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Strong Approximation of Spherical Functions by Cesàro Means 

LUOQING Li 

The paper deals with the approximation of spherical functions by Cesàro means. The strong approxi-
mation order of the Cesàro means on sets of full measure is established. 
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§1. Introduction 

Let E,1 be the unit sphere (with center at the origin) in the (d + 1)-dimensional 
Euclidean space R(d). By L(Ed), 1 <p < c, we denote the space of (the equiva-
lence classes of) p-th integrable functions on E d for which the norm 

lif lip{ f I f(x) I P dx} 

is finite. A function f E V (Ed) can be expanded in a series of surface spherical 
harmonics; i.e.,

	

AX)	 Yk(f;x), 

where

Yk(f,x).—

	

r(.\)(k + ))	I P,"(xy)f(y)dy,	k E N0, 
27r'  

Pj', ..\ = (d - 1), being the ultraspherical (or Gegenbauer) polynomials. The Cesàro 
means of order 6 of the harmonic series of I are defined by 

	

n	5 

	

C(f;z) := :i:	
4n-k Yk(f; x); n E N0 ,	 ( 1.1) 

k=0 

where 6 > —1 and A5 := (n-fS ) = r(n+6+1) 
r(8+i)r(n+1)' It is well-known that, for some 

appropriate index 6, C(f; x) converge to f(x) almost everywhere on Ed and in norm; 
we refer the reader to Bonami and Clerc [1], Sogge [3] for details. We also know 
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that, for S = 0, C(f; . ) is the usual n-th partial sum of the series of the surface 
spherical haruioxiics off. Up to now, it is not known whether, for f E L2 (Ed), C(f; x) 

converges to f(x) almost everywhere or not; therefore the index 6 of the Cesàro means 
is restricted to be positive in our arguments. Considering strong convergence, the index 
can be extended to be negative; similarly for strong approximation. Here we want to 
study strong summability and strong approximation by Cesàro means on sets of full 
measure. To be more specific, we want to study the validity of the formula 

lim	 I C(f;x) - f(z) 12= 0	a.e.,	 (1.2) 

and to estimate its convergence rate. Let /3 > 0, and let I E L2 (Ed). If there exists 
a function g E L2 (Ed) such that Yk (g; •) = kYk(f; . )(k EN0 ), we call g the Riesz 

derivative of f of order /3 and write f{) = g (we use this notion in analogy to the one 
in the theory of Fourier transforms, see [5, Chapter V]). We see that f is uniquely 
determined by f, and define the Riesz space L2 '(Ed) in L2 (Ed) to be 

L2 '(Ed) := {f E L2 (Ea); 11f I12,fi < oo}, 

where

If 112,p := iii	112 = {	
k20

lIYk(f)II } . 

L 2 '(Ed) is a complete linear subspace of L2 (Ed) under the norm II.s, and contin-
uously imbedded in L2(Ed). 

We can now state the main results. 

Theorem 1: Let f € L2 '(Ed),0 < /3 < 1, and let 6 > 0. For almost all x in Ed 

(o()	if 0<fl<1 
C(f;x) - f(x)f =	 ( 1.3) 

IO()	if fl1. 

Theorem 2: Let f E L2 '(Ed),0 < 0 1, and let 6 > - i. For almost all x in 

Ed

Oz(53)	if 0</9< 

	

I,	 I
if /3-1	 (1.4) 

72

	

k=O	
I. Ox(;)	if 

Remark: Replacing the Cesàro means off by the Bochner-Riesz means S(f; ), 
defined by S(f; . )	Ek<R( 1 - .*f ) Yk (f; ), we have analoguous results.
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§2. Auxiliary lemmas 

We begin with the strong summability of C . For I € L' (Ed) let 

C6(f;x) = sup {	I C(f;x) 12 
k=O 

Following arguments similar to those in [1, p.237-239], we can deduce that for 6 = 
+ ir and for any f E L2(Ea) 

C6 (f)112 < const 6 ecr2 IIf1I 2 ,	> -, 0 < C	ir,	(2.1)


and that for any I E L"(Ed), 1 <p < 2, 

ll C6 (f)II :5 constö,p e cT2 IjfII p ,	>	1), 0< c	ir.	(2.2) 

Here and in the following, const,,,,... denotes a constant depending only on the listed 
subindices. By linearizing the operator C6 and by applying Stein's interpolation the-
orem, we get from (2.1) and (2.2) the following 

Proposition: Let 6> d( -- . For f € L(Ed), 1 <p :5 2, 

tI C6 (f)II	const,, Ill II	 (2.3) 

and

n 
urn	c' IC(f; x) - f(x)12 = 0 a.e.	 (2.4) 

k=O 

Proof: It follows from straightforward modifications of the proof of the cor-
responding result in [4];, for the sake of completeness, let us give just a sketch. Let 
n = n(u) (u € Ed) be any step function taking positive integral values and let {k(u)} 
be any sequence of measurable functions defined on Ed which satisfy the condition 

n Wk	 VuEEd and YnEN. 

Keeping the functions n(u) and k(u) momentarily fixed, we define by L5 the linear 
operators

L5(f;.) 

By Schwarz's inequality IL6 (f; •)I C5(f; .). Moreover there is not difficulty to verify
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that, for any p, llCo (f)ii p = sup IILo(f)Ii, here the supremum is taken over all func-
tions n(u) and pk (u) of the type described above. We now define an analytic family 
of operators {T: } Ec by

	

T (f; ) := Lo()(f; .),	z € C, 

where 8(z) = (CO - 1 )(1 -z) + ( 12 (d - 1) + e)z (60,61 > 0). By (2.1) and (2.2). we 
have for r=[—(eo—)+((d-1)+ei)]y, 

	

ii T1(f)112 = li L6(y)(f)li2 :5 iiC6 '(f)iI2 	consteo e 2 iifii 2 , 0 < c <—


and

ll Ti+(f)li, !^ il C511 (f)ll, -5 const,e 2 f IIp,	1 <P1 < 2, 0 < c	it. 

It is important to notice that const 0 and conste i do not depend on n(u) and (pk(U). 
Let 0 < t < 1, 1 = (1 - t) + rt, and + = 1. Applying Stein's interpolation 
theorem (see [4]), li T (f)ii :5 consttIIfII. Again const, does not depend on n(u) 
and i k (u). Finally, 1IC1 ( t)(f)li p constflffl,,. It is clear that 5(i) is a continuous 
function of P1,60, and Cj. Thus, by continuity, we can always realize any 5(i) satisfying 
8(t)> 4i( -1) - r by choosing Pi > 1, co > 0, and 61 > 0 appropriately.	U 

The proposition makes our results meaningful. For the proof of the theorem we 
introduce the auxiliary maximal functions 

M6 (f; x) := sup n iC(f; x) - f(x)i 
n>O 

N(f; x)	sup n iC(f; x) - C(f; x)i 

g (f; x) := {	
2$-1 iC 1 (f; x) - C(f; x)12 } 

n0 

The first two ones are maximal functions, while the last one is a Littlewood-Paley 
function.We want to study the boundedness of these functions; to do so we need some 
extra-ordinary identities of the Cesàro means. Throughout this paper, the indetermi-
nant expression 00 will be understood to be equal to 1 whenever it comes up. 

Lemma 1: Let b> -1.Fo f E L 2, ,6 
2	(Ed),  0	< 1, 

119(f)112 :5 COnSt 6,0 11f 112,0-	 (2.5) 

Proof: We have 

	

C1(f;x)—C(f;z) 1	A6 
= n+5+1 :—i-.kYk(f;x). 

k=O
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It follows from the orthogonality of the projection operators Yk(k E N0 ) that 
00 

2-1	1	f	kYk(f;x)Idx II(f)II =	_________  
n0	(n+6+1)2 Ea k=0 

00

n2-1	1 -	(A6 n_k\2k2 II Yk(f)II =>n 
n=0	(n+6+1)2k_.o A6n 
Co	 00	2-i	At_k 2 

	

=>2 k2 II Yk(f)II k22' V'	2 (	) 'in k=O	 n=k 
<nst5 Ill IlLs.


In the last estimate we used the fact that, for 0 < 3 < 1, 
00	2_j	1	2 

	

(n + 6 + 1)2 A )	
consto ,p k22. 

n=k 

Lemma 2: Let 6>0. For fE L2 '(Ea),0 <—$ < 1, 

	

II N (f)II2 :5 const6,p Ill II2,	 (2.6)


Proof: We first notice that
1 

C' (f; x) - C(f; x) = 
24' >2 AA (c 4 (f; x) - c,j(f; x)). (2.7) 

In fact, for y > 0 and a> —1, we have
n 

C"' n	(f; z) - C°(f; =	11	
>2 k	Yk(f; a,).	(2.8)
a+ 1 A°' k=0 

Since

=	 A1lA_k_i :	 (2.9) 

>2kAYk(f;x) = k n-k

n n-k 
=>2>2 kA7'A_k_j Yk(f;x) 

	

j=0 k=0	 (2.10)


= >2 A7 'An,'(a + 1)(c:(f;x) - C_,(f;x)) 

=A:A'( + 1)(crl (f; x) - C(f; x)).



118	LUOQING LI 

By taking a=i(>-4)and7=6_a,hence7+a=5and 2' 
the formulas (2.8) and 1') 1n\ -1-1	

" Next we apply Schwarz's 

	

yv u (L	I)	 inequality, use the .. 
estimate A = 0(n 6 ) , and obtain 

1 

	

lC'(f;x) - C(f;x)I 2A' {	(A!k4)2 k1_2}4 

k=O 
a 

	

X {
	

k2$_hfC(f;x) - C(f;x)I2} 
k=O

a 
< consto,p n6' 

gpLri(f;x){ >(n - k)6_1k6+1k1_2} 

k=O 
6-1 

< constö, n 6 g,;'(f; x>, 
or

nIC1(f;z) -C(f;x)I <const6, g(f;x), 

and finally,

N(f;x) <consto, g7(f;x) a.e 

It is important to recall that 1 > -. By Lemma 1, estimate (2.6) is proven for 
O </3 < 1. For /3= 1, we have

' A6 nIC'(f;x)—C(f;x)I = L++1	
n—k kYk(f;x)I :5 sup lC,t(f";x)I. 

k=O	 n^1 

Here f{') E L2 (Ed) is , again, the 1-st Riesz derivative of f having the spherical 
harmonic expansion f{h)(.) =E00 0 kY,(f; ). It follows from the L2-boimdedness 
Of sup,, I C (f; X) 1, 6 > 0, that 

IN(f)I1 2 :5 11 sup 1 C (P ) )1I12 :5 const6IIf111 112 = const6 111112,1, 

which provides the estimate (2.6) for 0 = 1. 

Remark: Let 5> 0. For I E L2"(Ed), 

- C(f;x)) = f'(x)	a.e. 

Indeed, because of 

1(x) —C 1 (f;x) = (5+ 1) 
ka+1
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we can verify the equation 

n(AX ) - C(f;x)) - fU1 (x) = [n(f(z) - C'(f;z)) —(6 + 1)1111(x)] 
n 

- n+5+1 [C(f(1);z)_f(1) (x)1 -  6+1  

We know that the three terms on the right-hand side of the equation above tend to 
zero almost everywhere as n - oo. 

Lemma 3: For fE L2 ' ( Ea), O< # <1, 

II M (f)II2 <c0fl5tpIIfII2.	 (2.11)


Proof: Set 

bak	

{1.A...\1_fl if O<k<n 

	

=	 and I 2 b5,k = bn,k - 2bn,k+ 1 + bfl,k+2.

/ k '_P if n+1<k<oo 

We define a sequence of linear operators {E5 } by E5(f; .) = E=0 b5,kYk(f;) . Then 

	

E5(f; .) = E(k + 1)&b5kC(f;•).	 (212) 

Indeed, on the one hand, 

	

00	 fl	 00 
sup >(k + 1)i. 2 bn,kI = SUP{ >(k + 1 ) I&bn,kI +	(Ic + 1)I&bn,kI} 

	

k=O	 k=O	 k=n-f-1 

:5 sup2[1 + (n + i)(1 - (!..± )i 
.!'\1	coast0 (< oo); n+21  

i.e., the sequence of multipliers {b5 ,k} is uniformly quasi-convex. Consequently, 

+ 1) 2 b5 ,kC(f; ) E L2 (Ed)	if f E 

and

sup	(k + 1)& b5,1 10(f; z) :5 const0 sup IC(f; x)3.	(2.13) 

On the other hand, I'm (E.0(k+ 1)&b5,kC(f; )) = bn.mYm(f; .) for each m 0.



120 LUOQING LI 

In fact, Ym(C(f; •)) = 0 if  <m, and (1 1 )Ym(f; .) if k > m. Therefore, 
CO 

Y. ((k + 1)&b k C(f;	 1:

=
+ 1)E 2 b,k(1 -	j)Ym(f; ) 

k=O	 ) k=m	 k +

00 

= Ym(f; .)E (k + 1 - m)&b,k 
k= m 
00 

	

= Ym(f; .)	(k + 1)I2bn,k+m 
k=0 

bn,mYm(f; .),	Vin E N0. 

Using the fact that the sequence of harmonic projections forms a total system, we 
obtain equation (2.12). If  E L2 '(a), then (n + 1)(f( . ) - C (f; .)) = E(f; ). 
Furthermore, by estimates (2.12) and (2.13), 

M 1 (f; ) = sup E(f ; )I ^ const sup IC(f; )I 

and

II M (f)II2	const,6 11 S? IC(f	)1112 :5 const IIf	12 = const If II2,, 

which gives the desired estimate.	 - 

§3. Proof of the theorems 

Having done all necessary preparations, we can present the proof of the theorems 
by taking, once again, the special properties of the Cesàro means into account. The 
Banach continuity principle is also used. 

Proof of Theorem 1: First we note that, for any y > 0, 

	

M#"+

1 
(f)112 :5 const.	If II2,p.	 (2.14) 

In fact, we have 

n 'lC '4 (f; x) - f(x)I = 
nI(A1y' >AAZ:(c(f;x) - f(s)) 

	

<n(A )'	A: k M,61 (f; x)


<const , . M(f; x). 

Therefore Mr'(f;x)	 Mpl 	and by Lemma 3,
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(f)II2 :5 constp II M (f)II2 :5constp,,flf,. IIM1  
Let 5 > 0. For f E.L2 '(Ed), 0 ^ i	1, we have W; X) N(f;x) + M(f;x).

Applying Lemma 2 and the estimate (2.14), 

II M,(f)II2 !^ II N (f)II2 + II f6(f)II :5 const ,p Ill 112,p; 

i.e. C(f;x) - f(x)I = 0.(-')a.e., 0 <	1. Let 0	< 1. For any spherical 
polynomial g we have nflC(g; x)—g(x)l = 0. Since the spherical polynomials 
are dense in L2 '(Ed), and M#6 is bounded in L2 '(Ea), by the Banach continuity 
principle (see, e.g., [2]), we finally obtain for I E 

IC(f;x) - f(x)I =	a.e., 0 < 0 < 1.	 U 

Proof of Theorem 2: If S > 0, we can deduce the estimate (1.4) directly from 
the one of (1.3). In order to handle the case - < S < 0, we need the help of the 
Littlewood-Paley function. For 0 < fi :5 1 2 1 

{ -	
IC(f; z) - C'(f; x)12 } 

< {	IC(f; x) - C'(f; x)12 } 
k=O	 k=O 

<g(f;x). 

A combination of (2.5) with the inequality above yields 

fl
2p " 

> IC sup s -	(f; •) - C6+1 (f; .)I 2 }I :5IIg (f)II2 :5const6,pIjfjI2,p. 
11I. fl

k=O 

This gives

!'IC(f;x) —C'(f;x)I2 = O(-_)	a.e. 1_i 
k=O 

for  E L2 '(E) andO < 3	 . If € L2'(Ed),$> , then 1€ L2, 4(Ed ). We also 
have

E IC(f;) - C 1 (f; x)I2= 0. (
1
n) 

k=O
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We summarise the above and obtain 
Lemma 4: Let 0 < 8 < 1. For f E

I 
>IC(f;x)_C1(f;x)I2 

= JOx() if 0 ^fl< 2 

10z(*)	if 

almost everywhere. 
By this lemma, Theorem 1, and the inequality 

TI	 TI	
I h C(f; a,) - f(x)12 <	IC(f; z) - C	 n 
v1(f; a,)j2 + -	IC' (f; x) - f(x)12, 

k=o	 k=O	 k=0 

we finally get

fO()	if 0<0<1.2 
IC(f;x) - f(a,)J 2 = O(ii)	if	= 

k=O	 10z()	if 

almost everywhere. 

Acknowledgement. I would like to thank Professor Dr. H. Berens for his helpful suggestions 
during the preparation of this manuscript. 

REFERENCES 

[1] BONAMI, A. and J. L. CLERC: Sommes de Cesaro at multiplicataurs des dveloppe-
ments en harmonics sphriquas. Trans. Amer. Math. Soc. 183 (1973), 223 - 263. 

[2] GUZMAN, M.: Real Variable Methods in Fourier Analysis. Amsterdam: North Holland 
1981. 

[3] SOGGE, C. D.: Oscillatory integrals and spherical harmonics. Duke Math. J. 53 (1986). 
43 -65. 

[4] STEIN, E. M.: Localization and summability of multiple Fourier series. Acre Math. 100 
(1958), 93 - 147. 

[5] STEIN, E. M.: Singular Integrals and Differentiability Properties of Functions. Prince-
ton (N.J.): Princeton University Press 1971. 

Received 09.01.1992


