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Equivalent norms of best smoothness are constructed for large classes of Orlicz sequence and function
spaces.
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1. Introduction

It is well known [1, 12] that the usual norm in the spaces I, and L, (p > l,p not even) is E (p)-
times uniformly differentiable, and the Taylor remainder term is of order p — E (p), where

+y_ [p—1 ifpisan integer
Ep) = { [p)  otherwise )

Moreover, this order can not be improved by equivalent renorming [1). For the Orlicz spaces
Iy and Ly, the exact order, up to equivalent Orlicz renorming, of the reminder term after
differentiation of the norm was found in [9). This order gives information about the type of lps,
L (see, e.g., [6: Section 1.e.16]).

Recently, the best order of Frechet and uniformly Frechet differentiability of the norm (up to
equivalent renorming) in Orlicz sequence and function spaces was found in [10]. As usual,in every
case an appropriate Orlicz function is constructed so the corresponding Orlicz norm, equivalent
to the initial one, is of highest order of differentiability. Our aim is a further investigation of the
smoothness of this "good” norm, which is related to a precise estimation of the remainder term
after the last derivative. It turns out that in many cases it is also norm of best smoothness. We
note that, in a separable Banach space, the existence of an equivalent norm (or more generally
bump function) from some smoothness class implies the existence of a partition of unity from
the same class (see, e.g., [13: Section 3.1.6}).

Some of the results contained in this paper were announced in a talk given by the author at
the 17-th Winter School on Abstract Analysis, Srni, CzechoSlovakia, 1990.

2. Preliminaries

We begin with some notations and definitions. In the sequel X, Y denote Banach spaces, S(X)
the unit sphere of X, B (z;r) the ball centered at z of radius r, and N the set of all naturals, R
of all reals, R* of all positive reals. Everywhere differentiability is understood in Frechet sense.
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We denote by B’ (X,Y) the space of all continuous symmetric j-linear forms

T: XXXX...xX=>Y
e

j—times
equipped with the norm
”Tlll = sup{”T(zh--'aI.‘i)“; z; € X,“Z‘,'” < 1 (1 = 11-"aj)}'

In the next we use the notation zU) = (z,...,z) for z € X. An equivalent norm (see, e.g., [13:

J—times

Section 1.3.8]) is given by
ITIl = sup {||T (s9)||s2 € X, ll=ll < 1}

and ||T|| < [IT|}, £ |IT}|,x = (2]')"‘/]'!. If Y = R, the space of all continuous symmetric
J-linear functionals on X is denoted B’ (X).

Definition 1: A map f: X ~— Y is said to be k-times differentiable at z € X if there exist
T; € B’ (X,Y) (7 =1,...,k) such that

fz+th) = f(z)+ ]‘; %T,- (A9 + o2 (111¥)

uniformly for h in the unit sphere §(X) of X, i.e. given ¢ > 0 there is a § > 0 independent of
ko )
h € §(X) such that ,‘f(:c +th) - ¥ 5T; (h(J))‘ < c(z)e|t|* provided |¢| < 6. T; is called j-th
1=0

derivative of f at z and is denoted D’ f(z) or fU)(z).

Let w: R* — R* be a non-décrea.sing function with limy,ow (t) = 0, and k the greatest
integer such that w (t) = o (). Set w) (1) = w (1) /t*.

Definition 2: A map f: X +— Y is called H“-smooth in V C X (see, e.g., [2]) if f is
k-times continuously differentiable and for every z € V there exist 4, A (z) > 0 such that

179 @) - £ G| < Az) @i lly - 1), (1)
»provided ¥, 2€ B(z;6)nV.

The norm in the left-hand side of (1) is understood as the norm of the k-linear continuous
symmetric form %) (y) — f*) () from B* {X,Y). The space of all H¥-smooth functions on V
is denoted H“ (V,Y). If the norm in a Banach space is H“ -smooth in X \ {0}, then X is called
H*“-smooth. A H“-smooth map (space) with w(t) = 17 is called HP-smooth.

Let us recall some definitions and facts about Orlicz spaces which will be necessary in what
follows. An even convex continuous function M, defined and non-decreasing on [0, 00), is called
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Orlicz function if M (0) = 0, M (c0) = c0. Let (S,Z,u) be a measure space. The space of all
equivalent classes of u-measurable functions z on S such that

/SM(a:(s)/,\)dp(s) = M (2/2) < 0
for some positive A with the norm
Izl = inf{A >0; M (z/)) < l}

is a Banach space, which is called the Orlicz space generated by M and denoted by Lpy (S, %, u).
The subspace of Las (S, Z, x). which consists of all z such that M (Az) < oo for every A>0is
denoted Hp (S,Z, ).

The most interesting Orlicz spaces considered usually in the literature are the sequence
spaces Ip, hps and the pairs of function spaces L (0, 1), Hm(0,1) and Ly (0 00), Hp (0,00)
corresponding to the cases: S is a countable union of atoms of equal mass, § = [0,1] or § =
[0,00), and g the usual Lebesgue measure. We note that if the Orlicz function M satisfies the
Aq-condition at 0 (at oo, at 0 and 00), i.e. there exists k > 0 such that

M(2t)< kM (), t€[0,1] (t€[1,00),t€[0,00)),

the spaces Ias and hps (Lps(0,1) and Hpr(0,1), Lag (0,00) and Hps (0, 00)) coincide. Obviously
Ins, Lag (0,1) and Lag (0, 00) essentially depend on the behaviour of the function M near 0, oo,
and 0 and oo, respectively. It is well known (see, e.g., {5]) that if two Orlicz functions M and N
are equivalent (M ~ N) at 0 (at oo, at 0 and o0), i.e.

M (c"t) < N(t)<eM(ct), te(0,1) (t€[1,00),t € [0,00))

for some positive constant ¢, then hy (Hn(0,1),Hn(0,00)) is isomorphic to
har (Hpr(0,1), Hag (0,00)). Using this result equivalent norms in hy, Hpm (0,1) or Hps(0,00)
are usually constructed through Orlicz functions, equivalent to M at 0, at co or at 0 and oo,
respectively.

Now we recall that the Boyd indices for Aps, Hps (0,1) and Hps (0,00) can be expressed by
the formulas (see, e.g., [6: Section 2.b.5])

afy = sup {p; sup{%; u,v € (0,1]} < oo} ,
aﬁ;sup{p; sup{ MY (v)), u,v € [1, oo)} <oo}

ap = min (aﬂ,,aﬁ‘,}) y
respectively.

A detailed study of the problem of the isomorphic embeddings of the hps spaces into Orlicz
spaces is contained in {7} and [8]. Here we only mention that always ap > 1 and that ko is
isomorphic to a subspace of hp. Finally we consider a class of smooth Orlicz functions that was
introduced in [10}.

Definition 3: AC*,k € N is the class of all functions M such that:
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i) apm > k;
ii) the k-th derivative M%) of Af i3 absolilely continuous in every finiie intervai;
iti) th+1 IM("'“) (t)' < cM(ct) a.e. in[0,00) for some ¢ > 0. 2)
It is not hard to check that every M € AC* satisfies for fixed a € (k, apr) the inequalities
M) <eA*M(t), A€ 0,1], t € [0,00) 3)
and ' )
£ MO @] <M (at), teo0) (i=1,....k), . (4)

where c; is a constant depending on a and M. Without loss of generality we shall assume in
the sequel that ¢; = ¢ > 1, i.e. that for a fixed a € (k,an), M satisfies (2), (3) and (4) with the
same constant ¢ > 1.

3. Properties of the class AC*

In this section we make a further investigation of the class AC* in order to improve some
estimates from [10]. We shall often use the following simple inequalities implied by the convexity
of M:

uM (v) < M () + M (v), (5)

M (max (Ju},[v])) < (M (2u) + M (2v)) /2, . (6)

for any real u, v.
Let k € N. Put

-1
FM (v,v) = M (uv) (u"'“M (v)) .
For any k € N and interval / C Rt we associate to M the function rt’, defined as
r,’:", )= tsup{F,gw (u,v); (u,v) € [t 1] x ]} .

If I = R*, we simply choose rt’, = rkM. We set R,’:", (t) = t"r,’:”, (t) and RkM t) = t"rkM ).
Obviously '

@2 o (1) 2 M) /5, te(0,1], (M

M (uv) < uF¥ 1M (v)r¥ (1) /8, t € (0,1], (u,v) € [t,1] x RY. (8)

The following properties of R} will be useful.

Lemma 1: Let M € AC*. Then r¥, and of course also RM, are non-decreasing in {0,%0]
Jor some ty € (0,1).

Proof: According to (3) for a suitable ¢, € (0, 1)
M (uv) < u¥ M (v), (u,v) € [0,%0] X R.

First we show that r} (1) < rM(a) for any t € [¢%,0] and @ € (0,2). Indeed, the above
inequality implies

sup {Fr(u,v); (u,v) € [t,a] x R"'} < (%) sup{F,ﬁ" (u,v); (u,v) € [a, a;} X R"’} ,
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with ¢sz /t < 1. Using this inequality and the representation
M (1) = tmax (sup {FM (w,9); (,0) € [t,0] x R*} ,sup { F (u,0); (u,0) € [a,1] xR*})

we immediately obtain v (t) < rM (a). Let now 0 < ¢; < t2 < to. Then t%j <t £ t%j" for
some j € N and the sequence of inequalities

My (7)< (B 7) < sl (W)

completes the proof. =

We note that rM (At) < ArM (1), A > 1.

Lemma 2: If M ~ N at 0 and oo, then RY ~ R} at 0.

Proof: Without loss of generality we may assume that M (1) = N(1) = 1. Let
¢ M (c*t) < N (t) £ cM (ct) for some ¢ > 1. Then

a)forc2 < u<1,v€eRt,

N(w)  aen) M (1)

PN () = F () T
b)fort < u<c7? veRt
2
N (uv) M (euv) _ oy M(mn) t<Pu=u <Ly =cly,

u*+1N (v) = uFHIM (c-v) w1 M (vy)’
which implies
sup {F,fv (u,v);(u,v) € [t,1] x R+} < A+ gyp {F,ﬁw (u,v);(u,v) € [t,1] x R}
and symmetrically ]
sup {l"‘,ﬁw (u,v);(u,v) €ft,1] x R+} < Ak+2) sup{F[’ (u,v);(u,v) € ft,1] x R}.
Thus c~2+DRM (1) < RY () < 2*+2RM (1),t € (0,1]. »
Lemma. 3: For any real a and b,t € A(O, 1], the inequality
e+ M (a) < (M (a) + M (ab/t)) RY (2) (9)
holds.
Proof: If b/t < 1, then (7) implies

(641 /RY (2) - 1) M (a) < (D 1) M (e) SO < M (abft).
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Suppose now b/t > 1. Obviously ¢ < t/b < 1, and (9) immediately follows from

M (a) _ b'M(a)
(t/6)¥+" M (abft) — t*M (ab/t)’

(1) 2t
Thus Lemma 3 is proved. =
Lemma 4: Let M € AC*. Then for any real u,v with u? + v? # 0 we have
|M® (4 + v) - M® (u)] < e [v] M (266) /6441,
where ¢y = 25+'¢, £ = max(Jul, |v]).
Proof: Suppose first that |v] < |u| /2. In this case £ = |u|, and using (2) we have

u+v
|M<’=> (u4v)—M® (u)| = |/ MEHD (1) gy

o [ M (et) oM el o) gern g M 256)
= Jrmin(Jul.fu+ol) lt|k+l - (lul‘_lvl)k+l - §k+l

I |v| > Ju| /2, then |v| /€ > 1/2 and using (4) and (3) we obtain

M(c(u+v)) M((cu)
. IM(k) (utv)- M(k)(u)l < c( lu + o * [uf* )

< g () cewr o+ () mw) s 20

Thus Lemma 4 is proved. =

We associate to every M € AC*andz€ X = Ly (5,2, 1) the symmetric ¢-linear forms
(i="1,2,...,k) defined by

M (z; yl,yz,---,y.')=LM“)(z(S))ﬁyk(S)dﬂ(S)
. k=1

and the symmetric (i ~ j)-linear forms (0 < j < 1)
— ) |
Mos(@ v i) = [ MO (2())27 (5) [T () (s),
k=1
where y1,¥2,...,¥ € X. Obviously IE'O = M; and Mo=M.

Lemma 5: Let M € ACk. Then M;;(z) € B3(X) for every zE€X
(i=1,2,...,k; 0< j < 1) and :

“1?4',, (z)” < k! (ﬁ(cz) + c) .
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Proof: It is sufficient to show that for fixed z € X
sup{l/ﬁ;vj (:c; h("'j))l; IR]] € l/c} <oo (i=1,2,...,ks 0<j<1).
Denote §; = {s € 5; 0 < |z(s)| €|k (s)|} and S = S\ 1. Using (3) and (4) we have

e (a: 85)] <[00 ()] T @ 11 (N d ()

IA

IN

([, Mtes N UREN 1z () disto) + A M(cz(spdu(s))

IA

¢ /s: M (ch(s))dp(s) + c/s2 M (cz(s))du(s) <c (M(cx)'+ C) .

The next lemma essentially shows that M*) ¢ H¥ (R*), w(t) = rM (¢).

Lemma 6: Let M € AC*. For any real u, v, w, t such that u? + v? # 0, |t| < 1/4c, the
inequalities

|(M® (u 4 1) - M® (v)) u"w"-“l < ea (M (dcu)+ M (v) + M (w) e (1t)  (10)
for0<i<k-1and
I(M(k)(u+ tv) — M*) (u)) ukl < 2 (M (decu) + M (v)) ™ (1t]) (10")

hold, where ca = 2¢, (2c)k+1.

Proof: Lemma 4 implies

I(M“") (v + tv) = MW (u)) u‘w"".l < ¢ |tv) |wl¥~* M (2c€) f€F+1 (11)

where £ = max (|u],[tv]). It is clear that to estimate the right-hand side of (11) it suffices to
consider only positive u, v, w, t, and M (1) = 1. We separate the following cases:
a) w < 2¢€. Using (5) and (6) we obtain

towh M (2¢6) /€417 < (2)41 7 twM (2¢) / (2¢6)

< (20)FF 7 £ (M (2¢€) + M (v)) € 3(2¢)* T (M (4cu) + M (v)).
b) 2¢€ < w < 2¢€/t. Now

tvuyk-iM(‘zc{) IR (—v_)k+l—i (i)k+]-|’ N
—gmo S (2t e + 5 M (2c€). (12)
If i # 0 using once more (5) and (6) we obtain

tow* =i M (2c€)
g

IN

(20)FH1 T L (2M (2¢€) + M (v) + M (w))

IN

2(2e)* 1 1 (M (deu) + M (v) + M (w)).



130 R.P. MALEEV

If i = 0 we continue the estimation in (12) using Lemma 3:

vwk—i ¢ 2 k+1 k+1
< (20051 (2M (2¢€) + M (v) + M (w)) rf (2)
< 2(20)F (M (dcu) + M (v) + M (w))r¥ (2).

i“inally we consider
c) w > 2c¢€/t. This case is quite easy. Indeed

tvw* ' M (2¢€)

g S (%)k M (2¢€) = (2c)"'." ¢ (%)k M (2¢¢)

IN

(2)F K M (wt) < (20)F e M (0) M (w), 4

where we used (8) in the last inequality.
Combining the estimates obtained in the cases a), b) and c) it is easy to get (10) with
c2 = 2¢, (2¢)**!. The proof of (10’) is the same. Thus Lemma 6 is proved. =

Corollary 1: Let M € AC*. Then for every z,h € X and any t € (0,1/4c) the estimate

e
M (z + th) - Z%Mj (2: )

i=07"

<eo(M(dea)+t MW) RY (1), . (13)

holds, where c3 = 2¢,/k!.

Proof: Obviously, for.every s € S:

k i N -
M0+ th60) - 3 O 410 (o) < L 1g9 .4y 100 () - 11 (20|

for some 8, € (0,1). Lemma 6 applied for i = 0, u = z(s), v = 6,h (), w = h(s) gives

262

k i
M (2 () + th(5)) = - L 0 (2 9))] < T2 (M (e () + M (B ) RY ().
21 !

Now to obtain (13) we only have to integrate over S the last inequality. »

Remark 1: Corollary 1 is a quantitative improvement of Lemma 4 in [10], where only
0 (Itlk) instead of [¢|* M (Jt]) in the right-hand side of (13) was given. The estimate (13)

implies, of course, that E X = Bi(X)is (k- i)-times differentiable in X fori=0,...,k -1
(B°(X)=R*) and D’M = M; (j=1,2,...,k), D'M; = Myy; (i+35.<k).

Corollary 2: We have Mk_j € HY (X, Bk-i (X)) (j=0,1,...,k), where w(t) = rM (¢).
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B

Proof: We shall prove that for any y, z from the ball B (z; 1/8¢c) the inequalities
|#4; () = Mi; (2)]| < cap (@) ¥ (lly = 2ll), 5= 0,1,2,. k- 1, (14)

| Mok (9) ~ M (2)] < cap (2) ¥ (Ily - 2I1), (14)

where ¢q = k8% 2c%¢y, () = (8c||z| + 1)*? (M(Scz) +8c+ 1), hold. Indeed, let 2 € §(X),
s € 5. Obviously

le.j (y; h(k_j)) - ﬁk,j (z; h("—j))l

<| [ M9 o) (v ) - 2 (9) W () du ()

+ [ MO (o) - MO 2 (@Dl () ()" ds ().

The second member of the last sum is easily estimated for j < k using (10) for u = z(s),

v=((y(s) = 2(sN)/ lly = 2ll, t = lly - zIl, w = h(s) and (6):
1 (6 - MO 2 (D1 (o) 1 ()14 du (5)
< 2 (M (d4e2) + M((y - 2)/ lly = 2II) + M () o (Ily - =)
< 2 (M (8c2) +5) ! (lly - =II)-

To obtain (14) for j < k with ¢4 = x85~2c?*¢; and o (k) = (8c||z|| + 1)*! (M(Scz) + 8¢+ 1),
it is enough to estimate the first member of (15) in the following way:

| [ M ) () - 2 9) B3 () )
)

— =t .
< || M @), My = 20 X ol 2017~ 111
=0
< ke (M (ey) +¢) (llall + 1/8ey ™ Iy - =]

S Ksk—lczk (M(?Cz)'*' M(?c(y - Z)) + C) (80”1“ + l)k—2 “]I _ Z”

2

< 8+~ 2c? (4M (2cz) + 8¢ + 1) (8cllall + 1) |ly - 2.

We used Lemma 5, the relation between the norms ||-|| and ||-||, in B¥ (X) and the convexity of
M. The proof of (14') uses (10’) and is practically the same. =

Remark 2: Obviously M; € H' (X, B (X)) and M;; € H' (X,B~i (X)) for0 < j < i< k.
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4. Main result

We are ready to prove the following

Theorem 1: Let M € AC* and (5,%,p) be a measure space. Thén X = Hp(S,Z, ) is
H¥-smooth, where w(t) = RM (t).

Proof: Set n(z) = ||z]|l._ Using Remark 1 and the implicit function theorem
abgl_ied to ‘the _equation M (z/n(z))—1 = 0 we obtain as in [10, Theorem 6] n’(z)
= Mio(z/n(z)) /Mm (z/n(z)), which, by an easy induction argument, implies that n is k-times
differentiable in X \ {0}. What we have to prove in addition is that n®) € A1 (X \ 0, B*(X)),

wy = rM. To this end we need some more information about the k-th derivative of the norm.
First for sake of brevity we introduce the notation

M:;(z) = M (2/n(2)).
Using the equality

z oy _yMia(z) - Mio(z; y)
p(35) W= 5t~ mm P v =GR

we obtain by induction

Sk o Ci (=1) Fai (2) M55 (2) i g (2) + P (Wi ()
nk=1(z) M1 (2)

n® (z) = , (15)

where P( i (z)) is a polynomial with respect to M,J (i < k) and P( ij (x)) € B* (X) for
fixed z.
Let wy = M. It is easy to check that f € H“ (X B"(X)) g € H'(z,RY) imply f/g €
(X \ A; B* (X)), where A = {z € X : g(z) = 0}. Indeed, fix z ¢ A. Then for sufficiently
small 6> 0,
l @ _S@) Gl @) = EIlg (@l + g (¥) — g (I ||f(z)|| (16)
9@ 9(2) llg ()II°
for any y,z € B(z; §). Let now z # 0, r = min (||z|| /2,1/8¢). As

H__ R PR
Tl ~ 10 IEl

for y,z € B(z; r), from (14) and (14’) and Lemma 1 it follows for any y,z € B (z; r) that

vz
IRIEL )
< cap (z) max (ﬁx) =2l = 0,1,0-0,8). (17)

Obviously n and M;; arein H'(X,B*~9(X)) for every i = 1,2...,k—1,0 < j < iand
therefore nM; € H! (X,R*). Now from the representation (15) of n(") (16) and (17) it follows

that n(®) ¢ g« (X \ {0}, B* (X)). Thus Theorem 1 is proved. =

“Mk,j (v) - My; (Z)” < cap (z) 7l (I
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5. Smooth renormings in arbitrary Orlicz spaces

We shall treat in details only the case of sequence spaces. The cases Has (0,1), Has (0,00), and
the general case Hps (S, Z,u) can be analogously treated. It is not hard to see that, without
some kind of smoothness of the Orlicz function M, the condition af, > 1 cannot ensure the
differentiability of the usual norm in hps. Nevertheless, equivalent smooth Orlicz renorming,
i.e. one generated by a suitable Orlicz function, equivalent to M at 0, is possible. Namely, the
following theorem holds true.

Theorem 2: Let o}, € (1,00). Then in hy there ezists an equivalent H“-smooth norm,
where w (t) = RQI‘[M] (t), k= E(c%).

Proof: As usual we suppose M (1) = 1, and since the behaviour of M at oo is unessential,
we “correct” it near co to a function N in such a way that ay = a3;. For example:

_ M), telo,1)
NO={ )t -

Put Na(t) = [y N1(u)exp(u/(u—t))du/u, where Ny (t) = fD'N(u)du/u. It is not hard to
check that .
(1/4) N (t/4) < e 'N (t/4) < N2 (1) S N (1), t € [0,00). (19)
This implies that hy, is isomorphic to hps. Moreover, it is easily verified that N, € ACF for any
k, and we may apply Theorem 1: Ay, is H¥-smooth, w(t) = RLV’ (t), k= E(an,) = E(a?w).
Lemma 2 and (19) imply

472IRY (1) < RY* (1) S 44HIRY (1), te [0,1].

To finish we observe that RY = Rz,’[o,ll' Indeed, RY > Rﬁ,l[o.l] is obvious, and we only have to
prove RY < Rﬁ,’[O.l]‘ Analogously to the proof of Lemma 2 we show that for any (u,v) € [t, 1]xR*
there are u; and vy, (u1,01) € [t,1]x[0,1] with F¥ (u,v) = FM (u,v). fv < 1 we take simply
u; =1u, v; =v. Let v >1and uv < 1. Then

5N (u,v) = (uo) ) M (uv) = FM (ug,01), 11 = wv,m = 1.

Finally, if uv > 1, then F}¥ (u,v) = 1= FM (u;,v), u; = v; = 1. Theorem 2 is proved =

Remark 3: This result is of no interest if M ~ t2 at 0, p € N, because it is well known
that in l5, the usual norm is infinitely many times differentiable. On the other hand if M # 1
at 0, p € N, the best order of smoothness in hpy by equivalent renorming is not better than
t%. Indeed, for a9 # 2p, p € N this follows simply from the fact that la‘,’,, is isomorphic to
a subspace of hjpy, if we combine this with the result from [1] formulated in the Introduction.
If S, = 2p, p € N, but M £ t? at 0, it was shown in [11] that in hps there is no equivalent
a%,-times differentiable norm, i.e. any equivalent norm in hp is again at most HeM-smooth.

Corollary 3: Let M £ t?? at 0, p € N. Then
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a) the order of smoothness Rk 0.1)° k = E (a%,) cannot be improved with respect to power
type orders;

b) if
M (wv) < cu®™ M (v), u,v € [0,1], (20)

. . 0 .
then in hys there is an H*M -smooth norm, i.e.norm of best order of smoothness.

Proof: To obtain a) it is sufficient to observe that from the definition of a3, it follows for
any u,v € [0,1} and fixed ¢ > 0 that M(u v) < c,u®M=¢M (), for some c, > 0, which implies
for k = E (a%) that RM o (B < et~ t € [0, 1].

"~ b) In this case Rk,[o,l] (ty<et*M, k=E (@%) »

Remark 4: The condition (20) is fulfilled for example if M (t'/“gd) is quasi-convex. Results
analogous to those from Theorem 2 and Corollary 3 b) can be obtained for the function spaces
Hp (0,1) and Hpg (0,00) and for general Orlicz spaces H (S,X,n), as well, using the same tech-
niques and results on embeddings of I, spaces in Orlicz function spaces [8]. The corresponding
orders of smoothness for Has (0,1) and Hps (0, 00) are respectively

RY (1) = k! sup{I/F;?’(u,v); w€[l,1/t], ve [l,oo)}, k= E(a3;)
and R¥ (t), k = E (apm).

Remark 5: Very probably the orders of smoothness from Theorem 2 and Remark 4 are the
best ones in general as they agree with those from [10] for the cases oly, a5, ap € (1,2) that
are the best possible up.to arbitrary (not only Orlicz) equivalent renorming (see [3, 4])."

Finally we give some examples.
Examples: Let M (t) = t? (1 + |Int])?, p > 1. Obviously M satisfies the A,-condition at 0

and at 0o and o}, = a3 = p. Therefore hps = Ips, Hpg (0,1) = Lps (0,1) and
a)ifg<O0:

Rg(p).[o 1) (t) < t7, Iy is HP-smooth and the usual norm is norm of best smoothness;

REp) (1) < 2/M (1/1) for small t and La (0,1) is HM-smooth.

b) if ¢ > 0:

ng(p).lo.l] (t) < 2M (t) for small t and lps is HM-smooth;

Rg(r) < ct? and Ly (0,1) is HP-smooth and the usual norm is norm of best smoothness.
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