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Strong Approximation of Spheriéal Functions by Cesaro Means

LUOQING L1

‘The paper deals with the approximation of spherical functions by Cesaro means. The strong approxi-

mation order of the Cesaro means on sets of full measure is established.

Key words: Strong approximation, Cesaro means, spherical harmonic expansio:is
AMS subject c}las;iﬁcation: 33C55, 41A25, 42C10

§1. Introduction

Let £4 be the unit sphere (with center at the origin) in the (d + 1)-dimensional
Euclidean space R(4*!). By L?(Z;), 1 < p < oo, we denote the space of (the equiva-
lence classes of) p-th integrab}e functions on ¥4 for which the norm

it o= { [ | #a) P ds)’

is finite. A function f € L!(T4) can be expanded in a series of surface spherical
harmonics; i.e.,

f@) ~ Y Yil(fi),
. k=0 |
where

Wifin) = S [ R, ke

P A= 3(d — 1), being the ultraspherical (or Gegenbauer) polynomials. The Cesaro
means of order § of the harmonic series of f are defined by

n A6 .
Cifiz)=) %5 Yi(fiz)y n€No, (1.1)
k=0 n

where § > —1 and 4% := ("2’6) = r:,”t,l_n . It is well-known that, for some
appropriate index §, C(f;z) converge to f(z) almost everywhere on £4 and in norm;
we refer the reader to Bonami and Clerc [1}, Sogge (3] for details. We also know
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that, for § = 0, C4(f;-) is the usual n-th partial sum of the series of the surface
spherical harmonics of f. Up to now, it is not known whether, for feL*Zq),Clf;2)
converges to f(z) almost everywhere or not; therefore the index 6 of the Cesaro means
is restricted to be positive in our arguments. Considering strong convergence, the index
can be extended to be negative; similarly for strong approximation. Here we want to
study strong summability and strong approximation by Cesaro means on sets of full
measure. To be more specific, we want to study the validity of the formula

lim Y1k - f@) =0 ae, (12)
k=0

and to estimate its convergence rate. Let 8 > 0, and let f € L*(Zy4). If there exists
a function g € L*(Z4) such that Yi(g; -) = kP Yi(f; -)(k € No), we call g the Riesz
derivative of f of order B and write f{#} = g (we use this notion in analogy to the one
in the theory of Fourier transforms, see [5, Chapter V]). We see that f {8} is uniquely
determined by f, and define the Riesz space L2#(Z,) in L?(Z4) to be

L*#(2y) := {fe L*(Za); 1 fllz,8 < 0},
where ‘

e L
1l == £ = { 3 B2 IVa(OIR}
k=0

L*#(L4) is a complete linear subspace of LZ(Z4) under the norm || - ||2,5, and contin-
uously imbedded in L2(Zy).
We can now state the main results. -

Theorem 1: Let f € L*#(£4),0 < 8 <1, and let § > 0. For almost all z in £4

0:(;‘!) if 0<8<1
ICi(f2) - f(z)| = (1.3)
0,_-(-'];) if B=1.

Theorem 2: Let f € L“’(z,,),o <B<1,andlet § > -%. For ajmost allz in

0:(45) if 0<B<}

2y ICHfie) - f(z) [F = { O:(8)  if B=} (14)
n
k=0
0:(3) if B>14.

Remark: Replacing the Cesaro means of f by the Bochner-Riesz means S&(f; ),
defined by S&(f;) := Y scr(l - %’7)61’;‘(_{; -), we have analoguous results.
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§2. Auxiliary lemmas

We begin with the Astrong summability of CS . For f € L!(Zy) let
c(sim =mp {23 [ clrion P ).
n21 %520

Following arguments similar to those in [1, p.237-239], we can deduce that for § =
o + it and for any f € L¥(Z,)

1
IC(F)llz < consts e ||fll2, o > -5 0<esm, (2.1)

and that for any f € LP(£4),1<p <2,

2 1
IC%(H)ll, < constspes™ || fllp, o> 5(ar -1),0<c<m. (2.2)

Here and in the following, consts,,,... denotes a constant depending only on the listed
subindices. By linearizing the operator C® and by applying Stein’s interpolation the-
orem, we get from (2.1) and (2.2) the following

Proposition: Let § > d(1 —1)—1. For f € L?(Z4),1 < p < 2,

P
IC*(£lp < consta, £l ey
and
Jim = 5" ICH(fiz) = f@ =0 ae. (24)
k=0 )

Proof: It follows from straightforward modifications of the proof of the cor-
responding result in [4]; for the sake of completeness, let us give just a sketch. Let
n = n(u) (u € £q) be any step function taking positive integral values and let {px(u)}
be any sequence of measurable functions defined on T4 which satisfy the condition

%ngi(u)ﬁl, VueT; and VneN.
=0

Keeping the functions n(u) and ¢x(u) momentarily fixed, we define by Ls the linear
operators

Lo(fi ) = = 3 CLS: Jow.

k=0
By Schwarz’s inequality |Ls(f; -)| < C3(f; -). Moreover there is not difficulty to verify
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that, for any p, {|C3(f)|l, = sup||Ls(f)|l5, here the supremum is taken over all func-
tions n(u) and ¢k(u) of the type described above. We now define an analytic family
of operators {T;}.ec by

Tl(f) ) = Lﬁ(z)(f: ')) z€ Cv
where §(z) = (€0 — 3)(1 — 2) + (3(d — 1) + &1)z (€0,€1 > 0). By (2.1) and (2.2). we
have for 7 = [—(e0 — ) +(3(d - 1) + &1))y,

. . " 2
ITiy(Hllz = I Zstiy(Hll2 S NC*P(f)ll2 < constege™ ||fllz, 0< e <,

and

. 2
IT34iy(Pllps S NCHHD(f)p, < conste,e™ |fllpy, 1<p1<2,0<e<m

It is important to notice that const., and const., do not depend on n(u) and pi(u).
Let 0 <t < 1, -;; =2(1-t)+ ’%t, and % + Pl—, = 1. Applying Stein’s interpolation
theorem (see [4]), ||Te(f)llp < const:||f|l,. Again const; does not depend on n(u)
and @x(u). Finally, |[C¥®(f)|l, < conste||f]|p. It is clear that é(t) is a continuous
function of py, €0, and &;. Thus, by continuity, we can always realize any 8(¢) satisfying
8(t) > dz;l(% — 1) — 2 by choosing p; > 1,60 > 0, and ¢; > 0 appropriately. n

The proposition makes our results meaningful. For the prodf of the theorem we
introduce the auxiliary maximal functions

M(f;z) = sup n? |Cé(f;2) — f(=)]

Nj(fi2) = sup n |C7+ (f32) - Ca(f; 2)

o5(fim) = { 3o nt=1 CEH (fi2) - CA( o))

n=0

The first two ones are maximal functions, while the last one is a Littlewood-Paley
function.We want to study the boundedness of these functions; to do so we need some
extra-ordinary identities of the Cesaro means. Throughout this paper, the indetermi-
nant expression 0° will be understood to be equal to 1 whenever it comes up.

Lemma 1: Let § > —1. For f € L*#(Z4),0< 8 < 1,

llga(Hllz < consts,g [|£]l2,s- (2.:5)
' Proof: We have

1 = A8
Cat'(fiz) - Calfiz) = ] k;o Af.k kYe(f; z)-
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It follows from the orthogonality of the projection operators Yi(k € Ny) that

loh(AIE = 3 n?* 1(n+6+1)2/ IZ 2“"Y~<f’z)|2‘.”

n=0

= anﬁ - (n+ 5 +1Ip & Z ( n_k) K ||V ()13

n=0

- a28-1 A8
= Z:_o K22 ||Ye(£)lI3 K*2F Z ( +6+1)2 ( )

< consts,g | f|,6-
In the last estimate we used the fact that, for 0 < 8 < 1,
B-1

z(n+6+1)2

A&
( "“") < consts g k*P~2. n

Lemma 2: Let § > 0. For f € L*#(%4),0< 8 <1,

IN5(Hllz < consts,g || fll2,6- (2.6)
Proof: We first notice that .

CE (fi) - CYi2) = H,ZAH_,;A"# (Cfp(f;z)—c:";l(f;z))- @.7)

In fact, for 4 > 0 and a > —1, we have

CIHet(fi2) — CT+e(fr2) = —— - 2": EAIL Yi(fiz).  (28)
=0

THa+1 ATt o

Since

n—-k

Azt: - E A.'—lAn-—k—]v (29)

y=0

Z k Azt:Yk(f’ z) = Z k Z A"_IAn-k-)Yk(fr z)

k=0 j=0

n n—k

Z Y kAT AL V(S ::)

]=0.k=0 ; (2.10)

n

=ZA7“A:t;(a+1)(C° 1(fi2) - Cf.'_,-(f;z))

=0

n

=3 A4 a +1)(c:+‘<f,x) ck(f,z))

k=0
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Yy=6—-—a,hencey+a=6and vy = 6—12'—1,
the formulas (2.8) and 2.10) yield (2.7). Nexi we apply Schwarz’s inequality, use the

estimate A5, = O(n®) , and obtain

By taking a = 6—;—’-(> —~3) and

n

|CE*(f;2) — CU(f;2)| < m{ (A ‘),k“"’,}*

0

3ll

L eiet (o - o (for)

0

-1 n : .}
< consts g n=4-1 g?_(f;-’t){ z(" i as kl—Zﬂ} .
k=0

»
il

§=1
< consts g n=# g;’_(f;:c),

or

51 '
n?|Ca* (fi2) — Ci(f;2)| < constsp 957 (fiz), ace.
and finally,

-1
Né(f; 1‘) < constsg gy’ (f;z) aee.

It is 1mportant to recall that 81 > —31. By Lemma 1, estimate (2.6) is proven for
0§ﬂ<1.Forﬁ—1,wehave :

nIC(fiz) = Ch(fio)l = | +5+1E ""‘kY*(f;x)|sigglcﬁ(f‘”;i)l-

Here fU1} € L¥(%,) is , again, the 1-st Riesz derivative of f having the spherical
harmonic expansion f{!}(.) = Yoreo kYi(f; ). It follows from the L2- boundedness
of sup,, [C4(f;z)|,6 > 0, that

INE(D)ll2 < Nsup CA(F D)l < constsl F1Yl; = constal)fil2,,
which provides the estimate (2.6) for 8 = 1. [ |
Remark: Let § > 0. For f € L'(Z,), ]
Jim n(f(z) - Ci(f;2)) = f)(2)  aee.

Indeed, because of

f@-CH (fim)=(6+1) >

W k(e + 6 +1)
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we can verify the equation

n(f(z) - Ci(fi2)) = F)(a) = [n(f(2) - CE¥1(f;2) — (6 + D)fM)(2)]

CHWi0) ~ f0(a)] - e )

_n+6+1[ n+6+1

We know that the three terms on the right-hand side of the equation above tend to
zero almost everywhere as n — oo.

Lemma 3: For f € L*#(24),0<8<1,
" IMa(H)llz < constg||fll2,5- (211)
Proof: Set
(,,H)‘ﬂ if 0<k<n , A
bk = and A%bax = bak — 2ba,k41 + ba, k2.
()% ifn+l<k<oo

We define a sequence of linear operators {En} by En(f; ) = Yo 0n kYk(f ;.*)- Then
Ea(f; ) = 3_(k+1)A%asCi(f; ). - (212)
k=0 '
Indeed, on the one hand,

sup Z(k +1)|A%. 4| = sup { Z(k +1)|A%b0 | + Z (k+ 1)|A’b,. ,,;}

k=0 k=n+1

SS\;pZ[1+(n+1)(1- (:I;

)] < comst:s(A< 00);

i.e., the sequence of multipliers {bn,+} is uniformly quasi-convex. Consequently,

Sk + 1)8%, 4 CH(; ) € I(Zd) if f € L*(Za),

k=0

and

sup < constp sup |ICA(f; z)|. (2.13)

E(k +1)A%b, :CL(f; .1:)

k=0

On the other hand, Y ( §2(k +1)A%0 4 CH(f; )) = bnmYm(f; -) for each m > 0.
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In fact, Y (Ci(f; -)) = 0if k < m, and = (1 - g5 )Ym(f; *) if k > m. Therefore,

m

k+ I)Ym(f; )

Ym ( i(k + 1)A%, xCL(f; -)) = i(k + 1)A%b, k(1 -
k=0

k=m

=Yu(f; ) D (k+1-m)A%ba,

k=m

= Yu(f; ) Y _(k+1)A%0 k4m
k=0

= bn,mYm(f; '), Ym € Np.

Using the fact that the sequence of harmonic projections forms a total system, we
obtain equation (2.12). If f € L*P(Z,), then (n+ 1)2(f(-) — CL(f; -)) = Ea(F18); ).
Furthermore; by estimates (2.12) and (2.13),

Mj(f;-) = s?‘plEn(f{“; )| € constg St:pICi(f"”; I,

and

IM3(F )2 < const | sup [CH(S D)z < consty 1582 = constg Iz,

which gives the desired estimate. ; =

§3. Proof of the theorems

Having done all necessary preparations, we can present the proof of the theorems
by taking, once again, the special properties of the Cesaro means into account. The
Banach continuity principle is also used.

"Proof of Theorem 1: First we note that, for any v > 0,

M5+ (f)ll2 < constu,g || fllz,6- - (219)

In fact, we have

n?|CI (fi2) - f(@)] = nP|(ATF) ! 3 ALATTL(CL(fi 2) - £(2))
k=0

<nf(ATH)H Y ATTL P M)(fi )
k=0
< constg,y Mj(f; z).

Therefore Mg"'l(f;z) < constg, Mj(f;z), and by Lemma 3,
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M5 (£)ll2 < constal| Mp(f)ll2 < consta Il fllz,6-

Let 6 > 0. For f €.L*#(S4), 0 < B < 1, we have M§(f;z) < N(f;z) + M3**(f;2).
Applying Lemma 2 and the estimate (2.14),

IME()ll2 < ING(H)llz + IIMEo()ll2 < consts,p || fllz,63
ie. |Ci(f;z) — f(z)] = Ox(Z5)ae,0 < B <1 Let 0 < B < 1. For any spherical
polynomial g we have lim, oo n?|C%(g; )—g(z)| = 0. Since the spherical polynomials

are dense in L*#(Z,), and Mg is bounded in L?#(Z,), by the Banach continuity
principle (see, e.g., [2]), we finally obtain for f € L>#(Z,),

IC4(fi2) = f(&)l = 0x(5) @, 0SB .

Proof of Theorem 2: If § > 0, we can deduce the estimate (1.4) directly from
the one of (1.3). In order to handle the case —} < § < 0, we need the help of the
Littlewood-Paley function. For 0 < g < 1,

n?f & 5 541 2 } - 268-16 541 2 3
(=2 Icifim) - et (i} < { Dok CHSi0) - CEF (fi0) }
k=0~ k=0
< g5(fi2).

A combination of (2.5) with the inéqua.lity above yields

n?? I8 ~6+1 2} ]
[sup {2 3185 ) = CE(£ I}, < 9Bz < constipliSlla,s-
n k=0
This gives

LS i) - i = 0u(ap)  ae.

k=0

for f € L*#(T4) and 0 < B < L. If f € L¥P(24),8 > 1, then f € L»}(Zy). We also .
have '

%Z (CE(fi2) — G (Fia) = 0.(2) ae

k=0
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We summarise the above and obtain
Lemma 4: Let 0<8<1. For f € I_.zrﬁ(ga.),
i O.(737) if 0<fB<}
1 n - 2
=2 ICk(fiz) - G (fia)? =
= 0(d) if B2}

almost everywhere.
By this lemma, Theorem 1, and the inequality

—Z|ck(f,z) f@I < Elc,,(f,x) CH (fim)? + 2 Zlc:“(f,z) f(=)P,

k_O k-o

we finally get
O:(;%7) if 0<p<}
%;ﬂo ICi(fiz) - f(=)* = 0,(‘%,';2) if f=
0:(3) if B>

N

N

almost everywhere.
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