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1. Introduction. Important classical statements concerning the boundary behaviour of 
analytic functions (such as the theorems of Lindelof, Gehring-Lohwater, Fatou, Lu-
zin-Privalov a.o.) in their generally accepted formulations cease to be true if we pass 
from the class of analytic functions to the wider class of polyanalytic functions. The 
search of conditions permitting to extend boundary values results to broader classes 
of complex functions (specifically to polyanalytic functions) was the subject, of stu-
dies of some authors (see [I - 4]). In the present note we try to make these results 
more general using some ideas due to I. N. Vekua [S] and to A. Nagel and W. Rudin [1, 21. 

2. Terminology and notations. Hereafter G denotes a Jordan region having on its boun-
dary OG some rectifiable simple Jordan arc F. We shall assume that any two different 
points of F can be connected by some rectifiable simple (open) Jordan arc belonging to 
G. Suppose that Sis some set in C and C is some point on the boundary aS, t S. Let I 
be some function defined in S. Then C(fj ,S) will denote the cluster set of F in the 
point C over the set S (cf. [61), i.e. the set of all numbers A satisfying the condition: 
there exists in S a sequence of points (z 13) such that, for n 3 co, z,	and f(z,,) 3, A. 

Let dbe a fixed complex number; let Ebe some set of points in C, and the numbers 
eare its elements; hereafter we denote as E+a the set of all points z of the form z = 
+ d, e e E. 

We make also use of notations from I. N. Vekuas book [5]; specifically the relation 
of the form g € L(G) means that ffIg(z)IPdxa,v < +, and the relation g € L(G) means 
that for every region S compactly belonging to G (i.e. S u OS C G) there exists a con-
stant M(S,g) such that fJ'Ig(z)IPdxciy < M(S,g)
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3. The basic lemma. We shall make use of some connection existing (under certain 
conditions) between the cluster set of a given non-analytic function and that of some 
auxiliary analytic function. The results of I.N. Vekua [5] concerning the properties of 
the Pompelu integral (see below) will play a crucial part in our discussion. 

Lemma: Suppose that 
(i) G is, a Jordan region (in C), and C is a point on its boundary aG 
(ii) S is a subset of G such that OG n OS = {} 

(iii) 1 is a function defined and continuous in G 
(iv) c)f/62 (the areolar derivative in the sense of Sobolev- Vekua) exists a.e. in G 
(v) c'f/lZ E L(G) for some p, 2 <p ^ +. 

Then there exists a function h holomorphic in G and a constant d such that 

Of, 1,S) = Oh, 1,S)+d. 

Proof: It will be given here only for the case 2 <p < +; the proof in the case p = 

is quite similar (but simpler). 
Consider the Pompeiu integral 

Y(z) (T0g)[z] = -"1 g(t)-ddi1	 (2) JJG t - Z 

where g = 6f/12, + i = t. It follows from (2), by virtue of the Holder inequality, that 
(see 1.N. Vekua [5: Chap. 1, § 6, formula (6.2)])the function p satisfies for any z1 ,z2 € C 
the condition

,U lcp(z) - p(z2 )I 5 const I; - z2 i , a = (p - 2)/p. 

Hence p is continuous in C. But (see [5]) cp/az = g a.e. in G. Hence 6(f - p)/c)2 = 0 a.e. 
in G. Since the function f- p belongs to C(G) we conclude, by virtue of the Weyl lem-
ma (see 1. N. Vekua [5: Chap. 1, §5, Theorem 1.15]) that there must exist a function h 
holomorphic in G such that 

fh+cp.	 (3) 

Let p() = d; let A be an arbitrary number belonging to the set C(h,,S). Then there 
must exist in S a sequence (zn ) such that z, i, h(z) 3 A while n 3 +. But then, as it is 
seen from (3), f(z) 3 A+d. Hence C(f,1,S) C C(h,ç,S)+d. Similarly it is easy to see 
that Oh, ç,S)+d C Of, ç,S). Hence (1) is true  

4. A theorem of the Gehring -Lohwater type. In [71 (see also [6: Chap. 1, Theorem 
2.3.1]) F. W. Gehring and A.J. Lohwater proved a remarkable statement which can be 
formulated in such way: 

Suppose that 
(i) the function f is analytic in the open circular sector S with the vertex 1 

(ii) there exists in S such path y leading to 1 that Ref(z) 3 A while z 31, z € 
(iii) there exists in S such path 12 leading to 1 that Im f(Z) 3. B while Z	, Z E 15 
0v) f is bounded in S.
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Then, for every choice of a sector S (closed in S) which is an inner sector for S 
and has the same vertex r, 1(z) 3 A + iB while z ) t, Z E S. 

In the case of polyanalytic functions f of order n> I this statement does not hold 
anymore and a corresponding example can easily be constructed (see [3: Section 3.3:1). 
But what condition should be added to the conditions (ii) - (iv) of the Gehring-Loh-
water statement in order to retain the conclusion of this statement for polyanalytic 
functions of arbitrary order? Hereafter we give a possible answer (even for a more ge-
neral class of functions than polyanalytic ones). 

Theorem 1: Suppose that 
(i) I is bounded and continuous in the open circular sector S with the vertex 

(ii) f satisfies the conditions (ii) - (iv) of the Gehring -Loh water theorem above 
(iii) cf/62 (in the sense of Sobolev- Vekua) exists in a.e. point of S and belongs to 

the class La(g ), for some p > 2.	- - 
Then the conclusion of the Gehring-Loh water theorem remains true for the function I 
(i:e. for every choice of a sector S' inner to Sand having the same vertexC as S we have 
1(Z)) AiB while  

Proof: By virtue of the Lemma the function fcan be presented in the form (3): f(z) 
= h(z) +p(z) (z eS) where his holomorphic in Sand cp is continuous in C. Denote p() 
as d = d1 + id,. As it is seen from (3) the function h satisfies in S the conditions (i) - (iv) 
of the Gehring- Lohwater theorem (h is holomorphic and bounded in S; if (zn ) is some 
sequence and z, 3 C along y, then Reh(z n) 3 A - d1 ; if z,, )	along 12' then lm h(z) 

B - d2 . Therefore for any choice of a closed (in S) inner to S sector S we have for 
any sequence (z,,) belonging to S':ifz 3 C while n ) +, then h(Zn)) (A -di) i(B 

- d2) A + iB - d. Therefore f(z) = h(Zn) + p(z) 3, A + iB. Thus Theorem I is proved I 

S. A theorem of the P1esner type. The well-known Plessner boundary values theorem 
(see, e.g., [6: Theorem 8.2]) is usually formulated for functions analytic (or even me-
romorphic) in a disc. Hereafter we shall make use of a somewhat more general formu-
lation of this theorem. First we shall remind some terminology (see [6: Chap. 8, § 2]). 
Suppose that G is a Jordan region, F is a rectifiable arc on its boundary. Clearly there 
exists a tangent in almost every point of F (i.e. in every point of F - except possibly a 
set of zero linear measure on F). Let 1 be one such point; denote by A any circular 
sector with the vertex C having the properties 

a) AC G 
b) the boundary radii of A do not belong to the tangent to F in the point C. 

Let f be some function given in G. The point C is called a Plessner point (for the func-
tion I) if for any choice of a sector A of the mentioned type the cluster set Of, ç,A) 
contains all points of the extended complex plane . The point C is called a Fatou point 
for the function f if for every choice of a sector A the cluster set C(f,(,A) contains 
only one point (clearly the same point for all choices of A); in other words, the func-
tion fhas in the point can angular limit (a limit along non—tangent paths leading to Q. 
It is quite obvious that the classical Plessner theorem admits such equivalent reformu-
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lation: 
Suppose that 
(i) Gis some Jordan region in the complex plane C and F is some rectifiable arc on 

its boundary àG 
(ii) I is an analytic function (or even meromorphic) in G. 

Then r can be presented in the form F = P(f) u F(f) u N(f) where P(f) is the set of all 
Plessner points (of the function f on F), F(f) is the set of all Fatou points on F, and 
N(f) is some "meager" set of points (a set of zero measure on F). 

The basic Lemma permits to extend this statement to some polyanalytic functions 
- and even to functions of a more general type: 

Theorem 2: Suppose that 
(1) G is some Jordan region having on its boundary c)G some rectifiable arc F 

(ii) the function P is continuous in G 
(iii) in a.e. point of G there exists the areolar derivative f/62, and af/62 E L(?) for 

some p, 2 < p :^ 
Then F can be presented in the form 

F = P(f) u F(f) u N(f),	 (4) 
where P(f), F(f), N(f) have the same meaning as in the given above version of the clas-
sical Plessner theorem. 

Proof: By virtue of the basic Lemma the function f can be presented in the form I = 
h +q where h is holomorphic in G and p is continuous in G. In accordance with Pless-
ner's theorem we have F = P(h) uF(h) '., N(h) where P(h) is a set of Plessner points for 
the function h and F(h) is the set of Fatou points for h. Let e P(h) and p() = d. Then 
for every choice of a sector A (in G) with the mentioned above properties we have 

and CV, ,t) = Oh, ç,t) +d. 

Hence C(f, C, )	+ d = C. Thus every Plessner point for h on F is also a Plessner point
for I. Quite similarly, every Fatou point for h on F is a Fatou point for f. Hence the 
presentation (4) holds for the function f: F = P(f) u F(f) u N(f) with P(f) P(h), F(f) 
F(h) andN(f) = N(h)I 

Corollary 1: Suppoèe that 
(i) G is some Jordan region having on its boundary a rectifiable arc F 
(ii) some function F is continuous and bounded in G 

(iii) the areolar derivative c)f162 is defined in C and is bounded in G (or at least be-
longs to the class L(G) for p> 2). 

Then f has an angular limit in a. e. point of the arc F. 

Corollary 2: Suppose that the 
(I) (non-analytic) function I belongs to the Hardy space H'(D) in the unit disc D 

(ii) the areolar derivative àf/2 exists in D and belongs to the space L(D)with p> 2. 
Then the function P has a (finite) angular limit in a.e. point of the circumference aD.
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Remark: Provided f is a C 1 -function in a rectangular domain G, in Rudin's book [51 
a decomposition of type (3) is proved by using the Green formula. Investigating the os-
cillation of the Pompeiu integral at boundary points, one gets for such G the following 
Nagel-Rudin theorem: 

The Fatou theorem is true for bounded C'-functions f whose derivative af/62 
belongs to the space L(G) with p> 1. 

Unlike that the application of Weyl's lemma (instead of Green's formula) in the 
present paper yields a Fatou theorem for a conciderably more general class of func-
tions: 

It is sufficient that f belongs to C(G), while cf102 E L(G) where a stronger 
restriction on p, p> 2, seems to be unavoidable, whereas G must not necessarily 
be a rectangular domain. 

Notice, finally, that the arguments of Nagel and Rudin (cf. [21) can be applied, too, if I 

is continuous and the weak derivative 6flazz belongs to L with p > 1. For that sake it is 
enough to note that the Green formula remains true also for such functions, as it fol-
lows from formula (7.1) in [5: Chapter 1, §71. 

The used in this note general approach of presentation of a function f with an 
" La-bounded" areolar derivative (in some region G) as a sum of two functions - one 
holomorphic in G and the second continuous in the closure G u 6G - is applicable in a 
lot of other cases beyond the considered above. We shall bring here as an example a 
statement of the Meier type (cf. [6: Theorem 8.8]). First we ought to remind the 
reader (see [6: Section 8.5]) that a point C belonging to the unit circumference r = 

IzI = I) is called a Meier point for the function I given in the unit disc D if the cluster 
set C(f,1,D) does not coincide with the extended complex plane and for every choice 
of a chord S having as one of its ends the cluster set along this chord C(f,c,SO, 
coincides with C(f,,D). 

The following statement of the Meier type is true 

Theorem 3: Suppose that 
(i) f is a continuous function in the unit disc D 

(ii) the areolar derivative cf/c2 exists a.e. in D and belongs to the class L(D), p> 2. 
Then r = P(f) u M(f) u N(f) where M(f) is the set of all Meier points on r, P(f) is the 
set of all Plessner points on r, and N(f) is some "topologically meager set (a set of 
the first Baire category on 

The proof of this statement is quite similar to the reasoning in the proof of Theo-
rem 21 
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The present book provides a rich representation of the theory of Riemann surfaces 
beginning with more elementary facts (function theoretic and topological foundations, 
differentials and divisors) and ending at the frontier of present-day research. A long 
chapter is devoted to uniformization theory (for arbitrary Riemann surfaces) con-
taining the solution of the Dlrichlet problem via subharmonic functions and Perrons 
method, discontinuous groups. Riemann-Roch theorem and the correspondence be-
tween Riemann surfaces and algebraic function fields in one variable. The main part of 
the book is concerned with compact Rlemann surfaces containing among others em-
bedding in projective 3-space, Torelli's theorem on the determination of the conformal 
class of a Rlemann surface by its period matrix, automorphlsm groups, theta func-
tions and some examples, especially on hypereillptic and non-hyperelllptic surfaces, 
quadratic differentials and Prym differentials. 

The book contains many exercises and additional remarks. It is accessible to any-
one acquainted with elementary function theory and algebra and can be highly recom-
mended. 
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