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1. Introduction 
It is well known [1, 12] that the usual norm in the spaces 1 and L(p> l,p not even) is E(p)-
times uniformly differentiable, and the Taylor remainder term is of order p - E (p), where 

E(p)- { p— I if p is an integer

-	otherwise 

Moreover, this order can not be improved by equivalent reforming [1]. For the Orlicz spaces 
IM and LM, the exact order, up to equivalent Orlicz reforming, of the reminder term after 
differentiation of the norm was found in [9]. This order gives information about the type of IM, 

LM (see, e.g., [6: Section 1.e.16]). 
Recently, the best order of Frechet. and uniformly Frechet differentiability of the norm (up to 

equivalent reforming) in Orlicz sequence and function spaces was found in [10]. As usual, in every 
case an appropriate Orlicz function is constructed so the corresponding Orlicz norm, equivalent 
to the initial one, is of highest order of differentiability. Our aim is a further investigation of the 
smoothness of this "good" norm, which is related to a precise estimation of the remainder term 
after the last derivative. It turns out that in many cases it is also norm of best smoothness. We 
note that, in a separable Banach space, the existence of an equivalent norm (or more generally 
bump function) from some smoothness class implies the existence of a partition of unity from 
the same class (see, e.g., [13: Section 3.1.6]). 

Some of the results contained in this paper were announced in a talk given by the author at 
the 17-th Winter School on Abstract Analysis, Srni, CzechoSlovakia, 1990. 

2. Preliminaries 
We begin with some notations and definitions. In the sequel X, Y denote Banach spaces, 5(X) 
the unit sphere of X, B(x;r) the ball centered at x of radius r, and N the set of all naturals, R 
of all reals, R+ of all positive reals. Everywhere differentiability is understood in Fechet sense. 
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We denote by B' (X, Y) the space of all continuous symmetric j-linear forms 

T:XxXx ... xX-+Y 
j—timed 

equipped with the norm 

11 T 1 1 = sup {II T ( x i, . . . ,x,)fl ; Xi E X, hh x hh :^ 1 (i = 1,... ,j)} 

In the next we use the notation (') = (,...,x) for r E X. An equivalent norm (see, e.g., [13: 
j—timea 

Section 1.3.8]) is given by

hlThh=sup {IIT(xw)II;XEX,IIxhh< l} 

and 11 T1 :5 11 T11 :5 ' 11 Th , = (2j)'/j!. if Y = R, the space of all continuous symmetric 
j -linear functionals on X is denoted B' (X). 

Definition 1: A map f : X	Y is said to be k-times differentiable at r E X if there exist 
Ti E B'(X,Y) (j =	k) such that 

f (r + th) = 1(r) 
+	

Ti (hW ) + Ox (itVc) 

.uniformly for h in the unit sphere 5(X) of X, i.e. given e >0 there is a 5 >0 independent of 
h E 5(X) such that (r + th) - (h(i)) <c (X),_  t l k provided ItI <5. T is called j-th 

derivative off at rand is denoted D'f(x) or f(-' ) (z). 

Let w : R+	R+ be a non-decreasing function with lim j ...o w (t) = 0, and k the greatest

integer such that w (t) = o (t1c). Set ci l (t) = w (t) /ik. 

Definition 2: A map f : X i-^ Y is called H--smooth in V C X (see, e.g., [2]) if f is 
k-times continuously differentiable and for every x E V there exist 6, A (x) > 0 such that 

IIf	() - (k) (z) 11 :5 A(x) w (liv - r1),	 (1)


provided y, z E B(x;5)flV. 

The norm in the left-hand side of (1) is understood as the norm of the k-linear continuous 
symmetric form 1(k) (y) - 1(k) (z) from Bk (X, Y). The space of all H"-smooth functions on V 
is denoted H"' (V, Y). If the norm in a Banach space is H"' -smooth in X \ (0), then X is called 
H--smooth. A H"'-smooth map (space) with (t) = tP is called H9-smooth. 

Let us recall some definitions and facts about Orlicz spaces which will be necessary in what 
follows. An even convex continuous function M, defined and non-decreasing on [0, oo), is called
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Orlicz function if M (0) = 0, M (oo) = co. Let (5, E,ji) be a measure space. The space of all 
equivalent classes of j -measurable functions x on S such that j M (x (s) /)) d (3) = A? (x/.) < oo 

for some positive ) with the norm 

lix il = inf{A> o;A?(x/A) < 11 

is a Banach space, which is called the Orlicz space generated by Mand denoted by LM (5, E, A). 
The subspace of LM(S,E,/L)which consists of all x such that M(Ax) < oo for every .\ >0 is 
denoted HM(S,E,j). 

The most interesting Orlicz spaces considered usually in the literature are the sequence 
spaces 1M, hM and the pairs of function spaces LM(0,1), HM(0,l) and LM(0,00), HM(0,00) 
corresponding to the cases: S is a countable union of atoms of equal mass, S = [0,1] or S = 
[0,00), and ji the usual Lebesgue measure. We note that if the Orlicz function M satisfies the 
A2-condition at 0 (at oo, at 0 and co), i.e. there exists k> 0 such that 

M'(2i) :5 kM(t), t E [0,1) (i€ [1,00),t € [0, 00)), 

the spaces IM and hM (LM (0,1) and HM (0, 1), LM (0, co) and HM (0,00)) coincide. Obviously 
1A1, LM (0, 1) and LM (0,00) essentially depend on the behaviour of the function M near 0, oc, 
and 0 and co, respectively. It is well known (see, e.g., [5]) that if two Orlicz functions M and N 
are equivalent (M - N) at 0 (at oo, at 0 and oo), i.e. 

c 1 Pyf (c—I t) < N(t) < cM(ct), t E [0,1] (tE [1,00),t E [0,00)) 

for some positive constant c, then hN(HN(0,1),HN(0,00)) is isomorphic to 
hM (HM(0,1),HM(0,00)). Using this result equivalent norms in hM, HM(0,1) or HM(0,00) 
are usually constructed through Orlicz functions, equivalent to M at 0, at co or at 0 and 00, 
respectively. 

Now we recall that the Boyd indices for hM, HM (0, 1) and HM (0,00) can be expressed by 
the formulas (see, e.g., [6: Section 2.b.5])

I M(uv) 
cs.l=sup{p;suplpM(;u,vE(o,1)}<oo} 

a	
sup {	

uPM(v) 
=	p; sup	; u,v € [l,00)} <oo} 

I  M (uv) 

am = mm (at, 
respectively. 

A detailed study of the problem of the isomorphic embeddings of the hM spaces into Orlicz 
spaces is contained in [7] and [8]. Here we only mention that always 0M ^! 1 and that haoM is 
isomorphic to a subspace of hM. Finally we consider a class of smooth Orlicz functions that was 
introduced in [10]. 

Definition 3: ACk, k € N is the class of all functions M such that:
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i) 'M > k; 
ii) the k-th derivative Ai(1) of M is absolutely cordinuous in every finite interval; 

iii,) t	IM1) ()I	cM (ct) a. e. in [0, co) for some c > 0.	 (2) 
It is not hard to check that every M E ACk satisfies for fixed a E (k, am) the inequalities 

	

Mt7t) :5 c i A"M(t), A E [0, 11, t € [0, 00)	 (3)

and

t' A4'() ( t)I < c 1 ZvI (cj t) , i E [0,00) (i = 1,..., k) ,	 (4) 
where c1 is a constant depending on a and M. Without loss of generality we shall assume in 
the sequel that c 1 = c 1, i.e. that for a fixed a E (k, am), M satisfies (2), (3) and (4) with the 
same constant c 1. 

3. Properties of the class ACk 

In this section we make a further investigation of the class AC' in order to improve some 
estimates from [10]. We shall often use the following simple inequalities implied by the convexity 
of M:

uM(v):5M(uv)+M(v),	 (5) 

	

M (max (l u l ,l vI)) :5 (M (2u) + M (2v)) /2,	 (6) 
for any real u, v. 

Let k € N. Put
FkM(u,v) = M(uv)(u'M(v))1 

For any k E N and interval I C R we associate to M the function rAf defined as kj 

r',(t) = tsup{F,'(u,v); (u,v)€ [t,l] x i}. 

If I = I, we simply choose rr, = r. We set Rf'1 (1) = tk if, (t) and R (t) = t c r l (t). 
Obviously

	

r' (t) ^ t, r(t) ^ M(t)/lk , t € (0, 1],	 (7) 
M(izv) :5 u''M(v)r' (t) It, t E (0, 11 (u, v) E [t,l] x R.	(8)


The following properties of R will be useful. 

Lemma 1: Let M € AC A: . Then r, and of course also R, are non-decreasing in [0,t0] 
for some t0 € (0, 1). 

Proof: According to (3) for a suitable to € (0,1) 

M(uv) ukM(v), (u, V) € [0,t0] X R. 

First we show that r (t) ^ ,f (a) for any t € [a2 ,a] and a	(O,io]. Indeed, the above

inequality implies 

sup {F(u,v); (u,v)€[t,aJxR}< (
a )3uP{FkA1 (u,v); (u,v)€ a a2 xR+}
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with a2 /t < 1. Using this inequality and the representation 

r(t) = tmax(sup{FkM (u,v); (u,v) E [t,a] x R}, Sup {Ft'(uv); (u,v) E [a,1] x R+}) 

we immediately obtain tf (t) r (a). Let now 0 < t1 <t2 :5 to. Then t'	t1	t' for

some  E N and the sequence of inequalities 

r' ( t 1 ) :5 r  (t'') (	(i22) :5 ... < r (t2) 

completes the proof. • 

We note that rM (At) < Ar'(t), A > 1. 

Lemma 2: JIM N at  and oo, then R	R' at 0. 

Proof: Without loss of generality we may assume that M (1) = N (1) = 1. Let 
C- I M (c- I t) < N (t) < cM (ci) for some c 1. Then 

a) for c 2 <u< 1,vER, 

N(uv) 
^	

M(uivi) 
k+1N(v)	u4'M	' (v) 

1L =V1 = 1; 

b) for tu<c 2, vER+, 

N(uv)	c2M(cuv)
= 

c2(2) M(uivi)	c 2 = ui ^ 1,v1 = c- I V, 
t k+ l N(v)	uk+1M(cv)  

which implies 

sup {F' (u,v) ;(u, v) E [t, 1] x R4} <2(k+2) sup {FkM (u,v);(u, v) E [t, 1] x R} 

and symmetrically 

sup {F(u,v);(u,v) E[t,1]x R+ } <c2(hI*2) sup {F' (u,v);(u,v) € [t,1] x R}. 

Thus c_ 2 (k+2)R (I) :5 R' (1) < c2 ( 2)R (I) , I E (0,1]. • 

Lemma. 3: For any real a and b,t € (0, 1], the inequality 

bc M (a) :5 (M (a) + M (ab/t)) R (t)	 (9) 

holds 

Proof: If bit	1, then (7) implies 

(b' 1 /R' (t) - i) M (a) < ((b/t)' - 1) M (a) < 0:5 M (ab/t).
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Suppose now b/i > 1. Obviously t < 21b < 1, and (9) immediately follows from 

M(a)	- bM(a) 

	

r (t) ^ 
t (t/b)	M (ab/t) - tkM (ab/1) 

Thus Lemma 3 is proved. . 

Lemma 4: Let M E ACk . Then for any real u,v with u2 + V2 0 we have 

M ) (u + v) - M(k) (u)I < c1 lvi M (2ce) /ek+l, 

where c 1 = 2k+1 C, 
= max(iui,ivj). 

Proof: Suppose first that lvJ < Jul /2. In this case f = Jul, and using (2) we have 

M(k) (u + v) - M(k) (u)
1jU+V

 I =	
M(k4) (t) d1 

C
j max (Iu I.Iu+vf) M (ci)	lvi M ( c (i u i + lvi)) < 2k+1c ivi M 

(2cc) 
< 

-	min(	
dt<c 

Iu I.Iu+v I)	tlk41	-	(Jul - ivi) k+ 1	- 

If ivl ^: J ul /2, then lvi / ^! 1/2 and using (4) and (3) we obtain 

M(k)(u + v) - M(k)(u) I C 
(M(c(u + v)) + M(cu)' 

<	
Iu+vik	luik j 

< c l v i	I( 2	k	
(L,\cM(U)	22_kllM(2ce) 

	

- 2k-1k+I	iu+vi) M(c(u+v))+ Jul)
	) 

< 
 

Thus Lemma 4 is proved. . 

We associate to every M E ACk and x E X = LM (5, E,z) the symmetric i-linear forms 
(i1,2,...,k) defined by	 - 

19i (X; y1,y2,...,yi)=jM(1)(z(s))1Iyk(s)d,L(s) 
k=1 

and the symmetric (i - j)-linear forms (0 < j < i)

i—i A,j(x; 
y',y2, .... yi_j)= J M(j)(x(s))xj(s)llyk(s)dp(s), S 

where Y1, Y2, - - -, yi E X. Obviously M,0 = M1 and M0 = M. 

Lemma 5: Let M E ACk. Then Al1,, (x) E B 1 ' (X) for every x E X 
(i = 1,2,.. . ,k; 0 < j < i) and

i\i,j ( X ) 11 :5	(jW 	+
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Proof: It is sufficient to show that for fixed x E X 

sup {1M1j (x; iz'—i))	II h lI < 11c} < 00 (i = 1,2,... ,k; 0	i < i).


Denote S = {s E 5; 0 <_ Ix (,,;)I :^ Ih(s)I} and 52 = 5\ S 1 - Using (3) and (4) we have 

A 3 (x; h(')) I	LlM( (x (s))( Ix ()I Ih (s)r3 d,a (s) 

	

< c (j M (ex (s))(Ih(s)l / Ix (s))	d (s) + j M (cx (s))d(s)) 

< c2 JM(c1i(s))dp(s)+cJM(cx(s))d1L(s)c(M(cx)+c). . 

The next lemma essentially shows that M(k) E H'' (R+) , w (t) r (t). 

Lemma 6: Let M E ACt . For any real u, v, w, t such that u 2 + v2 0 0, Itl < 1/4c, the 
inequalities 

	

I M( k) (u + Lv) — M( k ) (u)) lfwL	<c•2 (M (4cu) + M (v) + M (w)) r (ItI)	(10)


for 0 < i < k - 1 and 

I (M') (u + Lv) - M( k) (u)) u' I < C. (M (4cu) + M (v)) r" (I L l)	 (101) 

hold, where c2 = 2c1 (2c )k+ 1 

Proof: Lemma 4 implies 

(M (u + Lv) — M( k) (u)) < c ItvI IwI k_ t M (2cc) (11) 

where = max (Jul I tv I) . It is clear that to estimate the right-hand side of (11) it suffices to 
consider only positive u, v, w, t, and M (1) = 1. We separate the following cases: 

a) w < 2cc. Using (5) and (6) we obtain 

tvw"'M (2c) 1k4-I-, < (2c) l_t tvM (2c) / (2cc) 

< (2c)'''t(M(2c) + M(v)) < 3(2c)k4_ t(M(4cu)+ M(v)). 

b) 2c, < w < 2c/t. Now

	

v \t+*	/ , tvw'M (2c4) < (2c)k	t	
+ (S-)	) 

M (2c).	(12) - 

If i 0 using once more (5) and (6) we obtain 

tvwk_I M (2cc) < (2c)_i t(2M (2cc) + M (v) + M (w)) 
k+1-i

!^ 2(2c) 1 't(M(4cu)+ M(v)+ M(w)).
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If i = 0 we continue the estimation in (12) using Lemma 3:

\\ tvw'M(2ce) < (2c)rk	
tv t 

+ ( 
tw ) 1 ) M(2c.) k+1—i	-	 ( (2c^)

 

 

< (2c)' (2M (2cc) + M (v) + M (w)) r(t) 

< 2 (2c)' (M (4cu) + M (v) + M (w)) r (t). 

i'inally we consider 
c) w 2c/t. This case is quite easy. Indeed

/ wt \ k—i tvwk_i M (2<) _i 
(w)k M (2ce) = (2c)k_i ti_ k	M (2<) 

< (2c)' ti_kM (wt) :^ (2c)k_i tr(t) M (w), 

where we used (8) in the last inequality. 
Combining the estimates obtained in the cases a), b) and c) it is easy to get (10) with 

C2 = 2c 1 (2c)''. The proof of (10') is the same. Thus Lemma 6 is proved. • 

Corollary 1: Let M € ACk . Then for every x,h E X and any t E (0,1/4c) the estimate 

k 

	

+ th)	(x; h (3) ) 1 <C3 (i(4cx)+ R (h)) R(t),	(13) 

holds, where c 3 = 2c2/k!. 

Proof: Obviously, for every s € S: 

k (th (s)V	I 
M (x (s) + th (s)) -	/_ M(i) (x (s)) < Ith (8)1k 

IM(k)(x (s) + O5 th (s)) - M(x (s)) 
.o	j!	 k1 

for some 0., E (0, 1). Lemma 6 applied for i = 0, u = z(s), v = Oh (s), w = h(s) gives 

	

M (x (s) + th (s)) -
	

(th(s)))M(,) (x (s)) 	(M (4cz (s)) + M (h (s))) R (t). 

Now to obtain (13) we only have to integrate over S the last inequality. 

Remark 1: Corollary I is a quantitative improvement of Lemma 4 in [10], where only 
o (I t I') instead of ItI'r (Iti) in the right-hand side of (13) was given. The estimate (13) 
implies, of course, that M1 : X—* B (X) is (k - i)-times differentiable in X for i = 0,.. . , k - 1 
(Bo (X) = R) and D'M = M3 (j = 1,2,...,k), JYM, = M,+ (i+j :5 k). 

Corollary 2: We have R,.j € H" (x, B' (X)) (j = 0, 1,. . . , k), where w (t) = r (t).
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Proof: We shall prove that for any y, z from the ball B(z; 1/8c) the inequalities 

M (y) - Mik, (z)FI :5 c4 (p(z)rkM (fly - z il) , j = 0,1,2,... ,k - 1,	(14) 

I Mk,t (ti ) - Mk,k (z)I	c4(x) rk (fl y - Z ),	 (14') 

where c4 = ,c8k_ ICU c2, (x) = (8cjIzII + 1)1_2 (A1(8cx) + 8c + i), hold. Indeed, let Iz E 5(X), 
s E S. Obviously 

Mk,, (y ; h( 'c_J) ) - A?k, (z; h(k_2)) 

<	
M (y (s)) (y' (s) - zJ (s)) hic_3 (s) dp (s) 

+
 J I

M (y (s)) - M(k)( Z ( S)) I Iz ( s)I' I  ( s )V	djz (s).

S 

The second member of the last sum is easily estimated for j < k using (10) for n = 
v = ((y (s) - z (s)))/ fly - zfl, t = liv - z ll, w = h(s) and (6): 

J I M	(y	-	(k) 
(z ())I lz (s)pJ lh (s)1 1c_ 3 dj 

:5 c (A(4cz) +M((y - z) / ilv - z il) + M(h)) r (liv zil) 

^	(A(8cx)+5)r(ily—zll). 

To obtain (14) for j < k with C4 = N8k_2 c21 c2 and (k) = (8cilxil + 1)k_I (A(8cx) + 8c + 
it is enough to estimate the first member of (15) in the following way: 

jM
) (y (s)) (i,' (s) - z (s)) hk_i (s) dji (s) 

i—I 

I I JttI't ()II1 lv - z il	i Il y li' fl z il3 '' llhilt' 

< kck	
(	(Cy) + c) (lix Il + 1/8c	ill! - zil 

<81c2k (M(2cx) +	(2c(y - x)) 
+	(8cflxiI + 1)2 1 1Y - zll -	 2 

< K8 k 2 C2k (4A(2cx) + 8c + i) (8cllxlI + 1)k_2 11Y - zil. 

We used Lemma 5, the relation between the norms	and •11 1 in Bk (X) and the convexity of 

M. The proof of (14') uses (10') and is practically the same. 

Remark 2: Obviously tv!3 E H 1 (X, B' (X)) and M,, E H 1 (X, B'' (X)) for 0 j i < k.
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4. Main result 
We are ready to prove the following 

Theorem 1: Lei M E AC' and	be a measure space. Then X = HM(S,,/i) is

H--smooth, where w (t) = R (t). 

Proof: Set n(x) = 11 x. Using Remark 1 and the implicit function theorem 
applied to 'the equation M(x/n(x)) - 1 = 0 we obtain as in [10, Theorem 6) n'(x) 
= M1,o(x/n (x))/M1,1 (x/n(x)), which, by an easy induction argument, implies that n is k-times 
differentiable in X \ {0}. What we have to prove in addition is that n (') E H"' (x \ 0, B  (X)), 

= r. To this end we need some more information about the k-th derivative of the norm. 
First for sake of brevity we introduce the notation 

M 1 , (x) = M (x/n (x)). 

Using the equality 

D( 	-----D	y71
1
(z)—Mio(x; y) 

(	= ())-	
—	n(x n2 (X)	' y)= 	n(x)Mi,i(z) 

we obtain by induction 

- 
(k) (x) - +1	 (15) 

,j n1(x)V	(x)	- 

where P (iT,, (x)) is a polynomial with respect to 7cr ,,, (i < k) and P (V1,i (x)) E Bk (X) for 
fixed x. 

Let w, = r. It is easy to check that I E H" (X,B'(X)), g E H 1 (z,R) imply f/gE 

H'' (x \ A; Bk(X)), where A {z e X : g(x) = 0). Indeed, fix x A. Then for sufficiently 
small 6 > 0,

1( y) - f(z) < 6 11f( y) - f (z)fl 11 g ( X )11 + j[g(y) - g ( z ) II Ill (x)II	(16) 
g(y)	g(z)	 [g(x)l2 

for any y, z E B (x; 6). Let now x 0, r = min (IIxII /2,1/8c). As 

.i___f_ 11	Ily—zil 
lvii	li z il II	lizil 

for y,z E B(z; r), from (14) and (14') and Lemma lit follows for any y,z E B(x; r) that 

M k,j (y) - Mk, ( z ) II :5 CO (X) IkM
( 1111Y11- iTTi) 

c4(x)max( 1j_ 1)rt'(llY_zli) (j0,1,...,k).	 (17) 

Obviously n and M, ,J are in H' (X,B i (X)) for every i = 1,2 .... k - 1, 0 < j	i and

therefore n&T,, E H' (X,R). Now from the representation (15) 0f (k), (16) and (17) it follows 
that (') E H"" (x \ {0} , Bk (X)). Thus Theorem 1 is proved. .
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5. Smooth renormings in arbitrary Orlicz spaces 

We shall treat in details only the case of sequence spaces. The cases HM (0, 1), HM (0, oo), and 
the general case HM(S,E,,u) can be analogously treated. It is not hard to see that, without 
some kind of smoothness of the Orlicz function M, the condition cioM > 1 cannot ensure the 
differentiability of the usual norm in hM. Nevertheless, equivalent smooth Orlicz renorming, 
i.e. one generated by a suitable Orlicz function, equivalent to M at 0, is possible. Namely, the 
following theorem holds true. 

Theorem 2: Let ao E (1,00). Then in hM there exists an equivalent H"-smooth norm, 
where w (t) = R 011 (t), k = E (a). 

Proof.- ' As usual we suppose M(1) = 1, and since the behaviour of M at oo is unessential, 
we "correct" it near oo to a function N in such a way that aN = lii. For example: 

(M'(t), t E [0,1] N(t) = 'jk+l	t e [1, 00) 

Put N2 (t) = f1 N1 (u) exp (u/ (u - t)) du/u, where N1 (t) = f1 N (u) du/ti. It is not hard to 
check that

(1/4) N (t/4) !^ e N (t/4) :5 N2 (t) :5 N (t), t E [0,00).	 (19) 

This implies that hN2 is isomorphic to hM. Moreover, it is easily verified that N2 E ACt for any 
k, and we may apply Theorem 1: hN2 is H'-smooth, w(t) = R 2 (t), k = E(aN2 ) = E(c). 

Lemma 2 and (19) imply 

4_2 ( k+ 2)R ! (t) < R l2 (t) < 422 R' (t) , t € [0,1]. 

To finish we observe that R' = R 011 . Indeed, R' ^ R 011 is obvious, and we only have to 
prove R011. Analogously to the proof of Lemma 2 we show that for any (u, v) € [t, 1] xR 
there are Ui and v, ( u j , VI) E [t, l]x [0,11 with F' (u, v) = F (Ui, vi ). If  < 1 we take simply 
u 1 = u, v1 = v. Let v> 1 and uv < 1. Then 

F(u,v)=(uv)_(1) M(uv)=Ft(ui ,vi ),ul =uv,vl =1. 

Finally, if uv >1, then F,(u,v) = 1 = FkM (uj ,vj ), Ui = v1 = 1. Theorem 2 is proved • 

Remark 3: This result is of no interest if M	t2P at 0, p E N, because it is well known

that in 12, the usual norm is infinitely many times differentiable. On the other hand if M 
at 0, p E N, the best order of smoothness in hM by equivalent reforming is not better than 
041. Indeed, for a°M 2p, p € N this follows simply from the fact that l,o is isomorphic to 
a subspace of hM, if we combine this with the result from [1] formulated in the Introduction. 
If c	= 2p, p E N, but M 71 t' at 0, it was shown in [11] that in hM there is no equivalent 

c-times differentiable norm, i.e. any equivalent norm in hM is again at most 

Corollary 3: Let M 71 t2 ' at 0, p € N. Then
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a) the order of smoothness R 011 , k	E (c4) cannot be improved with respect to power 
type orders; 

b) if

M(uv):5cu°iM(v), u , v€ [ 0 , 1 ],	 (20) 

then in h 5,1 there is an H°c -smooth norm, i.e.norm of best order of smoothness. 

Proof: To obtain a) it is sufficient to observe that from the definition of ao it follows for 
any u,v E [0,1] and fixed e > 0 that M(u,v) < ceu	M(v), for some c > 0, which implies 
for k = E (a') that R 011 (t)	ct4, t E [0, 1]. 

b) In this case R 011 (t) < ct'4i, k = E ((5 4) • 

Remark 4: The condition (20) is fulfilled for example if M (t i /4c) is quasi-convex. Results 
analogous to those from Theorem 2 and Corollary 3 b) can be obtained for the function spaces 
HM (0, 1) and HM (0, co) and for general Orlicz spaces HM (S, E,,u), as well, using the same tech-
niques and results on embeddings of 1P spaces in Orlicz function spaces [8]. The corresponding 
orders of smoothness for HM (0,1) and HM (0, co) are respectively 

Rm (t) = t' sup {1/FkM (u,v); u [1, l/t], v [1, oo)}, k = E (a') 

and R" (t), k = E(cmM). 

Remark 5: Very probably the orders of smoothness from Theorem 2 and Remark 4 are the 
best ones in general as they agree with those from [10] for the cases a, a E (1,2) that 
are the best possible up to arbitrary (not only Orlicz) equivalent reforming (see [3, 4]). 

Finally we give some examples. 

Examples: Let M(t) = t(1 + 1nt]), p > 1. Obviously M satisfies the L 2 -condition at 0 
and at oo and a =	= p. Therefore hM = 'M, HM (0,1) = LM (0,1) and 

a) if q < 0: 

R )(01) (t) t', 1M is H r-smooth and the usual norm is norm of best smoothness; 

(t) < 21M (l/t) for small t and LM (0,1) is HMsmooth. 

b) if q > 0: 

E(p ) ,[0 , 1) (t) :5 2M (t) for small t and 1M is HMsmooth; 

^ ct and LM (0, 1) is Hr-smooth and the usual norm is norm of best smoothness.
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