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On a Singular Perturbation Problem for Rotating Magnetic Fluids 

K. BEYER and M. GUNTHER 

As a singular counterpart to the Newton and Plateau equilibrium figures of rotating stars or 
drops, respectively, we investigate magnetic drops rotating in weakly nonhomogeneous fields. 
Existence and uniqueness of a familyof equilibrium figures near to the sphere is established. 
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1 Indroduction 
A spherical and magnetizable drop rotating in a homogeneous magnetic field becomes 
an (instable) equilibrium figure if its angular velocity meets a certain value w0 . In the 
present paper we shall discuss existence and uniqueness of another nontrivial family of 
equilibrium shapes near to the sphere subject to magnetic fields varying in a neighbour-
hood of a homogeneous field and rotation rates near to wo. While less important from the 
viewpoint of physics because also leading to instable solutions, the problem considered 
here constitutes an interesting singular counterpart to two classical problems in nonlinear 
analysis and in applied mathematics that deal with rotating fluids. We have in mind in 
this connection the Newton equilibrium figures of rotating stars held together by grav-
itational forces (see e.g. 1121) and the Plateau rotating drop under surface tension [14]. 
In both cases the second variation of energy computed at a sphere leads to an elliptic 
operator of order zero or two, respectively. In contrast, the second energy variation of 
a rotating ball magnetized by a homogeneous field turns out to be degenerated elliptic 
only and of first order. Our, approch in this case rests on a detailed study of its special 
structure and on an implicit function theorem argument well suited to that linearization. 

In our treatment we neglect any coupling between rotation and magnetization (c.f. 
also [15] for equilibrium shapes of rotating drops under various forces). The physical 
interesting case of a magnetic field caused by surface distributed currents treated in [7] 

will be examined in a forthcoming paper. Concerning equilibrium shapes of nonrotating 
magnetic fluids with surface tension see [5]. Viscous drops in exterior fields are discussed 
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in [4]. Further we mention [ 9] (and the references given therein) where free boundary 
problems arising in electroma gneti c shaping of a liquid metal are studied. 

The following discussion is completely local. Due to the degeneracy of our problem 
calculus of variations as used by Auchmuty [2], [3], Friedman [8] and Albano, Gonzales 
[1] to reconstruct the Newton and Plateau figures and their generalizations seems to be 
less promising to get solutions here. 

2 The mathematical setting 

Consider a drop Q of an incompressible, magnetizable fluid under the influence of some 
exterior magnetic field

H0=Vh, Ah=O in 1R3. 

Let the pressure outside fl be constant. We suppose the free boundary E = all to be a 
graph over the unit sphere S2: 

EE(u ) = { y E IR3 :y = x(1+u(x)),xES2 }, u(x)I<1. 

If we assume the linear law

A=xJi, x' 4ir 
between the magnetization M inside the drop and the induced field fl, with a permeability 
constant ji 54 1, then

	

EE(urh)_J fla1j dx	 (2.1) 2o() 
gives the magnetic energy of any virtual drop configuration S1 = 11(u) (see [6], [11]). Here 
the exterior domain C1Z is assumed to be magnetic neutral, i.e. z = 1 in Cu. 

Let the drop rotate around the x 3-axis with constant angular velocity w, then 
2	

2 G=G(u,)= ---J (x+x)dx	 (2.2) 

is the corresponding rotational energy. According to the principle of virtual work an 
equilibrium shape of the drop is characterized by the variational equations 

El - All' = 0,	.	 ( 2.3) 

where

E = E(u,c,h) = E(u,h)+ G(u,w).	 (2.4) 

In (2.3) the Lagrangian multiplier A counts for incompressibility which implies constant 
volume fl(u). Here and in the following 0 denotes both the domain and its volume; a
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prime is always denoting variation with respect to u. Hence we have to solve (2.3) for 
(u, w, A) subject to a volume constraint, which we normalize to be 

11(u) = 47r/3.	 (2.5) 

Solutions of (2.3) must satisfy the Euler—Lagrange equations 

2 (o- - a t) 	- --(x 1 +x) = A along E(u), 

where n = (n j , n2 , n3) is the outer normal to E and o, cr denote the limit values of 
the magnetic stress tensor o,, = /L(H1 H - HkHk6,,)/41r from the inside or the outside, 
respectively. Particularly, the total body force must vanish. In order to guarantee this 
in advance we assume the exterior field both rotational symmetric with respect to the 
X 3—axis and symmetric with respect to the (XI, X2 )—plane, i.e. 

h = h(r, x3) = —h(r, —x3 )	 ( 2.6) 

when referred to cylindrical coordinates (0, r, X3). At the same time we are looking for 
axisymmetric solutions with x 3 = 0 as a symmetry plane: 

= u(x3 ) = u(—x3).	 (2.7) 

In the following H'(S2 ) denote the Sobolev spaces of real measurable functions on S2 

with derivatives up to the order s in L2 ( S2 ) normed by ll u ll = Il Ufl2 (s2 ) + IIAullL2(S), 
where A = ( _ I 2 ) 112 denotes the square root of the Laplacian L 2 on S2 . Finally, let Z be 
the Banach space of bounded and harmonic functions in Q = {x € 1R3 : lxl <2} and let 
ll h llz = 5UPXEQ lh(x)l be the norm of a function h € Z. 

We are now in position to state our main result. 

Theorem: Let s> 3 and

2	
(i	) 

1_\2	9i 1-1—Pho(x)=x3, tI)o—
	

Ao= j (2)2. 

Then for suitable constants C,c > 0 and any harmonic function h in 1R3 satisfying (2.6) 
and ll h - hollz 15 e, there exists a unique solution (u, w, A) € H1 ( S2 ) x 1R2 of (2.3),(2.5) 
which satisfies (2.7) and h u ll,, l' - '.'ol, A - Aol :5 C ll h - hollz. 

Remark: As E may depends on a one should note that the Theorem does not imply 
immediately u € C°°. This would require further study.
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3 Analyticity of E' 

Let W denote the completion of C°(1R3) with respect to the norm	11'y,	=

f V 2 dx. It is well known that W imbeds into L6 (1R3 ) continuously. As usual H-(B) 
denotes the Sobolev spaces of real measurable functions on B = ( x € JR3 : lxi < 1) 
or B+ = JR3 \ with derivatives up to order .s in L2 . Further, 0, = 0/ax, is used for 
partial differentiations and a capital D = a 1 02 , a i € C°(1R3 ) always refers to a differential 
operator, which acts tangentially along S 2 . Particularly, in the following D3 denotes an 
arbitrary operator of this type with D3	= 03 - x3x201. 

To compute the energy functional (2.1) we need the magnetic field H which is induced 
by Ha. Using the ansatz I? = V(h + ), € W according to the laws of magnetostatics 
we have to determine 0 as a solution of the transmission problem 

L=O in 1R3\E(u), 

-	 O	0	 Oh - - 0,z— -	- (1 -	on On	On	On 
Here upper signs denote inner or outer limits as already introduced above. Obviously 
can equivalently be characterized as a solution of 

min {F(u,h;) : ç E W,	 (3.1)


where
flu, h;)= J iiV I 2dx +(i_1)f VhVdx.	(3.2) 

	

2 K3	-	-	 - 

Positive definiteness of (3.2) implies existence and uniqueness of its extremal ,b € W. 
Remembering (2.1) we get

E(u,h) = — 1 —(Fi (u,h) + F2(u,h)), 4ir 
where

Fj(u,h)	 jVhl2dx, F2 (u,h) = F(u,h,b(u,h)).  2	 (3.3) 

In the following let U3 c H'(52) be a neighbourhood of zero, which we assume 
sufficiently small, if necessary. 

Lemma 3.1: F1 € C'(U 3 x Z, R), F1' € C'(U x Z,H'(52 )), provided that s> 1. 

Remark: Here and in the following F' € C'S' means existence of F' E C'' such that 
F'(u, h){v} = fS2 fr'(u, h)(x) v(x) d5 2 (x).
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Proof of Lemma 3.1: Expand h E Z and its derivatives 81 h into power series 

	

h(x) =	a0 x0 , 81 h(x) = >. a j x°,	 (3.4) 

then
IaI r'°',	jj a	r'°'	C(r )II h Ifz	 (3.5) 

for any r E (0,2) with C depending on r only. F1 may be written as 

- IV 
1+u(r) 

	

2 
F3(u,h)=!- 	JIVh(rx)I2r2drdS2(x). 

Now, insert (3.4) into this expression. If we recall that the spaces H:' (S2) form Banach 
algebras provided that s > 1 we obtain analyticity of F1 as asserted. Similarly, the second 
assertion follows from 

F(u,h){v) = ! j± f IVh(x(1 +u(x)))12(1 +u(x))2v(x)dS2(x).D 

In order to prove analyticity of F2 , we proceed by transforming (3.1) into a variational 
problem on a fixed domain. For this purpose we extend u E Hs (S2) to functions T±u E 
H 1/2 (B) by solving the boundary value problems 

- 1)Tu = 0 in B, Vu u on S2. 

Elliptic regularity theory implies 

V E £(H(S2),H'2(B)) if s 1/2, 

see [13]. This extends immediately to any commutator [D, T±] = DT - TD which 
belongs to a tangential derivative D = 

[D, T] E £(Hs(S2),H3+V2(B±)) 

because of
[D,T±]u=0 on 

( - 1)[D, T]u = ((i.a)Oj + 2(8ja1)8O,)Tu in B. 

Finally, choose e E C0°°(1R3 ), such that p = 1 on S 2 and define 

f	(Tu)(x)	if x E 

	

ü(x) = (Tu)(x) = j 
ê(x)(Tu)(x)	if x E B, 

then
T, [D, T] E £(H'(s2 ), H`112 (B- U Bk )) if s 1/2.	(3.6)
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For u E U', .s > 2 the extension u leads to one-to-one mappings 

X i— 0(x) := x (1 + u(x))	 (3.7) 
from B or B+ onto 11(u) or 1R3 \ 11(u), respectively. In the following we use the notation 

gij = ô1 01 ô,0, g = det(g,), (g') = 
Let	in B and ji=lin B4. 
Lemma 3.2: Lets > 2,u E U3 and f E L6/5 (1R3 ), f1 E L2 (1R3), then there is a unique 
weak solution ço = (u, f, f) E W of

= f +,9j1 in 1R3. 

If, in addition, f E H.,-3/2 (B- U Bk ), f, e H' /2 (B U B4.), then the first derivatives 

OiW E Hs- 
1/2 (B- U Bk), i = 1, 2,3	 (3.8) 

depend on u, f, f2 analytically. 

Proof: In virtue of

JR.	I 
fbdx'	IIfIIL6 I5 I b IILe <Cl IIfIIL8/5IIlIw, 

JR3	<iIIIw 
(IIiII2)h/2 

and

I i/gt2oi0Oj0dx > C2 
IkbII JR3 

with some positive constants c1 , c2 one obtains existence as well as uniqueness of W. The 
relation (3.8) is easily seen in its simplest case u = 0, i.e. g13 = 45j,. Now, the spaces 
H 112 (B- U B) form Banach algebras if s > 2, hence 

	

-	E c(u', H''2 (B- U B4 )).	 (3.9) 
Having in mind the supports of Jg'3 - 6ij to be equibounded one gets (3.8) just as the 
analytical dependence of OiW by a perturbation argument via implicit function theorem. 0 

In a next step put H(u, h)(x) = h(x(1 + fi(x))), x E B with h E Z and u € U'. 
Then (3.4), (3.5) imply

H € c''(Us x Z, H'+1/2 (B-)) if s > 1.	 (3.10) 
According to (3.7) the variational integral (3.2) transforms 

F(u, h; ) 
=	

1äJg'ô1çoOçodx + (u - i ) j .Jg11 O1 HO1 çodx.	(3.11) 

If we maintain the earlier notation = (u, h) for the solution of (3.1) also with respect 
to the new variables (3.11), we get
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Lemma 3.3: Let s > 2 and D tangential to S2 , then 

	

ô,, [D, A01 E cw (u3 x Z,H'12 (B uB)), i = 1, 2,3.	(3.12) 

Remark: Here and in the following [D, O] is used as an abbreviation for the mapping 
(u, h) - DO,'(u, h) - O ('(u, h){Du)). According to the first inclusion in (3.12) the 
expression [D, O,t&(u, h) originally will be defined for (u, h) E (Us fl H'+' (S2)) x Z only. 
Then the second one states the possibility of a C- (U

s
 x Z, H'_' /2 (B_ UB))-continuation 

of that map. 

Proof of Lemma 3.3: In the distributional sense & satisfies 

= O((i - ji).i1gt3ôjH)	 (3.13) 

in JR3 . Hence the regularity of 5 follows from (3.9), (3.10) and Lemma 3.2. 
Next, let D = aO, be tangential along 52 and D = —81 (a . ) its formal adjoint. 

Concerning the second inclusion in (3.12) it is sufficient to prove 

ô[D,] E C- (Us x Z,H 1/2 (B uB)). 

Equation (3.13) implies for all E C°(W) 

JR3 
^,fg_g'j aj 0 ai D * ^p dx = JR3

 ( 1 - j/g'1i9,H81Dçadx. 

Now, assume  E UflH(S2 ),h E Z. Then 0(u, h) E W, ôjb(u,h) E H1/2(BUB), 
hence Db(u, h) € W. Integration by parts leads to - 

a1 (/g'ioD0) = _ôj(D( gg23)ô,i) - 

- OD((p - 1)/g"ôH) -

	

	 + (p - 1)o,H)	(3.14)


+ (j - 1)ô, H)). 

On the other hand, according to (3.13), ' = 0'(u, h){Du) E W satisfies 

= 

	

 —O(ji (/g")'{ Du} 8) - O((j - 1) (/g"81H)'{Du}).	(3.15) 

Hence by subtraction of (3.15) from (3.14) we obtain that (D, 0 1 E W satisfies an equation 
of the form

= í+ôíí,, 

where

f = (Aaio - 1)O.,H), 

f, = - [D,	- ( j - 1)[D, /g"O,H] - /g' [D, O,]l 
+ôEa/g'1 (1ü8t,b + (p - 1)O,H).
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By (3.6) we conclude as an important supplement to (3.9), (3.10) 

A,19-9"] E C'(U3 , H 1/2 (B U Bk)) 

[D,ô) H] E cw (ua x Z,H''2(B)), 

and Lemma 3.2 implies also the second inclusion in (3.12). 0 

Lemma 3.4: Ifs > 2, then 
(i) F2 E CW (U3 x Z, R), and (ii) F, [D, F] E C(U x Z,H1(S2)). 

Proof: (i) follows from (3.3), (3.11) and Lemma 3.3 immediately. Concerning (ii) we get 
from (3.11) by differentiation 

F' =
	

+ ( t -	 ( 3.16) 

Let Aij denote the algebraic complement of Oj Oi in the Jacobian of (3.7). Then 

1 
(v')' = Ak,t910, (9I3) = ---(A k,g 1 + Ak1g")ô,O, 

=
I
 (AklA - AkjA$,)ÔIO'k 

and we obtain after some calculations 

(Tjgii)l5 T,bjt) = 01((Ajgu3 - 

= 5j((Afgu3 - Ak3 g" - 

Inserting this and 9{v) = xkv into (3.16) we get after integration by parts 

Fu, h){v} = f fl(u, h)(z) v(x) dS2(x) 

with

P(u, h) = XkX,(Ak1Yt' - 

-	 - 2Ag1)+ô+OJ 

+ (p - 1)xkx1(AMg'-' - A,g" - 

+ (p -	 (3.17) 

Then (ii) follows by the trace mapping theorem in view of Lemma 3.3 and 

[D, (/gui)], [D, (Ak,g 1 - Ak,g" - Akg")] E C' (U, H'-1 (S2)). 0 

The remaining parts C, 11 in (2.2)-(2.4) obey similar properties as formulated for F1 

in Lemma 3.1. Without giving details, we summarize a final result in
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Proposition 3.5: Ifs > 2, then 
(i) C E C''(U3 x Z x R, R) and (ii) E', [D, V] E C'(U' x Z x 1R,H-1(S2)). 

Remark: Our special choice of the extension operator T simplifies the considerations, 
but of course the results in Lemma 3.3 (without the commutator relation), Lemma 3.4 
and Proposition 3.5 are independent of this choice. 

4 Analysis of E', E"(O, w, h0) 

In this section we compute the first and second variations of E at u = 0 and h = h0, 
i:e. for a ball magnetized by a homogeneous exterior field. The following formal ex-
pansion procedure is observed to be valid actually in virtue of the preceeding results. 
To simplify both notation and computation we shall work here with an extension T E 
£ (H a (S2 ), H 1/2 (1R3 )) different from (3.6). In addition we assume that this extension 
ü = Tu satisfies 90ü := xO1ü = 0 on S2. 

We start with the expansions 

fZ'(u)=1+2u+O(u2),	 (4.1) 

G'(u,) =	((x —1) + 4(x - i)u + 0(u2 )) .	 (4.2) 

and note that by (3.3)
Fi(u,ho) = !±JI1(u) .	 (4.3) 

Expansion of F2 requires a more extensive analysis. Let t'(u, h0) = ( u") be the 
power series expansion of 0 in the sense of Lemma 3.3. Then inserting of 

= (1 + ü + 190u)8,3 - (x 1 Ou + x3 Oü) + 0(u2), 

= (1 + 2ü + ôoü)513 - X193Ü + 0(u2) 

into (3.13) leads to 

ô,((1 + ü + 190ü)O40) - o((x,O,u + x3 Oü)O, 0 ) + A.t& = 0(u2) 

in B± subject to the transmission conditions b -	= 0 and 

((1 + u)x - ôu)(ô1 tI5 - ô') +0001- - 
= (1 - p)(x3(1 + 2u) - ô3u) + 0(u2) 

on S2 . This implies

z'0=0 in B, 

ib—=0, 1119o—Oo=(1—(z)x 3 on 52,	 (4.4)
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as well as

= 2VüV50 + Lüôo'0 + 2ô5 uO0O00 in B, 
-	= 0, pOo&j - ôo	= (1 - 1u)(2x3u - 03u)	 (4.5) 

+(Ou—xu)(j—ô) on S2, 

by comparison of coefficients. One realizes at once 

=f	Ax3 in B	
(4.6) 

I Ax31x 3 in B, A := (1 -,u)/(2 +,u) 

to be the unique solution of (4.4). Substituting of (4.6) into (4.5) yields 

= At(x3ü) in B, A01 = — 2AL(x3u/lxI 3) in B, 
-	= 01 P9001 - Oo'j'- = (1 - p)x3u - 3AO3u on S2. 

This will be reduced by 

= A(x3ü + ) in B, I'i = A(-2x3i/1x1 3 + ) in B	(4.7) 

to the problem

AV =0 in B, 
-	= —3x3u, pOo - ça = 6x3u - 3D3u on S2 .	( 4.8) 

Now by ôH = 01 03 , (Okh)(0(x)) = 83k for  = ho we see from (3.17) 

(u, h0) = xxj ( Ajg t - 2Agfl)(	- 

+ (j - 1)xkxjg"2 (Ak,A3 - AkA3:)19. 

Taking into account

- 2Ak1g') = S, - 2x2 x + x 1 03 u - x,01 u + 0(42), 
xkx,g112(AklA3i - AkIA3I) = (1 + u)(53, - x3x1 ) + 0(u2) on S2, 

we find

P(u, h0 ) =	-	 + 20,1'j) - 0b(o,&j + 2O)) 

+ (!z - i)((i + u)D3 + D301 ) + 0(u2). 

Thus we obtain

A2 
E(u, h0 ) = -- (9x --5) - 3A2 (6x2 + 

- 3A2 (03ç - 3x3D3u) + 0(u2),
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when (4.6)-(4.8) is inserted. Finally, remembering (4.1)-(4.3) we get 
2 9A2	w +

	
- 1) 

£'(O, ho, w) = (-i- -	
-(W2

- 81r(j + 2)2)'81r	2
3A 2 

"(0, ho,w)u = —( (6z + --)u + ,+ - 3x3D3u) 
47r	3 

L—1 
---u - 2w2 (1 - x)u. 

4ir 
Particularly

(0, ho, wo) - A0 1Z'(u) = 0.	 (4.9) 

In order to get some insight into the mapping properties of E"(O, ho, w) we will deter-
mine, in a first step, its leading part. It is not difficult to establish (e.g by expansion into 
spherical harmonics), that 

+ 

	

ço '-' 1 - -j-(A'CuOoc - ôo p ) -	- IL 

+-	
3 (,ux3u - A1D3u) 

solves (4.8) modulo (-.') an operator of order —1. Hence 

= D3o + x30oço 
3 + uxAu) + 3x3D3u, 

which implies
9A2	2 1	2 £ (o, ho, 	

4ir(p+ i)'	+.ux3A). 

Its restriction to axisymmetric u is of particular interest. Because of D 2 -(x - 1)A2 in 
this case, one gets

9A2	1 E"(O,ho,w)	----(---- - x)A.	 (4.10) 

Note that (4.10) degenerates on the two parallels x = 1/(1 + j). 
To solve the linearized equations we need some additional information about the lower-

order terms in (4.10). This will be easily achieved by expansion into spherical harmonics. 
Now, the solution W of (4.8) reads as 

00	 00 

=	w:I x I"Y in	,	=	Ixt_(n+1)Y in B, 
n=O	 nO 

where

I2n —+ I u1 
= _3(n+l)V2fl+3(+l)fl+l, 

(
n	 n+1 = -

 
+ +3 	 un_i +	 —n+1 f2n—lv'2n+1	¶J7n+1\/2n+3
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Here, as usual, Y. = Y0(x) = v/Pfl(x3), x = (x i ,x2 ,x3 ) E S2 denote the zonal 
spherical harmonics, P,, the Legendre polynomials aid u, Lhe Fourier coefficients in the 
expansion u =	 of u. Because of 

00	
12n.-1 + 2 =	flV2n+i(Pn_1Yfl, 

0=0 
00	 (n-2)(n-1)n x3D3u	

1(2n - 1)2n - 32n+ i2 
n=0

	

n(n + 1)	(ii + l)(n + 2)(n + 3) 
+(2 - 1)(2n + 

3) Ufl 
+ (2n.+3)2n + 12n + 5^2} Yn, 

one finally obtains

00 

E"(u, ho,wo){u} =	(a0u0_2 +#.U0 + a0+2 u0+2)Yfl .	 (4.11)

n=0 

Here the coefficients a0 , On satisfy the asymptotics 

an	
9A2	Q(l)	9A2z-1 -

=
	
n + 0 + 0( 	(4.12) l6ir	n  n 

which is crucial in the following. Concerning a0 , the exact calculation shows 

an =

	

9A2	n(n - 1)(n —3) 

	

--	______ _____ 

4 7 (2n-1)V2n+12
_

n-3' 

whence

	

an :00 for n0 0,1,3.	 (4.13) 

5 An abstract existence theorem 
In this section we consider an abstract equation of the form 

Ax = R(x)
	

(5.1) 

- 

in which A is a linear operator with a special structure motivated by our results about 
the second variation of the energy in Section 4; R is a nonlinear, in some sense small 
perturbation. 

First we fix some notations. Let X, Y be real, separable and infinite-dimensional 
Hilbert spaces with the scalar products (., .)x, (, .)y and norms ii lix = (.,	Iii' = 
(., respectively. We choose complete orthonormal systems {e 0 } 0> 1 , {fn}n?2 of X and 
Y, respectively. For any x E X we denote its Fourier coefficients with respect to {en}0>1 
by x0 ; analogously for any y E Y.
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Now, let A E £(X, Y) be a bounded linear operator with 
00 

	

Ax =	(ar,xr,_ 1 + /3r,xr, + 7Xr,1)fr,	 (5.2) 
n=2 

and sequences {a}r,> 2 , {fln } n?2, {Yn}n>2 of real numbers with the asymptotic behaviour 
a	1	 /3	1 

a1+—+O(--),/3=a+_+Q(_.), y,=1+1+O(),	(5.3)n	n2 n	n2
where a,a,f3,-y E IR,

al < 2, 7 — a < 1	 (5.4) 
and

On 54 0 for all fl > 2.	 (5.5) 
Further, let B,. C X be the closed ball of radius r centered at 0 E X. We denote the linear 
subspaces of X, Y consisting of elements with only a finite number of nonvanishing Fourier 
coefficients by X and k, respectively. Finally, let L : fC —' be the linear operator with 

Lx =
	

—	 (5.6) 
n=2  

Then we can formulate 

Proposition 5.1: To every operator A E £(X, Y) with (5.2)-(5.5) one can find a positive 
number c, depending only on A, with the following property: If r> 0 and R: B,. ç X —' Y 
is a sequentially weakly. continuous map with 

II R( x )lI y , (R(x), Lz)y/r <a' for all x E B,. fl X,	 (5.7)


then there exists a solution x E B, of the equation (5.1). 

Remark: (5.7) are the smallness conditions for the nonlinear term R mentioned above 

It is easy to see, that for a proof of Proposition 5.1 we can without loss of generality 
assume: Y = {x E X : x1 = 01 and f, = en for all n > 2. Then in the scalar products 
and norms we can drop the indices X, Y. First we give some properties of operators 
A E £(X, Y) with (5.2)-(5.5). 

Lemma 5.2: One has AX = P. 

Proof: The inclusion AX C Y follows immediately from the structure (5.2) of A, and 
the reverse relation is a consequence of (5.5). 0 

For x E X and s E IR we define norms	ll by Il x lI =	n2'x, li x Ho	11x 1j. Let

X3 , Y be the completion of X and Y, respectively, with respect to the norms fi,. Then
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we have the compact imbeddings X5, '—+ X32 for 52 < s 1 and (x, y )l 5 114.111y L. for 
x,y e X. Obviously L extends to an operator L € £(X3 , Y,_ 1 ) for all s E R. Because of 
(5.4) we can choose &,/3 E IR with

—1<2&<a—y,	 (5.8) 

aI(1+2&)/2 < 4 < 1+2à <1.	 (5.9) 

Define, besides L, a second linear operator L E £(X3 , Y_1) by 
co 

Lx = >2Un + &)x_ 1 + $x, — (n — &)x+i )en .	 (5.10) 
n2 

Note that 2 1 & I + 181 <2 and therefore 

ll Lx — LxjI :5 211x11.	 (5.11) 

Lemma 5.3: There exist positive numbers C1, C2, such that 

(Ax, Lx) > cjII x 1I 2 — c2II x III x II_i for all x E X1 .	 (5.12) 

Proof: It remains to prove (5.12) for all x  fC. For two quadratic functionals B, B' on 
we write B B', if there is a number c with IB(x) — B'(x)I !^ c II x IIIt x Il_i for all x € X. 

Using this notation, we have 
00	 00 

n(x_j + axn + +i)(fl—i i+ i )	(2x +axxi). 

After inserting the expressions (5.2), (5.3) and (5.10) for A and L, respectively, we obtain 

(Ax, Lx) x(2 + 2& + a$ + a — y) 

co	 00 

+ E x,x,, 1 (a + 2a& + 2$) + E xxfl+ 2 (2& — a + y). 

Therefore an application of the Cauchy-Schwarz inequality gives 

(Ax, Lx) ^: {(2+2ã + aj3+ a - y) — (a +2aà+213) 

+ (2à — a + 1,)}11x11 2 — cIIxIlIIxII_j 

because of (5.8), (5.9), i.e. (5.12) with c 1 = (2 — a)(1 + 2à — 4) > 0. 0 

Lemma 5.4: One has kerA = {0}. Moreover, there exists a right inverse operator A - ' € 
£(Y1 , X).
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Remark: In solving the linear equation Ax = y one looses some regularity. This in-
dicates, that the standard contracting mapping priciple is not suitable to handle the 
nonlinear equation (5.1). 

Proof of Lemma 5.4: Step 1. By (5.12) we conclude that 

x Il ç c (IIAx IIi + II x II_i) for all x E X.	 (5.13) 

The linear operator Al.: C X —e }' is closable and we denote by A: D(A) X _ Y1 
its smallesi closed extension. Obviously (5.13) holds for all x E D(A). Because of the 
compact embedding X '—i X we obtain by a standard argument dimkerA < oo and 
imA is a closed set in Y,, see e.g. [10, §7, Theorem 7.1]. From Lemma 51 we get imA = Y1. 
Therefore A is a Fredholm operator with nonpositive index and there exists an operator 
A-' E .C(Y,,X) with AA-1y = y for all y E Y,. 
Step 2. By (5.3) we can find an integer no	3 with an > 0 for all n	n0. We -

define another operator A0 E £(X, Y) with the structure (5.2) by choosing sequences 
1 01	r,01	1 01 
lanjn^2, j P,,J n^2 , j7,,J^2 with 

an = -y,,° = 1,	a for n n0, 
a=cx,,,f3=-y=0 for ri<no. 

For ..\ E [0, 11 the operator \A0 + (1 - .)A possesses again the structure (5.2) and the 
conditions (5.3)-(5.5) are satisfied. By Step 1 and constancy of the index of a Fredhoim 
operator against bounded perturbations we conclude dim ker A0 = dim ker A. 
Step S. It remains to prove kerA0 = {0}. Let x with Aox = 0 be given. According to our 
definition of A0 it follows

x,,_ 1 + ax,, + x,,+i = 0 for n n0 ,	 (5.14)

a,,x,,_ 1 = 0 for n <n0. 

From an 0 we get immediately x 1 = x2 = ... = x,,0 _ 2 = 0. For solutions of the difference 
equation (5.14) the series X2 diverges or is equal to zero. This completes the 
proof. 0 

Lemma 5.5: There exist constants C1, C2 > 0, such that for all x E X with Ax E Y1 one 
has 11x11 2	ci (Ax,Lx) + c2IIAxIIIIxIl. 

Proof: In view of Lemma 5.3 and (5.11) it remains to prove, that there exists to every 
e > 0 a constant c = c(E) > 0 with l x II_i :5 ez + c( E )Il Ax II for all x E X. But this is a 
consequence of the compact embedding X '—* X. 1 and kerA = {0}. 0
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Now, we define operators Fe E £(X3 , X3 +2 ) by Px =	xe/(1 + en') for e E 

(0 7 11. Then one has

i! F il S jjxjj and li x - Px_ 2	exfl.	 (5.15) 

Moreover, a simple calculation gives 
enn(2n - 1)x_	en(2n + 1)x+	e 

	

(PC L - LP)x = -	(i + e(n - )2 + 1 + e(n + 1)2-) 1 + en' n2 
and therefore

ll(PL - LP)xIl :5 411x11.	 (5.16) 

Proof of Proposition 5.1: Let R: Br C X - Y, r > 0 be a map, which satisfies the 
assumptions of Proposition 5.1 with the constant c = 1/(24 max{ci , C2}), where c1 , C2 are 
the constants in Lemma 5.5. Because of the weak continuity of R the condition (5.7) holds 
even for all x E X1 . We consider the fixed point problem x = T(x), x E Br, C E (0,1), 

with T(x) = A'PR(Px). Obviously T B,. C X —i X is a compact operator. Assume, 
that x = T(x), x E Br, 0 < ..\ < 1, then we have Ax = APR(Px), and therefore 
Ax E Y1 . According to Lemma 5.5 we get 

11x11 2 < cj (Ax, Lx) + c211AxliiIxli 

	

< c1 A(PR(P),Lx) +c2llPR(Px)Il,..	 (5.17) 

By (5.15) and (5.16) we obtain 

II Fc R( Pe x )il :5 llR(Px)ll :5 ci',	 (5.18) 

(PR(Px), Lx) = (R(Px), LPx) + (R(Px), (PC L - LP)x) 
<	

2 + 4llR(Px)IlIIxll <52
	 (5.19) 

Finally, by (5.17)-(5.19) we conclude 

11x112 < 6max{c1 ,c2 }cr2 < r2/4, i.e. X E Br/2. 

According to the Leray-Schauder principle for every e € (0, 1) there exists a solution 
E B,. 2 of the equation x = T(x). We choose sequences e,, - 0, xe,,	x E B,.!2 and 

obtain by (5.15) and the weak continuity of R 

	

Pen xe,,	x, Pen R(Pen xgn ) - R(x), Axe,, - Ax 

with - denoting weak convergence in X. Consequently we have Ax = R(x). 0 

Next we wish to formulate Proposition 5.1 as an implicit function theorem in order to 
solve a nonlinear equation

F(x, y) = 0,	 (5.20) 

where y as an element of a normed space Z is given. Let U g X, V Z be neighbourhoods 
of 0. We investigate (5.20) under the following assumptions:
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(i) Let F,f E C 1 (U x V, Y) be mappings with F(0,0) = 1(0,0) = 0 and J E £(X,Y) 
such that (F(x,y),Lx)y = (f(x,y),Jx)y for all x  Ufl,y E V. 

(ii) The Frechet derivative A := F(0, 0) € £(X, Y) is an operator with the structure 
(5.2)-(5.5). 

(iii) The mapping F( . , y) U C X - Y is sequentially weakly continuous for every 
Y E V. 

Proposition 5.6: Under the assumptions (i)-(iii) there exists for all y in a sufficiently 
small neighbourhood of 0 a solution x = x(y) of equation (5.20) with H x Vx :5 cI(yJIz, 
where the constant c is independent of y. 

Remark: Uniqueness of the solution can be proved under some additional assumptions, 
but we refrain from doing so at the abstract level. 

Proof of Proposition 5.6: By F E C1 (U x V, Y) and the mean value theorem we can 
find a small number r1 > 0 and a constant c1 , such that for It x Hx, II yIIz r1 one has 
IF(0,y)lIy cjyfl, and moreover with the constant c from Proposition 5.1 

IIF(x,y) - F(0, y) - F,,(0,0)xfly	cxx/2. 

A similar estimate holds for 1. Let y E V with II yIIz r1 and r := 2ciII yj Iz/c < r1 be 
given. We write the equation (5.20) in the form (5.1) with R(x) = F(x,y) - F(0,0)x. 
Then we have 

!I R(x )IIy !^ Cfly + c II x II y /2 < c(2c1I y IIz/c) = cr for x E Br. 

From (i) we obtain 

(F(x, y)x, Lx)y = (f(x , y )x , Jx)y for x E U fl X, 

and
(F(0,0)x,Lx)y = (f(O , 0 )z , Jx)y for x E X. 

Without loss of generality we may assume IIJII(x,Y) :5 1 and get 

I(R(x), Lx)y I = Rf(x , y ) - f(0, 0)x, Jx)y 
IIf(x,y) - f(0,0)xIIyIlxJIx	cr2 

for x E B fl , and Proposition 5.1 gives the assertion. 0
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6 An important relation 

One main step in applying Proposition 5.6 to our problem of Section 2 is the verification 
of the assumption (i). To this purpose we state the following proposition. We use the 
notations and results of Section 3. The proof is based on the inclusions 

E', [D, E'} E C(U' x Z, H' 1 ) for s > 2,	 (6.1)


(see Lemmata 3.1, 3.4), the symmetry 

(E"(u, h){v}, w) 0	(E"(u, h){w}, v) 0 ,	 (6.2)


and a suitable partial integration. For brevity we write H' = Hs (S2). 

Proposition 6.1: Let s 2 3 be an integer. For every differential operator D there exists 
a mapping e E Cw (U3 +12 x Z, Hs- 1/2), such that (E'(u, h), Du) = (e(u, h), u) for all 
u e U 1/2 n C°°, h E Z. 

Remark: Note the important (and at first glance somewhat surprising) fact that E', e 
possess the same mapping properties. 

We use the negativ-norms 

II u II_,	sup.	(u,v)oI/IIvII,,	s	0..	 (6.3)

vEH',vO 

and denote by H:' the completion of L2 (S2 ) with respect to the norm 11	Then we

have the compact and dense imbeddings H' '-' H" for all real s > s'. 

Lemma 6.2: Let A E £(H',H'),s 2 1 be a linear operator, such that 

(Au,v)o = ±(Av,u)o for u,v E H'.	 (6.4) 

Then there exists an extension of A to an operator in £(H", H") for ails' E [—s + 1, s] 
Moreover, if A E £(H', H' 1 ) depends analytically on a parameter of a normed space, 
then the extensions likewise. 

Proof: The first assertion is trivial if s' = s and is a consequence of the definition (6.3) 
and the assumption (6.4) if s' = —s + 1. Therefore interpolation gives the assertion for 
all s' E [—s + 1, s]; further, we have II A IIC(H .',H3 '_ 1 ) !^ ClIAlI(H.,H.-I) for s' E [-. s + 1, s], 
where the constant is independent of A. Now, let A = A(0) E £(H', H'') depend 
analytically on a parameter 0 E N, where N is a normed space. Then we have an 
expansion of the form A = E An (on) in £(H', H' 1 ) with bounded n-linear maps A 
from N" into .C(H', H'). By comparison of coefficients we find from (6.4) the equalities 
(An (0")u,v)o = ±(A(0")v,u)o and as above we obtain for d E [—s + 1,s] 

II A (0") IIqH",H"-') 5 C II A ( 0") IC(H',H'-'). 

This easily gives the second assertion. 0
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Lemma 6.3: We have for s > 2, s' E [-3 + 1,s] 

E"( . ,.){ . } E C''(U3 x Z x H",H''),	 (6.5)


and for s > 3, s' E [—s + 2,8 - 11 

DE"(., .){.} - E"( . , .){D . } E C'(U' x Z x H e', He'').	(6.6) 

Proof: The first assertion (6.5) follows immediately from (6.1), Lemma 6.2 and the 
symmetry (6.2). Further, every differential operator D possesses a representation in the 
form Du = bu+au, a E C000 (IR"), where b is anti-symmetric, i.e. (Du,v)o = —(Du,v)o 
for all u,v E H'. Because of (6.5), in proving (6.6) we can therefore assume that D is an 
anti-symmetric differential operator. By differentiation of. [D, E') with respect to u we 
obtain

DE"(u, h){v} - E"(u, h) {Dv} = (ED, E'](u, h))'{v} + E"(u, h){Du, v}. 

Hence (6.1) gives the assertion (6.6) for s' = s - 1; note that s - 1 > 2. Further (6.2) and 
the anti-symmetry of D gives 

(DE"(u, h){v} - E"(u, h){Dv}, w) 0 = (DE"(u, h){w} - E"(u, h){Dw}, v)0, 

and application of Lemma 6.2 finishes the proof. 0 

In the following Lemma D' = D1 D2 . . . D, denotes an arbitrary differential operator 
of order s', where D,,. . . , D, are first order differential operators tangential to S2. 

Lemma 6.4: Ifs > 3 and s' an integer with 1 s' < 2s - 1, then 

[D', E'] E CF(Us x Z, H'').	 (6.7) 

Proof: We apply induction on s'. The statement is contained in (6.1) for s 1 = 1. So 
assume it true for an integer d with 1 < s' < 2s - 2. If u € U, then D"u E H"' and 
S - 5' E [—s + 2,s - 1]. Hence by Lemma 6.3, (6.6) we conclude that the mapping 

(u, h) i- DE"(u, h){D"u} - E"(u, h){D"1u} 

belongs to CW(Ua x 1, H''). This is also true for D[D', E'] by induction hypotheses. 
Therefore 

[D'', E'](u, h) = D([D°', E'](u, h)) + DE"(u, h){D'u} - E"(u, h){D''u) 

gives (6.7) also for s' + 1. 0
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Proof of Proposition 6.1: Let s 3 be an integer. We write the scalar product of H 
;n th fnrn,

(u, v), = (u, V)O + (D b 2 . . . D I U, D11 D,2	bv)o,	(6.8)

where D 1 , D2 , .D3 are the anti—symmetric differential operators 

b1 x 1 02 - x2ô1 , D2 = X203 - x302, D3 = X351 - x183. 

We use the abreviation fi (u, h) f2 (u, h), if f, 12 : ( U3+ 1 1 2 flC0o ) x Z - IR are functionals 
such that the difference f - f2 possesses an extension in C'(U3 + 1 1 2 x Z, IR). Then we 
have according to 'Lemma 6.4 

(DE'(u, h), DD°u) - (E11 (u, h){D 3 u}, DDu) 0 .	 ( 6.9)


Applying partial integration, Lemma 6.3, (6.6) and the symmetry (6.2) we get 

(E"(u, h){D3u}, DD'u) 0 ' — ( DE"(u, h){D8 u}, D'u)0 

	

—(E"(u, h){DD3 u}, D°u) 0	(6.10)


—(E"(u, h){D8 u}, DDu)0. 

From (6.9), (6.10) we obtain (D3E'(u,h), DDu) 0	0, and therefore by (6.8) we have 
(E"(u, h), Du)	0. Thus there exists E C"(U 4412 x Z, lEt), such that 

(E'(u, h), Du) = ê(u, h) for all u E U 1/2 fl C, h E Z. 

According -to the Riesz- representation theorem we can find a mapping e E C"(U"2 x 
Z, H-- 1/2) with 

ê'(u,h){v}	(e(u,h),v)	for all u E U' 112 ,v E	E Z. 

Because of p(0, h) = 0 we have 

e(u, h) = f d(tu,h){u} di = (j e(iu, h) di, u), 

and this proves the assertion of Proposition 6.1. 0 

7 Proof of the Theorem 
In order to solve the equations (2.3), (2.5), we first look at the volume constraint. From 
the expansion (4.1) it is easy to see that for' every 

v€u:={u E u8 :Juds2 (x)=o} , 3>1
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there exists a unique r = r(v) E IR in a sufficiently small neighbourhood of 0 € IR with 
f(v + r(v)) = 4ir/3. Moreover one has 

€ C'(U, IR), r(v) = is. v 2 dS2 (x) + 0(v3 ).	 (7.1) 

Conversly, if u E U3 with (1(u) = 41r/3, then u = v+r(v) with a unique v E U. Therefore, 
instead of (2.3), (2.5), we can consider equivalently the equation 

w =(v,w,A) E Vo x 1R2 

with
P(w, h) = e'(v +r(v), h, w) - A1Z'(v + r(v)).	 (7.2)


Because of (4.9) we have

(wo,ho) = 0, too = (O,wo,)o). 

Next we pay attention to the symmetries (2.6), (2.7). To this purpose we assume in the 
sequel, that the Banach space Z defined in Section 2 contains only harmonic functions with 
(2.7). Further, let .t, Ros be the Sobolev spaces of functions on S 2 with (2.6); the functions 
of Hos should have the mean value 0. We use the Hilbert spaces X 5 := Roo x 1R2 , ys 

and denote the norms simply by IL . With V3 := (U5 fl H) x JR.2 we formulate 

Lemma 7.1: We have the following assertions. 
(i) Let s > 2. Then we have P E C'(V3 x Z, Y3_l) and the mapping (•, h) : v3 ç X 3 - 
Y'' is sequentially weakly continuous for every fixed h € Z. 
(ii) Let s 3 be an integer. Then there exists a mapping f E C'(V 1/2 x Z, Y' 1/2 ) suh 
that (.r(w, h), x3D3v) = (f (w, h), v) for all w = (v, w, )) E V' 1I2 fl X'43/2 and h € Z. 

Proof: First of all we note that for functions v, h with the symmetry properties (2.6) and 
(2.7), respectively, T((v,, )), h) also possesses a symmetry of the form (2.6). Therefore 

€ C'(V5 x Z,Y'),s > 2 is a consequence of the results of Section 3 and (7.1), 
(7.2). Particularly the mapping I is bounded and hence from the compact imbeddings 
X 3 X' for s , > s' the weakly continuity of the mapping I(•, h) : V' — 5_l follows. 
The second assertion is a consequence of Proposition 6.1. 0. 

In the Hubert spaces X5 , Y' we can choose complete orthonormal systems {e,,}>i, 
{fn,3}n>2 according to 

e1,3 = (0,0,1),	e2,3 = (0,1,0), 

= (1 + a/2	1(Y2(_2),0,0) for n	3,	 (7.3)
2(n-2) 

and
f,,,s = ( 1 + A_2) Y 1 Y2(n_2) for n	2.	 (7.4) 

Thereby A n = n(n + 1) denotes the eigenvalues of the Laplacian A2 on 52•
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Lemma 7.2: The operator A :=	ho) belongs to £(X 3 , Y') for s > 1 and pos-




sesses the structure (5.2)-('5.5) with respect to the orthonor,na! .ysterns(7.3,), (7.). 

Proof: By (7.1), (7.2) and (4.2), (4.3) we conclude 

1(w0 , ho){v,w, .X} = E"(O, ho,o){v} - ) 0cl"(0){} + LwoG'(0) - Ac'(o) 
= E"(O, ho,wo){v} - 2A0v ± ww0(x - 1) - A. (7.5) 

Denoting the Fourier coefficients of w = (v, w, A) E X' with respect to the orthonormal 
system {en,,}n>j by w, we obtain from (4.11) a representation 

w(wo,ho){v,w,A} =	(&w_ +w 

where the sequences {&fl}fl^:2, {n}n?2, {n}n-e2 have by (4.12) the asymptotic behaviour 
9A2	& 1	 9A2	'5' 

= -(' + - + 0( 1 	
= —j ;(l + - + 

_(2J+.+0(-)).

167r	i+1	n	n 

Moreover a simple calculation shows  

	

-	(1 + ;±2l;2).(1 + A_2)) 
 
(1+ A 2 ) (1+ A1)) 

and hence 5'< Er. Further we have &, 0 for all n 2 For n = 2,3 this can be seen 
immediately by (7.5); for n > 3 it is a consequence of (4.13). Therefore all conditions 
(5.3)-(5.5) are satisfied. 0 

After this preparation we finish the proof of our Theorem. We start with the existence 
statement and apply Proposition 5.6. Fix an integer s 3 and choose X = X' 12 , }' = 
Y' 1/2 . With respect to the orthonormal systems (7.3), (7.4) we obtain for the operator 
L corresponding to (5.6) from an expansion into spherical harmonics 

Lw L(v,w,A) = —A(x3D3v)+Liu; 

and therefore

(T(w, h), Lw) = —(.F(w, h), x3D3 v) + (F(w, h), L2w) 

with linear bounded operators L1 , L2 E £(X, Y). Hence the the assumptions (i)-(iii) of 
Proposition 5.6 are satisfied by the Lemmata 7.1, 7.2.
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Next we proof the uniqueness statement. Let be s > 3. From the Lemmata 7.2, 5.3 
we obtain for A =	(wo, h0) with a suitable constant c 

11W113/2 < c (I(Aü,x3D3i)1I + IlAtbII,2)	 (7.6) 

for all th = (ii, ) € X512 . With the same method as in the proof of Proposition 6.1 we 
obtain from Lemma 6.3 the existence of a mapping I € C"(V3 x Z x X3/2 , Y' /2 ) with 

(F(w,h){th},z3D3ii ) 1 = (f (w, h){tb},ii) 1	 (7.7) 

for all th = (i,t,A) € X 5 "2 and (w, h) € V3 x Z. Now let w1 , w2 € V3 and h € Z with 

(wj, h) = F(w2 , h). Then we have for tb = W1 - 

Aiii = -
	

(F(w1 F tti,, h) - F(wo, ho)) fib) di, 

and by (7.7) we get
AthII,2, RAt1), x3 D3)) 1 I < c10 11w11312 

with the abbreviation 0 = max { j I wi - woll,, 11w2 - wolls, ll h - hollz). By (7.6) we conclude 

11 w 1131 2 < CO ll W ll3I2 Hence if 0 is sufficiently small, then we have tb = 0, i.e. w1 = W2. 

Thus all statements of the Theorem are proved. U 
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