) 1 2 w(t) m(dt) <00	 (4.42) 

means now that f E PCH J . The conditions (4.39) and (4.40) provide 

	

/ I fn (t) - f(t) 1 2 w(t) m(dt)	0	(n	oo)	 (4.43) 

or, in other words, 11 f, - f —* 0 for n — 00. Hence, the space PCH,, is complete I 

5 Weighted Spaces PCH J (S) of Pseudocontinuable 
Meromorphic Functions with Prescribed Set 
of Poles 

Our aim is to indicate the possibility of approximating the elements of the space PCH, 
by some system of rational functions the poles of which belong to some prescribed set. 
At the beginning we will introduce the corresponding spaces of meromorphic functions. 
Let S be some discrete subset of ID.1. U ID_: 

	

S c lD U ilL	 (5.1)

We set
S:=SflID+,	S.. :=SflIIL

	
(5.2)
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Definition 5.1.: We say that S satisfies a Blaschke condition (in JD U ID_) if 

Zj ] < Co	 (5.3)

ZkES+ 

and
[1_1 zkIh]<00.	 ( 54) 

ZkES_ 

(The points of the set S can occur with a finite multiplicity. The sums are taken with 
respect to this multiplicity.) 

Definition 5.2.: By,the space PCNM(S) we mean the set of all functions 1' which 
are meromorphic in ID + U ID_ and pseudocontinuable and the poles of which are assumed 
to be located in the discrete subset S of ID U 1D. which satisfies the Blaschke condition. 
(The order of each pole of f does not exceed the multiplicity of the corresponding point 
of S.) 

Definition 5.3.: The space PCNM.(S) consists of all functions f E PCNM(S) 
which are contained in PCNM, i.e. 

PCNM.(S) := PCNM(S) fl PCNM.. 

Suppose now that w is a given weight function on T- which satisfies (4.3).(4.5) and 
suppose further that S is a discrete subset of ID+UID_ which fulfills the Blaschke condition. 

Definition 5.4.: The space PCH(S) is the set of all functions I E PCNM.(S) 
which satisfy

fI 1(t) 2 w(t) rn(dt) <.	 (5.5) 

In other words, the space PCH J (S) consists of all functions f which are meromorphic 
in ID U ID and which have the following properties: 

(i) The restrictions of f onto lD and IIJ. satisfy 

Rstr. 04 f E NM.(lD), Rstr.u_f E NM.(ID_).	(5.6) 

(ii) The function f is pseudocontinuable: 

f+ ( t) = f- (t) (=: f(i)) ni - a.e. on T.	 (5.7) 

(Note that f and f are defined in (2.9) and (2.10), respectively.) 

(iii) The poles of f belong to S. (Here it is assumed that the order of each pole of I 
does not exceed the multiplicity of the corresponding point of S.) 

(iv) The function I satisfies àondition (5.5).
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The set PCH(S) equipped with the natural linear operations is a complex linear vector 
space and

1/2 

u f 11 [I I 1(t) 1 2 w(t) m(dt)]	 (5.8) 

turns out to be a norm in it. 

Theorem 5.1.: The normed space PCH(S) is complete. 

Proof: This theorem will be proved in a similar manner as Theorem 4.1. (It should be 
mentioned that Theorem 4.1 can be conceived as that particular special case of Theorem 
5.1 which corresponds to S = 0.) Let cI + and &. be the outer functions defined in (4.10) 
and (4.11) which realize the factorizations (4.14) of the weight function w. Further, let 
B+ and B_ be the Blaschke products built on the basis of S and S_, i.e. 

B(z)	J	
-z	]_J	 .. ,	lD U ID_ ,	 (5.9) 

ZkES.f

	

lZkZ	Zk 

and

	

B-(z):= [f 
Z/çZ	Lf-1 ,	zEID+U ID- .	 (5.10) 

	

lZk Z	ZkZk € S_ 

The functions B+ and B_ are pseudocontinuable. More precisely, B+ and B_ belong to 
PCNM., B is holomorphic in 1D whereas B_ is holomorphic in ID... and their boundary 
values B(t) and B_(t) satisfy 

B+ (t)	1, 1 B-(t)	1	m — a.e. on T.	 (5.11)

Suppose now that (f,,),,r:iN is some Cauchy sequence belonging to PCH(S), i.e. 

J I f(t) — f1 (t) 1 2 w(t) rn(dt)	(1, n —	).	 (5.12) 

For n E IN we set

h,(z) := f(z) . B(z) . c(z),	z E ID	 (5.13) 

and
h_(z) := f(z) . B_(z) .	(z)	z E ID... .	 (5.14) 

The zeros of the Blaschke products B+ and B... "compensate" possible poles of h,+ in 
ID+ and in ID.... Hence, h,+ is holomorphic in ID+ whereas h ,_ is holomorphic 
in ID_. Considerations analogously to those used in proving Theorem 4.1 provide that 

E H2 (ID + ) and h ,_ E H2 (ID_), n E IN. From (4.14) and (4.15) we infer that 

f I h, + (t) — h 1, (t) 1 2 m(dt) -' 0	(l,n — oo)	 (5.15) 

and

/ I 
h , _(L) — h, ,_(t) 1 2 m(dt)	0	(l,n	oo).	 (5.16)
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Condition (5.15) expresses that ( h ,+ ) flEJN is a Cauchy sequence in H2 (ID+), whereas (5.16) 
says that ( h fl,_)eJN is a Cauchy sequence in H2 (ID_). Because of the completeness of the 
spaces H2 (ID + ) and H2 (ID_), there exist functions h E H2 (ID) and h_ E H2(ID_) 
satisfying

I
Ih. ,+(t) - h+(t) 1 2 m(dt)	0	(n	oo)	 (5.17) 

and

I
h ,_(t) — h_(i) 1 2 m(dt)	0	(n	 (5.18) 

where, of course, h+(t) and h_(i) are the boundary values of h+ and h_, respectively. We 
set

	

f+(z) := h(z) [B+ (z)]' . [ c + (z)]' ,	z E ID\S	(5.19) 

	

f_(z) := h_(z) . [B_(z)]1 [_(z)]_1,	z E ID-\S-	(5.20) 
and

ff+(z), z e lD+\S	
521 1(z) .—  

f- (z),	z e	 (. 

Since h+ and are holomorphic in ID + , whereas h_ and 11 are holomorphic in ID 
and the zeros of the Blaschke products B and B_ coincide with S+ and S_ (regarding 
their multiplicities), respectively, the function f is meromorphic in the open set ID+UID_, 
and the set of poles of f is contained in S. Since 'the functions OV, ' belong to the 
corresponding holomorphic Smirnov classes, whereas the functions B 1 , B 1 are members 
of the corresponding meromorphic Smirnov classes, we obtain 

R.str. D f E NM(ID+), Rstr.0_f E NM.(ID_).	 (5.22) 

From (5.17), (5.19), (4.14) and (5.11) it follows 

	

If. (t) — f+ (t) 2 w(t)m(dt) '0	(n	oo),	 (5.23) 

whereas (5.18), (5.20), (4.14) and (5.11) imply that 

	

fI 
f. (t) — f(t) 1 2 w()m(dt) : 0	(n ; oo).	 (5.24) 

From (5.23) and (5.24) we infer that 

	

I
If+(t) — f(t) 2 w(t) rn(dt) =0	 (5.25) 

and, consequently,
f+ (t) = f- (t) m - a.e. on 'F. (5.26) 

Thus, f is pseudocontinuable, which together with (5.22) means that I E PCNM.(S). 
Combining

f+(t) 1 2	'+(t) 1 2 =1 h+(t) 1 2 , 	f_ (t) 1 2	c _(t) 1 2 =1 h_(t) 12
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(5.19), (5.20) and (4.14), we obtain 

I f(t) 1 2 w(t) = I h+ (t) 1 2 = h_ (t) 12 

and, hence, f satisfies condition (5.5). Each of the conditions (5.17) and (5.18) implies 

	

/	
- f(t) 2 w(dt) ; 0	(n ) co)	 (5.27) 

or 11 f,, - f 11 -' 0,n - 00. Thus, the space PCH,(S) is complete I 

Lemma 5.1.: The normed space PCH,,(S) is separable. In particular, PCH, is 
separable. 

Proof: We continue to use the notations of the proof of Theorem 5.1. As it was shown 
in the proof of Theorem 5.1 the mapping I - fB'I realizes an isometric embedding of 
the space PCH(S) into the separable space H2 (ID + ) I 

6 The Closure of the Set of Rational Functions with 
Poles in a Prescribed Set. Formulation of the 
Main Theorem on Impossibility of Spectral Syn-
thesis 

Let S be a discrete subset of the open subset ID+ U ID.. (To each point of S a positive 
integer is assigned - its multiplicity.) It is assumed that S satisfies the Blaschke conditions 
(5.3) and (5.4). 

The symbol R(S) stands for the set of all rational functions the poles of which are 
contained in S. (We suppose that the order of each such pole does not exceed the multi-
plicity of the corresponding point in S.) If all points in S are simple (i.e. have multiplicity 
one), then each function r E R(S) has the form 

2k ES Z - Zk 

where all complex numbers G with exception of a finite number are zero. The set R(S) 
is a complex linear vector space. 

Suppose now that w is a weight function on T satisfying conditions (4.3)-(4.5). Every 
rational function is clearly pseudocontinuable and its restrictions belong to the corre-
sponding meromorphic Smirnov classes NM.(ID+ ) and NM.(I)_). Since S fl T = 0 
every rational function r E R(S) is bounded on 'I' and, therefore, 

fI r(t) 2 w(t)m(dt) <00. 

Hence, the set R(S) can be conceived (and will be conceived) as (non-closed) subspace of 
PCH( S):

R(S) 9 PCH,(S).	 (6.1)
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Definition 6.1.: The space R, (S) is the closure of R(S) in PCH(S) (with respect 
to the above introduced norm in PCH,(S)). 

Since the space PCH(S) is complete, then its closed subspace R, (S) is also complete. 
By definition, we have

R. 2(S) c PCH(S).	 (6.2) 

In particular, the restrictions onto ID+ and ID_ of each function r E R,(S) belong to the 
corresponding meromorphic Smirnov classes: 

r E R,(S)	=	Rsir.D+r E NM(ID^) , &tr._r E NM.(ID_).	(6.3) 

Observe that the subspace R,(S) not necessarily coincides with the whole space PCH,(S) 
or, in other words, the inclusion in (6.3) can be strict. 

Suppose now that (Zk)A;EN is a given sequence of points in ID U ID_ satisfying the 
Blaschke condition

> [1— I Zk I] < 00,	 [l- I z	< 00 .	 (6.4) 

t ZkI< 1	 tZkI>1 

For n. E IN we set

S. := U{ 2k .	 (6.5) 

In a natural way, a multiplicity is assigned to each point of S. The Blaschke condition 
provides that this multiplicity is finite. Clearly, we have 

S12S2S3 ...	 (6.6) 

and
fl s=ø.	 (6.7) 

nEIN 

From (6.6) it follows

	

R(S1 )2R(S2)2R(S3 ) 	... ,	 1(6.8) 

whereas (6.7) implies

fl R(S5 ) = C	 (6.9) 
nEt 

where C stands for the (one-dimensional) complex vector space containing all complex-
valued constant functions. Clearly, from (6.8) it follows 

R,(Si)	R(S2 )	R,(S3) a...,	 (6.10) 

but it will turn out that it is possible that 

	

flR(s)c. 	 (6.11) 

nEIN 

In view of property (6.2) we infer that, for each k E IN, the space flThE R, (S5) is a
subspace of PCH(Sk ). In particular, all possible poles of a function r belonging to

R,(S) are contained in flflE S,,. Consequently, in view of (6.7) every function r
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which belongs to flflE R,(&) is holomorphic in ID U ID_. Thus, we have proved the 
following result. 

Theorem 6.1.: The space flflE R, (S) is a subspace of PCH: 

fl R,( S) c PCH,.	 (6.12) 
nEIN 

The inclusion in (6.12) can be strict or, in other words, it is possible that not each function 
belonging to PCH, is contained in flflE R, (S). 

Now we formulate our main result in this paper. 

Main Theorem: Let w be a weight function on 'II' satisfying the conditions (49)-
(.5). Then there exists a sequence (zk) of points in lDUD_ which satisfies the Blaschke 
condition (6.) such that

fl R,(S) = PCH,,.	 (6.13) 
nEf' 

Remark 6.1.: From the spectral point of view the assertionn.04 R2 (Sn) C 
has the character of an assertion on impossibility of spectral synthesis. The notion of 
spectral synthesis in the context of harmonic analysis (or in the context of shift operators 
or operators which commute with them and act in some spaces of functions defined on 
the real axis or even on some group) goes back to papers of A. BEURLING [5] and [6], 
L. SCHWARTZ [38], R. GODEMENT [15]. This notion was prepared by preceeding 
work of N. Wiener in abstract harmonic analysis. We particularly emphasize the paper 
[38] of L. SCHWARTZ where a translation invariant operator with discrete sprectrum 
was considered. (In A. BEURLING [5], [6] and R.GODEMENT [15] the case of an 
arbitrary spectrum was studied.) For a detailed discussion of questions associated with 
spectral synthesis in the context of harmonic analysis we refer the reader to chapter X 
of the monograph E. HEWITT / K. ROSS [17] (compare also chapter V of the survey 
paper V.P. KHAVIN [22]). Starting with the papers H.L. HAMBURGER [16] and J. 
WERMER [46] related problems were even studied for operators acting in an abstract 
Hubert space (and not only in spaces of functions defined on groups). Hereby it is usually 
assumed that the operator under consideration has a complete system of eigenvectors, 
whereas its spectrum is to be assumed as discrete (i.e. every eigenvalue is an isolated 
point of spectrum). It was studied the question whether the restriction of an operator to 
an invariant subspace has a complete system of eigenvectors. Such problems are called 
spectral synthesis problems for operators. In this framework H.L. HAMBURGER's paper 
[16] is of principal importance. It contains an example of a compact operator in Hilbert 
space which has a complete system of eigenvectors and at the same time a nontrivial 
Volterra part. In the sequel problems of spectral synthesis of operators were considered 
by N.K. NIKOLSKII [32] and A.S. MARKUS [28]. 

Our Main Theorem can be conceived as some result on impossibility of spectral syn-
thesis for operators which are near to unitary ones. It characterizes exactly to what 
extent this spectral synthesis is impossible. However, in this paper we will not discuss the 
spectral interpretation of our Main Theorem.
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7 Fundamental Approximation Lemma. Proof of 
Our Main Theorem 

The formulation of our Main Theorem given-in Section 6 a little bit disguises its approx-
imation character. Now we present a reformulation which emphasizes its approximation 
character. 

Main Theorem (Approximation Version): Let w be a weight function on '11' 
which satisfies (4.3) and (4 .4) . Then there exists a sequence (Zk)kEyi of points taken from 
ID + U 111.. which satisfies the Blaschke condition and which has the approximation property 
that, for each function f E PCH,, for each e E (0, co) and for each n E IN, there exists 
a rational function r E R(S) with 

fI f(t) - r(t) 2 w(t) rn(dt) <e	 (7.1) 

holds true. 
Observe, that in the approximation formulation of our Main Theorem we do not 

suppose that the Szegö condition (4.5) is satisfied for the weight function w. 
We emphasize once more that the same sequence (zk)kEIN enables us to 'serve' all 

functions f from the space PCH,, and even not the sequence itself but each of its truncated 
sequences (zk)k>. A large portion of difficulties concerning the proof of our Main Theorem 
is contained in the following result. 

Fundamental Approximation Lemma: Let w be a weight function on iF which 
satisfies (4.3) and (4.4). Suppose that f is an arbitrary function from PCH, and that 
e is an arbitrary positive number. Then there exists a rational function r with poles (zk) 

located in ID+ U ID_ such that the two inequalities 

fI 1(t) - r(t) 2 w(t) rn(dt) <e 2	 (7.2) 

and
[1—Izkl]+	[1_.Izk I_ h ]<e	 (7.3) 

14I< 1	Iz,,I>1 
are satisfied. 

The proof of this lemma is not very long but requires deep facts, namely Frostman's 
theorem from the theory of value distribution of holomorphic functions (more precisely, 
its generalization due to W. Rudin) and , a result of D.Z. Arov on approximation of a 
pseudocontinuable function which is bounded on T. This theorem of D.Z. Arov relies on 
two deep facts itself, namely the possibility of constructing Darlington realizations for each 
holomorphic matrix-valued function in ID+ which is contractive and pseudocontinuable 
(this was also proved by D.Z. AROV in [2]; see also [4, Ch. I]) and the theorem due to 
V.P. POTAPOV [34] on the multiplicative representation of a matrix-valued function 
which is holomorphic and contractive in the open unit disc. Thus, the following proof 
of our Main Theorem, which was formulated in a 'purely scalar context' (at least it is
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not obviously connected with matrix-valued functions), uses deep facts of the theory of 
analytic matrix-valued functions. 

We prove the Fundamental Approximation Lemma later. First we show how one can 
derive our Main Theorem from it. 

Proof of the Main Theorem (on the basis of Fundamental Approximation Lemma): 
From Lemma 5.1 we known that the space PCH is separable. Denote ( h k ) kEJr.J a sequence 
the elements of which form a countable dense subset of elements of this space. Now we 
construct a sequence (fk)kEr4 of elements of PCH, J such that every function h3 is contained 
infinitely many times in this sequence. For example, outgoing from the sequence 

(hk )kEr.
	 (7.4) 

we form the sequence

h 1 , h2 , h 1 , h2 , h3 , h 1 , h 2 , h3 , h4 , h 1 , h 2 , h3 , h4 , h5 , ...	 ( 7.5) - - 

and preserving the indicated order we rewrite its elements as 

fi, 12, 13, 14, Is..... 
Suppose that ( CI)IEIN is a sequence of positive real numbers such that 

CO

e<oo.	-	 (7.6) 

For every index p E IN we apply the Fundamental Approximation Lemma to the function 
f := f, and the positive real number e := es,. By virtue of this lemma there exists a 
rational function r, the set of poles

ZI	4P) , ...,	 (7.7)np 

of which does not intersect the unit circle, such that the inequalities 

f(i) - r(i) 12 w(t) m(dt) <e	 (7.8) 

and
11— I z" I] + : i: [1— P)  ( I ZIP) II < c	 (7.9)

Z(P) ED+ 

are fulfilled. 
Now we form the sequence 

zz zz)z(2)z(2)z(3)z(3)z(3)	 (7.10) 

consisting of all poles of all functions rp ,p E IN. Preserving here the indicated order we 
rewrite its elements as

Zj, Z2 Z3	 (7.11) 
The sequence ( Zk)kE will turn out to be such 'a sequence which has all properties asserted 
in the Approximation Version of our Main Theorem.
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From (7.6), (7.9) and from the principle of constructing the sequence (Zk)kEg. we infer 
that (zk)kE satisfies the Blaschke condition (6.4). 

Now suppose that f is an arbitrary element from the countable dense subset given in 
(7.4) which was constructed at the beginning of the proof. Since this I occurs infinitely 
many times in the sequence (fp)pE, there exists some subsequence (rpk ) kC IN of (rp)e 
such that

/1(t) - rpk(t) 1 2 w(t) m(dt) -, 0 (k -, oo).	 (7.12) 

Hereby, for each positive integer n, all poles of the functions Fpk are located in the trun-
cated sequence S (z)12: if the index k is sufficiently high. Consequently, if f belongs 
to the chosen dense subset and if e E (O,00) and n E IN are given, then for sufficiently 
high indexes k the function Tpk can be taken to play the role of the function r E R(S) in 
(7.1). Thus, the assertion of our Main Theorem (in its approximation version) is verified 
*for each f from a given dense subset. 

Obvious considerations enable us now to conclude the assertion for arbitrary functions 
1 E PCH (which do not necessarily belong to the chosen dense subset)I 

Proof of the Fundamental Approximation Lemma: We divide the proof into 
two steps. In the first step we approximate an arbitrary function f E PCH, (which is 
necessarily holomorphic in 1D U ID..) by a function which is meromorphic in ID U ID_, 
pseudocontinuable, bounded on 'F and the poles of which are very near to the unit circle. 
In the second step we approximate this pseudocontinuable function, which is bounded on 
I by rational functions. 

Step 1. Let f be an arbitrary function from PCH. We introduce a family (f 0)0(o,) 
of functions. Namely, for a E (0, oo) we define f : ID U ID_ - C by 

f(z)
E D+ U ID... .	 (7.13)1+af(z)f#(z)' 

Recall that the function f# was defined in (2.2). By virtue of f E PCH c PCNM, we 
have f, E PC NM. Moreover, 

f(t)f#(t) - I f(i) 1 2	0,	t E 'F .	 ( 7.14)

From (7.13) and (7.14) it follows 

• I f0(t) I-	
11( t ) I

	

tE'L'.	 (7.15)- 1+a I 1(t) 12' 

On the one hand, this implies

<1 
I f0(i) I =	 t E 1', a > 0,	 (7.16) 

i.e. each function f, of the family (7.13) is bounded on '1' by a constant (depending on 
a). On the other hand, from (7.15) we infer 

Jf0 (t)IIf(J) I,qquadtEt,aE(O,00),	-	( 7.17)
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i.e. the family (f)QE(o,c) has a common majorant. Since clearly f0 (t) -, f(t), a - 0 + 0, 
and since f satisfies (4.7), then Lebesgue's dominated convergence iheorem yields 

	

f I 1(t) —f(t) 2 w(t)m(dt)	0, (a	0+0).	 (7.18) 

For a E (0,00), set

d0 (z)	1 + cxl (z)f#(z), z E ID U ID_ .	 (7.19) 

The function dc. is 'symmetric', i.e. da = d. In view of f E PCH ç PCN., for each 
a E (0, ), the function d, belongs to the Smirnov class PCN.. In particular, for each 
a E (0,00), the restriction Rstr. D da satisfies 

Rstr. D da E N(ID+) .	 (7.20) 

The zero set of da is symmetric with respect to T. Applying Jensen's inequality to 
Rstr. io+ da, we obtain 

•	in _1	fin I d(t) I m(dt) — ln 1d0 (0) I .	( 7.21) 
I  zk(a)CID+	zk(cx) I T 

(The version of Jensen's inequality where the integral on the right-hand side of (7.21) is 
taken over the boundary of the unit circle is not generally true for all functions belonging 
to the holomorphic Nevanlinna class N(ID), but it is true for all functions which are 
members of the holomorphic Smirnov class N. (ID). This fact should be well-known to 
specialists dealing with boundary properties of analytic functions. However, we were not 
able to found any reference to it. For the convenience of the reader, we will give a detailed 
proof of (7.21), but to avoid an interruption of the basic line of realizing step I we will 
defer this to the end of step I.) From (7.19) it follows that in I 4 I-' 0 for a —' 0 + 0. In 
view of	 -	- 

J ln[1+ I f(i) 1 2] m(dt) < 

and
0	in I d0 (t)	in[1+ I 1(t) I] 2 ,	t E 'II', a E (0, 1) 

Lebesgue's dominated convergence theorem provides 

	

m(dt)0,	(a0+0). 

Now from (7.21) we infer

lim	 in	
1	

= 0.	 (7.22) a—O+O	 I zk( cx ) I \zk(cz)EID+ 

Suppose that e is an arbitrarily given positive real number. By virtue of (7.18) and (7.22) 
it follows that there exists a 6 = 5(e, f) > 0 such that, for each a E (0, b), the two 
inequalities

f I 1(t) — fa(t) 1 2 w(t) m(di) <e2	 (7.23)
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and

	

>i	[1— I z,(cs) II + >1	[1— I Zk(a)	< e	 (7.24) 
Zk(0)EID+	 zk(a)EID_ 

are satisfied. The sums in (7.24) are taken over all poles of f0 which are located in 
ID + U ID_. (Since f is holomorphic in ID + U ID_ the set of poles of f0 coincides with 
the set of zeros of d5 .) Now we show that the function f,, belongs to the meromorphic 
Smirnov class PCNM of pseudocontinuable functions or, more precisely, that for every 
8> 0, one can choose a number a E (0,6) such that the function ft,, belongs to PCNM.. 
We will rely on a theorem of Frostrnan or, more precisely, on its generalization given by 
W. RUDIN (see Section 3.6 of the monograph [36] and the references there). The function 
f. can be represented as quotient

icr - 
a(+g).	

(7.25) 

where

	

g = f f
	

(7.26) 
The function f belongs to the holomorphic Smirnov class PCN.. Thus, we have to ensure 
that the function ( + g)' belongs to the meromorphic Smirnov class for sufficiently 
small positive real numbers a. Since by definition (7.26) the function g is symmetric, i.e. 
g = g#, it suffices to ensure that 

	

istr.	(I +) E NM. (ID+ )	 (7.27) 

This condition is guaranteed if in the multiplicative representation (3.3) of the function 
+ g E N.(ID+ ) the factor containing the singular measure b, is missing or, equivalently, 

the limit relation

lim fin -- + g(rt) m(dt) =	In I + g(t) rn(dt)	(7.28) 

	

r-.1-O	Ia	 j	ia 

	

T	 T 

holds. 
In Section 3.6 of W. RUDIN's work [36] the following theorem is proved. Let g be 

a function which belongs to the holomorphic Smirnov class N.(ID+) and let K be an 
arbitrary compact subset of the complex plane having positive logarithmic capacity. Then 
there exists a A E K such that the function A + g satisfies 

	

r_.i_of ln I 
A + g(rt) I m(dt) =	In I A + g(t) I m(dt).	(7.29) 

Since every interval of the real axis has positive logarithmic capacity, in each interval 
there exists a number A such that (7.29) is fulfilled. Letting A := we get that the set of 
all real A satisfying the limit relation (7.28) is dense everywhere in JR. In particular, such 
a number A can be found in every intervall (0, 6), 5 = 5(e, f) . (W. RUDIN [36] gives the 
following definition: A compact subset K of the complex plane is said to have positive 
logarithmic capacity if there exists a positive Borel measure p 0 0 which is concentrated on 
K such that its logarithmic potential U,, : 0 - JR given by U,,(z) := fK log I z - (I p(d()
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is continuous at each point z E C. Every interval of the real axis has positive logarithmic 
capacity because one can choose as such a mea.sure p, e.g., the restriction of the one- 
dimensional Lebesgue mesaure onto the Borelian subsets of this interval!. One can easily 
check by straightforward computations that the logarithmic potential of this measure is 
continuous in the whole complex plane C.) 

Frostman's original result we referred to is not related to arbitrary functions of the 
Smirnov class but only to inner functions. It is proved in 0. FROSTMAN's remarkable 
paper [13] which also contains many important applications of potential theory in complex 
function theory. 

Hence, in the first step it was verified that, for an arbitrarily chosen f E PCH, and 
an arbitrarily given e > 0, there exists a function a E PCNM such that the following 
conditions are satisfied:

/ 
f(t) - a(t) 2 w(t) m(dt) <e	 (7.30) 

sup a(t) I < 00 ,	 ( 7.31) 
tET 

[1 - 1 Zk 11+	[1- 1 Zk	
i] <e.	 (7.32) 

ZkElD+	 ZkEJD_ 

The sums in (7.32) are taken over all poles of a contained in ID + and ID_, respectively. 
Furthermore, the set of poles of this function lies symmetric with respect to the unit 
circle.	 - 

According to the Frostman-Rudin theorem as a particular choice for such a function 
we can take a function f, of the form (7.13) with specially chosen sufficiently small c > 0. 

Comments: We explain inequality (7.21). Suppose that d is a member of the Smirnov 
class N.(ID+) having the zero set (zk ). Moreover, assume that d(0) 0 0. Jensen's formula 
applied to the function d in the disc I z	r with r E [0, 1) provides 

in__ = flnId(rt) I m(dt)—inId(0) 
I Zk I l zkk r	T 

From this it follows, for r E [0, 1), 

In r -= sup f In d(pt) m(dt)—lnld(0)I 
I Zk I	pElO,1) I ZkI< ?	 T 

Now on the left-hand side we carry out the limit process r - 1 - 0 and obtain 

In 
1 <

sup fin Id(pt)I m(dt)—inId(0)l 
I Zk I	pE[O,1) IZkI<1	 T 

The last inequality is not only true for functions d of the Smirnov class N.(ID+ ) but 
also for functions of the larger Nevanlinna class N(ID+). However, for each function d 
belonging to the Smirnov class, one can estimate the supremum on the right-hand side of 
the last inequality from below by the logarithmic integral over the boundary T, namely 

d(pt) Im(dt) 
/ I 

d(t) jm(dt),	P  [0, 1)
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This inequality can be verified, e.g., by use of the Riesz-Nevanlinna-Smirnov factorization 
d = c . BdSdEd of the function d where Bd is a Blaschke product, Sd is a singular function 
and Ed is an outer function. We have I Bd( z) j 1 for z E ID+, whereas I B,j(t) 1 
m—a.e. on T. Because of d € N.(ID+) the singular measure in the representation of Sd 
is nonnegative. Thus, I Sd(z) 1 for z E ID whereas I S,(t) = 1 m—a.e. on T. 
Consequently, I d(z) I I Ed (z) I for z E 1D and I d(t) I = Ed(t) I rn—a.e. on T. From 
the canonical representation of an outer function it follows immediately 

fin I Ea( t ) I m(di) = in I Ed(0) I fin I Ed(pt) I rn(dt), p E [0, 1) 

Step 2. Let e be an arbitrary positive real number. Suppose that a is a pseudocon-
tinuable meromorphic function of the Smirnov class PCNM., i.e. a E PCNM, which is 
bounded on '1', i.e. (7.31) is fulfilled. Denote B the Blaschke product constructed from 
the poles (regarding its multiplicities) of a which are located in ID. We consider the 
function S given by

	

S(z) := a(z) . B+ (z),	z E 1D U ID_ .	 (7.33) 

Since every Blaàchke product is pseudocontinuable, the function S is also pseudocontinu-
able. The Blaschke product B was constructed in such a way that S is holomorphic in 
ID + . Since I B(t) I = 1, t E T and since in view of (7.31) the function a is bounded on I, 
the function S is also bounded onT : sup t aT I S(t) 1< 00. Since a belongs to the Smirnov 
class N.(ID + ) we get by virtue of the maximum principle of V.I. Smirnov then 

sup I S(z) I < oo,	i.e.	Rstr.D SE H(ID).	 (7.34) 
zEID+ 

Here the set of poles of S is the union of two subsets, namely the set of poles of a which 
are located in ID._ and the set which is symmetric to the set of poles of a which lie in ID. 
(If the set of poles of a would be symmetric, then the set of poles of S would be the set 
of poles of a in IIJ_ and each pole would have the double multiplicity.) 

Analogously, if B_ denotes the Blaschke product built on the basis of the zeros of a 
in 1D., then the function a B_ = S . B'B_ belongs to the Hardy class H°°(ID_). 

Now we use the following approximation theorem due to D.Z. AROV [3] (see also 
[4, Section 3.5]): 

Let S be a pseudocontinuable function such that 

Rstr. + S E H°°(ID+).	 (7.35)

Suppose that there exists Blaschke product B such that 

	

Rstr.iri_ 5 B 1 E H°°(ID_).	 (7.36)

Then there exists a sequence (pn)n€ of rational functions with the following properties: 

(i) For n E IN, the poles of p, are located in the set of poles of S (and, consequentely, 
in ID...). 

(ii) The sequence	is uniformly bounded on 'II', i.e. 

sup max I p(i) I = sup I s(t) I .	 ( 7.37) 
nEN jET	 tET
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(iii) One has the limit relation

urn p. (t) = S(t) m -a. e. 	 (7.38) t-00 

We will comment condition (7.36) after finishing Step 2. 
We are going to apply the theorem of D.Z. Arov to functions S of type (7.33). (For 

the Blaschke product, which occurs in Arov's theorem, one has to take B := B+B1.) 
Given S let (Pn)nEJN be a sequence of rational functions the existence of which is ensured 
by Arov's theorem. The sequence

Wn := p, B'	 (7.39)

is uniformly bounded, satisfies the inequality 

sup
(tET

sup I	(t)	sup I (t) I,	 (7.40) 
nEI'4 	I	LET 

and converges almost everywhere to the function a. Since the Blaschke product B+ is not 
rational the functions	are not rational. Denote B,+ the n-th partial Blaschke product 
generated by the 'full' Blaschke product B. Each of the functions is rational. 
Moreover, it is well-known that the sequence of partial products of an arbitrary Blaschke 
product converges to it in Lebesgue measure m on T and even with respect to square 
mean norm convergence, 

	

I

I B + (t) —B+(t) 1 2 m(dt)	0 - (n 

(see, e.g., Chapter 5 in HOFFMAN [18]). Hence, there is a subsequence ( Bkn ,+)n E rq of 
partial Blaschke products which converges to .8 + rn—a.e. on T. The sequence (r.), 

(7.41) 

consists only of rational functions. Moreover, it is uniformly bounded on 'F, i.e. 

sup max I r(t) I	sup I a(t)	 (7.42) 
nEIN LET	LET 

and converges to the function a m— a.e. on T. From this and (4.4) it follows 

	

I 

f
I 

a(t) - r(t) 2 w(t)m(dt)	0 (n	oo).	 (7.43) 

It is readily checked that the set of poles of all these functions r is contained in the set 
of poles of a in ID U ID_. 

Hence, in Step 2 the following fact was established: Let a be a meromorphic pseudo-
continuable function belonging to the Smirnov class PCNM. which is bounded on the 
unit circle (i.e. (7.31) is fulfilled) and let e be an arbitrary positive real number. Then 
there exists a rational function r the set of poles of which is contained in the set of poles 
of this function a such that the inequality 

JI a(t) - r(t) 2 w(t) m(dt) <e2	 (7.44)
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is satisfied. The role of such a function r can be played by each of the functions r when 
n is sufficiently large. Step 2 is realized. 

Comments: We explain condition (7.30) in D.Z. Arov's theorem. Without loss of 
generality one can assume that sup 11<1 I s(z) I 1. In [2] D.Z. AROV has proved that 
a pseudocontinuable function s can be considered as (1,2)-element of some holomorphic 
matrix-valued function

= ( S11 S

\ S21 

which is contractive, i.e.

I_S*(z)S(z)0,	zEID,

and which has unitary boundary values m— a.e. on T, i.e. 

S(t)S(t) = I	m - a.e. on T. 

(Such matrix functions are called inner.) In AROV [2] the representation of a given con-
tractive holomorphic function s as 12-element of some inner matrix function is called a 
Darlington realization of s. As an inner function, S is pseudocontinuable. The construc-
tion of such an inner function S with prescribed element s12 = s is not unique. D.Z. 
AROV proved in [2] that the completion of a given block S12 to a 'full' inner function 
S can be realized in such a way that this 'completed' function S does not contain new 
singularities (in comparison with the singularities of s) in ID_. In particular, if Rstr.ijj.s 
belongs to the meromorphic Smirnov class NM(ID_), then it is possible to construct a 
such completion S of s which satisfies Rstr. D_S E NM.(ID_). However, an inner func-
tion S the pseudocontinuation of which to ID_ belongs to the meromorphic Smirnov class 
NM.(ID_) must be a Blaschke- Potapov product. The functions of the sequence (pn)nElN 
given in (7.38) can be represented as 12-elements of partial Blaschke-Potapov products. 
For a pseudocontinuable function s which is bounded on 11' condition (7.36) is equivalent 
to Rstr.D_d E NM(I)_). 

Continuation of the Proof of the Fundamental Approximation Lemma: The 
Fundamental Approximation -Lemma follows by combining the results obtained in Steps 
1 and 2. Indeed, given e > 0 and a function f € PCH we construct in Step 1 a function 
a E PCNM which satisfies conditions (7.30) and (7.32) whereas in Step 2 we construct 
for this function a, which was just obtained, a rational function r which satisfies (7.44) 
and whose set of poles is contained in the set of poles of a. In particular, condition (7.32) 
is satisfied for a. 

From (7.30) and (7.44) it follows 

JI 1(t) - r(t) 2 w(t)m(dL) I 4e	.	 (7.45) 

The proof of the Fundamental Approximation Lemma is complete and this means that 
our Main Theorem is also proved I 

Remark 7.1.: By a slight modification of the proof of the Fundamental Approxima-
tion Lemma one can show that, given f and e > 0 one can construct a rational function r 
which satisfies (7.2) and (7.3), whose poles are only located in ID_ and which are simple.
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Remark 7.2.: The sequence S = ( zk)kEJN which occurs in our Main Theorem is clearly 
not unique. As one can see from the proof of this theorem one can move the points of 
this sequence a little bit. Only the asymptotic behaviour of these points plays a role but 
not the points themselves. Here we will not give a formal definition of what we mean by 
'asymptotic behaviour'. Nevertheless, it is possible to indicate some general aspects on 
the structure of such a sequence of points. We call a point to E 'F singular with respect 
to the weight function w if for every open arc -y (-y 9 'F) containing to the condition 

j[w(t)j - 'm(dt) =00	 (7.46) 

is satisfied. Denote by sing w the set of all points of 'F which are singular with respect to 
w. Then sing w turns out to be a closed subset of the unit circle. A function f E PCHJ 
proves to be 'well-adapted' with its values on each arc of the unit circle which belongs to 
the complement of sing w which means that f is holomorphic at each such arc. (Compare 
the considerations in Remark 4.2) Hence, each function f E PCH, is holomorphic in 
the open subset C \ sing w. A sharper analysis of the proof of our Main Theorem shows 
that the sequence S = ( Zk)kEV can be chosen such that the set of its accumulation points 
coincides with sing w. 

Remark 7.3.: The considered summable weight function w satisfied the conditions 
(4.5) and (4.9). The condition (4.5) ensures the completeness of the PCH,, whereas the 
condition (4.9) ensures the non-triviality of this, space. The conditions (4.5) and (4.9) 
occur in the theory of (in wide sense) stationary random processes with discrete time. In 
the theory of random processes these conditions were introduced by A.N. Kolmogorov, 
[23] and [24]. (A good exposition of the theory of stationary random processes (in wide 
sense) can be found, e.g., in [39], Chapter 6.) Suppose, that w is a spectral density of 
a stationary random process with discrete time. The condition (4.5) means, that the 
considered process is a regular one. In particular, a perfect prediction (extrapolation) of 
the 'future' of this process in terms of its 'past' is impossible. The condition (4.9) means, 
that a perfect interpolation of an omitted value of this process from the rest of its values 
is possible.	 - 

Remark 7.4.: Results which are analogous to the Main Theorem and the Funda-
mental Approximation Lemma can be obtained not only for weighted L'-metrics but also 
for weighted L9-metrics and even for many other metrics. One can give an axiomatic 
description of the class of all metrics for which the proofs of our basic results go through. 

Remark 7.5.: In his paper [45] (see also [431) G.Ts. TUMARKIN considered classes 
of functions f on the unit circle which can be approximated by sequences (rn ) of rational 
functions in weighted L P-metrics, i.e. 

/11( t ) - r(t) 1P w(t) m(dt) .. 0	(n .. 00). 

Here it is assumed that the poles of these rational functions belong to a given scheme 
of numbers and, moreover, that certain Blaschke type conditions are satisfied 'uniformly 
with respect to the rows of this scheme'. G.Ts. Tumarkin has proved that each such 
function f is the boundary value on 'F of some pseudocontinuable function. In particular,
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his results contain our results obtained in Section 5 in those parts in which it is asserted 
that the functions from R, (S) are pseudocontinuable and belong to PCNM. (if the set 
S satisfies the Blaschke condition). However, a full description of the class of functions 
which admit an approximation of the considered type was obtained by G.Ts. Tumarkin 
only for the case of the weight w 1. The problem of describing this class in the case 
of a general weight function with convergent logarithmic integral was posed as an open 
problem in [45]. A full solution of Tumarkin's problem can be given in an analogous way 
as we have proved the Fundamental Approximation Lemma. 
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