Norms of Best Smoothness in Orlicz Spaces

R. P. MALEEV

Equivalent norms of best smoothness are constructed for large classes of Orlicz sequence and function spaces.

Key words: *Orlic: spaces, Frechet differentiability* AMS subject classification: 46B20, 46E30

1. Introduction

It is well known [1, 12] that the usual norm in the spaces l_p and $L_p(p>1, p$ not even) is $E(p)$ times uniformly differentiable, and the Taylor remainder term is of order $p - E(p)$, where

$$
E(p) = \begin{cases} p-1 & \text{if p is an integer} \\ [p] & \text{otherwise} \end{cases}
$$

rentiability

30

al norm in the spaces

the Taylor remainder
 $= \begin{cases} p-1 & \text{if p is an} \\ [p] & \text{otherwise} \end{cases}$

nproved by equivalen

o equivalent Orlicz 1 Moreover, this order can not be improved by equivalent renorming [1]. For the Orlicz spaces I_M and L_M , the exact order, up to equivalent Orlicz renorming, of the reminder term after differentiation of the norm was found in [9]. This order gives information about the type of *IM,* L_M (see, e.g., [6: Section 1.e.16]).

Recently, the best order of Frechet and uniformly Frechet differentiability of the norm (up to equivalent renorming) in Orlicz sequence and function spaces was found in [10]. As usual, in every case an appropriate Orlicz function is constructed so the corresponding Orlicz norm, equivalent to the initial one, is of highest order of differentiability. Our aim is a further investigation of the smoothness of this "good" norm, which is related to a precise estimation of the remainder term after the last derivative. It turns out that in many cases it is also norm of best smoothness. We note that, in a separable Banach space, the existence of an equivalent norm (or more generally bump function) from some smoothness class implies the existence of a partition of unity from the same class (see, e.g., [13: Section 3.1.6]).

Some of the results contained in this paper were announced in a talk given by the author at the 17-th Winter School on Abstract Analysis, Srni, CzechoSlovakia, 1990.

2. Preliminaries

We begin with some notations and definitions. In the sequel X, *Y* denote Banach spaces, *5(X)* the unit sphere of X, $B(x;\tau)$ the ball centered at x of radius r , and N the set of all naturals, R of all reals, R^+ of all positive reals. Everywhere differentiability is understood in Frechet sense. 2. Preliminaries
We begin with some notations and definitions. In the set
the unit sphere of X, $B(x;r)$ the ball centered at x of 1
of all reals, R^+ of all positive reals. Everywhere different
R.P. Maleev: Acad. Sci., I

R. P. Maleev: Acad. Sci., Inst. Math. & Comp. Centre, 8 C. Bonchev, 1090 Sofia, Bulgaria Res. supp. in part by the Bulg. Ministry of Educ. and Sci., Grant No MM-3/91

We denote by $B^j(X, Y)$ the space of all continuous symmetric *j*-linear forms

$$
T: \underbrace{X \times X \times \ldots \times X}_{j-times} \to Y
$$

equipped with the norm

$$
||T||_1 = \sup \{||T(x_1,\ldots,x_j)||;\ x_i \in X, ||x_i|| \leq 1 \ (i=1,\ldots,j)\}.
$$

In the next we use the notation $x^{(j)} = (x, \ldots, x)$ for $x \in X$. An equivalent norm (see, e.g., [13: **j—timea**

Section 1.3.8]) is given by

$$
||T|| = \sup \{ ||T(x^{(j)})|| ; x \in X, ||x|| \le 1 \}
$$

and $||T|| \leq ||T||_1 \leq \kappa ||T||$, $\kappa = (2j)^j/j!$. If $Y = \mathbf{R}$, the space of all continuous symmetric j-linear functionals on X is denoted $B^j(X)$.

and $||T|| \le ||T||_1 \le \kappa ||T||, \kappa = (2j)^j/j!$. If $Y = \mathbf{R}$, the space of all continuous symmetric *j*-linear functionals on *X* is denoted $B^j(X)$.
 Definition 1: A map $f : X \rightarrow Y$ is said to be *k-times differentiable at* $x \in X$ Definition 1: A map $f: X \longrightarrow Y$ is said to be k-times differentiable at $x \in X$ if there exist

$$
f(x+th) = f(x) + \sum_{j=1}^{k} \frac{t^{j}}{j!} T_{j} (h^{(j)}) + o_x (|t|^{k})
$$

.uniformly for *h* in the unit sphere $S(X)$ of X, i.e. given $\varepsilon > 0$ there is a $\delta > 0$ independent of $h\in S(X)$ such that $\left|f(x+th)-\sum\limits_{i=0}^k\frac{t^j}{j!}T_j\left(h^{(j)}\right)\right|< c(x)\varepsilon\left|t\right|^k$ provided $|t|<\delta.$ T_j is called j -th *derivative of f at x and is denoted* $D^jf(x)$ *or* $f^{(j)}(x)$ *.* formly for h in the unit sphere $S(X)$ of X , i.e. given $\varepsilon > 0$ there is a $\delta > 0$ independent of $S(X)$ such that $\left| f(x+th) - \sum_{j=0}^{k} \frac{t^{j}}{j!} T_{j} (h^{(j)}) \right| < c(x) \varepsilon |t|^{k}$ provided $|t| < \delta$. T_{j} is called j -th va

Let ω : $\mathbb{R}^+ \longrightarrow \mathbb{R}^+$ be a non-decreasing function with $\lim_{t\to 0} \omega(t) = 0$, and k the greatest integer such that $\omega(t) = o(t^k)$. Set $\omega_1(t) = \omega(t)/t^k$.

Definition 2: A map $f : X \rightarrow Y$ is called H^{ω} -smooth in $V \subset X$ (see, e.g., [2]) if *f* is

k-times continuously differentiable and for every
$$
x \in V
$$
 there exist δ , $A(x) > 0$ such that

$$
\left| \left| f^{(k)}(y) - f^{(k)}(z) \right| \right| \leq A(x) \omega_1(||y - z||), \tag{1}
$$

provided $y, z \in B(x;\delta) \cap V$.

The norm in the left-hand side of (1) is understood as the norm of the k-linear continuous symmetric form $f^{(k)}(y) - f^{(k)}(z)$ from $B^k(X, Y)$. The space of all H^{ω} -smooth functions on *V* is denoted $H^{\omega}(V, Y)$. If the norm in a Banach space is H^{ω} -smooth in $X \setminus \{0\}$, then X is called H^{ω} -smooth. A H^{ω} -smooth map (space) with $\omega(t) = t^p$ is called H^p -smooth.

Let us recall some definitions and facts about Orlicz spaces which will be necessary in what follows. An even convex continuous function M , defined and non-decreasing on $[0, \infty)$, is called *Orlicz function* if $M(0) = 0$, $M(\infty) = \infty$. Let (S, Σ, μ) be a measure space. The space of all equivalent classes of μ -measurable functions x on S such that

$$
\int_{S} M(x(s)/\lambda) d\mu(s) = \widetilde{M}(x/\lambda) < \infty
$$

for some positive λ with the norm

$$
||x|| = \inf \left\{ \lambda > 0; \widetilde{M} (x/\lambda) \leq 1 \right\}
$$

is a Banach space, which is called the *Orlicz space generated by* M and denoted by $L_M(S, \Sigma, \mu)$. The subspace of $L_M(S, \Sigma, \mu)$ which consists of all x such that $\widetilde{M}(\lambda x) < \infty$ for every $\lambda > 0$ is denoted $H_M(S, \Sigma, \mu)$.

The most interesting Orlicz spaces considered usually in the literature are the sequence spaces l_M , h_M and the pairs of function spaces $L_M(0,1)$, $H_M(0,1)$ and $L_M(0,\infty)$, $H_M(0,\infty)$ corresponding to the cases: S is a countable union of atoms of equal mass, $S = [0,1]$ or $S =$ $[0,\infty)$, and μ the usual Lebesgue measure. We note that if the Orlicz function *M* satisfies the Δ_2 -condition at 0 (at ∞ , at 0 and ∞), i.e. there exists $k>0$ such that

$$
M(2t) \leq k M(t), t \in [0,1] \ (t \in [1,\infty), t \in [0,\infty)),
$$

the spaces I_M and h_M (L_M (0,1) and H_M (0,1), L_M (0, ∞) and H_M (0, ∞)) coincide. Obviously l_M , L_M (0, 1) and L_M (0, ∞) essentially depend on the behaviour of the function M near 0, ∞ , and 0 and ∞ , respectively. It is well known (see, e.g., [5]) that if two Orlicz functions *M* and *N* are equivalent $(M \sim N)$ at 0 (at ∞ , at 0 and ∞), i.e.

$$
c^{-1}M\left(c^{-1}t\right) \leq N\left(t\right) \leq cM\left(ct\right), \ t \in [0,1] \ \left(t \in [1,\infty), t \in [0,\infty)\right)
$$

for some positive constant *c*, then $h_N(H_N(0,1), H_N(0,\infty))$ is isomorphic to h_M ($H_M(0,1)$, $H_M(0,\infty)$). Using this result equivalent norms in h_M , $H_M(0,1)$ or $H_M(0,\infty)$ are usually constructed through Orlicz functions, equivalent to M at 0, at ∞ or at 0 and ∞ , respectively.

Now we recall that the Boyd indices for h_M , H_M (0, 1) and H_M (0, ∞) can be expressed by

$$
c^{-1}M(c^{-1}t) \leq N(t) \leq cM(ct), \ t \in [0,1] \ (t \in [1,\infty), t \in [0,0]
$$
\nfor some positive constant c , then $h_N(H_N(0,1), H_N(0,\infty))$ is

\n
$$
h_M(H_M(0,1), H_M(0,\infty)).
$$
\nUsing this result equivalent norms in h_M , H_M (a, ∞) is

\nare usually constructed through Orlicz functions, equivalent to M at 0, at

\nrespectively.

\nNow we recall that the Boyd indices for h_M , $H_M(0,1)$ and $H_M(0,\infty)$ can be

\nthe formulas (see, e.g., [6: Section 2.b.5])

\n
$$
\alpha_M^0 = \sup \left\{ p; \sup \left\{ \frac{M(uv)}{u^p M(v)}; \ u, v \in (0,1] \right\} < \infty \right\},
$$
\n
$$
\alpha_M^0 = \sup \left\{ p; \sup \left\{ \frac{u^p M(v)}{M(uv)}; \ u, v \in [1,\infty) \right\} < \infty \right\},
$$
\n
$$
\alpha_M = \min \left(\alpha_M^0, \alpha_M^{\infty} \right),
$$

respectively.

A detailed study of the problem of the isomorphic embeddings of the *hM* spaces into Orlicz spaces is contained in [7] and [8]. Here we only mention that always $\alpha_M \geq 1$ and that $h_{\alpha_{\alpha}}$ is isomorphic to a subspace of h_M . Finally we consider a class of smooth Orlicz functions that was introduced in [10].

Definition 3: AC^k , $k \in \mathbb{N}$ is the class of all functions *M* such that:

i) $\alpha_M > k$;

ii) the *k*-th derivative $M^{(k)}$ of M is absolutely continuous in every finite interval; *i*) $\alpha_M > k$;
ii) the *k*-th derivative
iii) $t^{k+1} |M^{(k+1)}(t)| \le$
s not hard to check tha *M*^(k) of *M* is absolutely continuous in every finite interval;
 cM (ct) a.e. in [0, ∞) for some $c > 0$. (2)

1. every $M \in AC^k$ satisfies for fixed $a \in (k, \alpha_M)$ the inequalities

(λt) $\leq c_1 \lambda^a M(t)$, $\lambda \in [0,1$ *ive* $M^{(k)}$ of M *is absolutely continuous in every finite interval;*
 $\leq cM(ct)$ *a.e. in* $[0, \infty)$ for some $c > 0$. (2)

that every $M \in AC^k$ satisfies for fixed $a \in (k, \alpha_M)$ the inequalities
 $M(\lambda t) \leq c_1 \lambda^a M(t)$,

$$
\text{if } t^{n+1} | M^{(n+1)}(t) | \leq c M \left(ct \right) \text{ a.e. in } [0, \infty) \text{ for some } c > 0. \tag{2}
$$

It is not hard to check that every $M \in AC^k$ satisfies for fixed $a \in (k, \alpha_M)$ the inequalities

$$
M(\lambda t) \le c_1 \lambda^a M(t), \ \lambda \in [0,1], \ t \in [0,\infty)
$$
 (3)

and

$$
t^{i}\left|M^{(i)}(t)\right| \leq c_{1} M(c_{1} t), \ t \in [0,\infty) \ (i=1,\ldots,k), \qquad (4)
$$

(k) of *M* is absolutely continuous in every finite interval;
 I (*ct*) *a.e.* in [0, ∞) *for some* $c > 0$. (2)

every $M \in AC^k$ satisfies for fixed $a \in (k, \alpha_M)$ the inequalities
 $t) \le c_1 \lambda^a M(t), \lambda \in [0,1], t \in [0,\infty)$ where c_1 is a constant depending on a and M. Without loss of generality we shall assume in where c_1 is a constant depending on a and M . Without loss of generality we shall assume in
the sequel that $c_1 = c \ge 1$, i.e. that for a fixed $a \in (k, \alpha_M)$, M satisfies (2), (3) and (4) with the the sequel that $c_1 = c_2$
same constant $c \geq 1$. $\leq c_1 M(c_1 t)$, $t \in [0, \infty)$ $(i = 1, ..., k)$, (4)

on *a* and *M*. Without loss of generality we shall assume in
 u for a fixed $a \in (k, \alpha_M)$, *M* satisfies (2), (3) and (4) with the
 class AC^k
 um investigation of the *M*⁽ⁱ⁾(t) $\leq c_1 M(c_1 t)$, $t \in [0, \infty)$ ($i = 1, ..., k$),

bending on *a* and *M*. Without loss of generality we shall assume in

i.e. that for a fixed $a \in (k, \alpha_M)$, *M* satisfies (2), (3) and (4) with the
 the class AC^k

3. Properties of the class *ACk*

In this section we make a further investigation of the class *AC'* in order to improve some estimates from [10]. We shall often use the following simple inequalities implied by the convexity of M:

$$
uM\left(v\right)\leq M\left(uv\right)+M\left(v\right),\tag{5}
$$

$$
M\left(\max\left(|u|,|v|\right)\right) \le \left(M\left(2u\right) + M\left(2v\right)\right)/2, \tag{6}
$$

for any real *u, v.*

Let $k \in \mathbb{N}$. Put

$$
F_k^M(u,v)=M(uv)\left(u^{k+1}M(v)\right)^{-1}
$$

For any $k \in \mathbb{N}$ and interval $I \subset \mathbb{R}^+$ we associate to *M* the function $r_{k,l}^M$ defined as

$$
r_{k,I}^M(t)=t\sup\left\{F_k^M(u,v); (u,v)\in [t,1]\times I\right\}.
$$

If $I = \mathbf{R}^+$, we simply choose $r_{k,I}^M = r_k^M$. We set $R_{k,I}^M(t) = t^k r_{k,I}^M(t)$ and $R_k^M(t) = t^k r_k^M(t)$. **Obviously** *r* (*t)* $\mathbf{M} \{v\} \leq M \{uv\} + M \{v\}$, $\mathbf{M} \{v\} \leq M \{uv\} + M \{v\}$, $\mathbf{M} \{max([u], |v|)\} \leq (M (2u) + M (2v)) / 2$, $\mathbf{M} \{max([u], |v|)\} \leq (M (2u) + M (v))^{-1}$.
 $\mathbf{F}_k^M(u, v) = M (uv) (u^{k+1} M(v))^{-1}$.
 $\mathbf{I} \subset \mathbf{R}^+$ we associate to *M* $(\max(|u|, |v|)) \leq (M (2u) + M (2v))/2,$ (b)
 M
 M $(\max(|u|, |v|)) \leq (M (2u) + M (v))^{-1}.$
 M interval $I \subset \mathbb{R}^+$ we associate to *M* the function $r_{k,I}^M$ defined as
 $r_{k,I}^M$ $(t) = t \sup \{F_k^M(u, v); (u, v) \in [t, 1] \times I\}.$
 M $(\max x_{k,I}$

$$
r_k^M(t) \ge t, \; r_k^M(t) \ge M(t)/t^k, \; t \in (0,1], \tag{7}
$$

$$
M(uv) \leq u^{k+1} M(v) r_k^M(t) / t, \ t \in (0,1], \ (u,v) \in [t,1] \times \mathbf{R}^+.
$$
 (8)

The following properties of R_k^M will be useful.

Lemma 1: Let $M \in AC^k$. Then r_k^M , and of course also R_k^M , are non-decreasing in $[0, t_0]$ for some $t_0 \in (0,1)$.

Proof: According to (3) for a suitable $t_0 \in (0,1)$

$$
M(uv) \leq u^k M(v), (u, v) \in [0, t_0] \times \mathbf{R}.
$$

Froof: According to (3) for a suitable $t_0 \in (0,1)$
 $M(uv) \leq u^k M(v)$, $(u,v) \in [0,t_0] \times \mathbb{R}$.

First we show that $r_k^M(t) \leq r_k^M(a)$ for any $t \in [a^2, a]$ and $a \in (0,t_0]$. Indeed, the above inequality implies inequality implies

$$
\sup\left\{F_k^M\left(u,v\right);\ (u,v)\in[t,a]\times\mathbf{R}^+\right\}\leq\left(\frac{a}{t}\right)\sup\left\{F_k^M\left(u,v\right);\ (u,v)\in\left[a,\frac{a^2}{t}\right]\times\mathbf{R}^+\right\},\
$$

with $a^2/t \leq 1$. Using this inequality and the representation

with
$$
a^2/t \le 1
$$
. Using this inequality and the representation
\n
$$
r_k^M(t) = t \max \left(\sup \left\{ F_k^M(u, v) \, ; \, (u, v) \in [t, a] \times \mathbf{R}^+ \right\}, \sup \left\{ F_k^M(u, v) \, ; \, (u, v) \in [a, 1] \times \mathbf{R}^+ \right\} \right)
$$
\nwe immediately obtain $r_k^M(t) \le r_k^M(a)$. Let now $0 < t_1 < t_2 \le t_0$. Then $t_2^{2j} \le t_1 \le t_2^{2j-1}$ for some $j \in \mathbb{N}$ and the sequence of inequalities

some $j \in \mathbb{N}$ and the sequence of inequalities *r*_{*k*}^{*'*} (*t*), u, v); (*u*, *v*) \in [*t*, *a*] \times 1
 r^{*M*} (*t*) \leq *r*^{*M*} (*a*). Let now

quence of inequalities
 $r_k^M(t_1) \leq r_k^M\left(t_2^{2^{j-1}}\right) \leq r_k^M$

$$
r_k^M(t_1) \le r_k^M(t_2^{2^{j-1}}) \le r_k^M(t_2^{2^{j-2}}) \le \ldots \le r_k^M(t_2)
$$

completes the proof. \blacksquare

We note that $r_k^M(\lambda t) \leq \lambda r_k^M(t)$, $\lambda \geq 1$.

pletes the proof. \blacksquare
We note that $r_k^M(\lambda t) \leq \lambda r_k^M(t)$, $\lambda \geq 1$.
Lemma 2: *If* $M \sim N$ at 0 and ∞ , then $R_k^M \sim R_k^N$ at 0.

Proof: Without loss of generality we may assume that $M(1) = N(1) = 1$. Let $c^{-1}M(c^{-1}t) \leq N(t) \leq cM(ct)$ for some $c \geq 1$. Then

a) for $c^{-2} \leq u \leq 1, v \in \mathbb{R}^+,$

$$
\leq \lambda r_k^M(t), \lambda \geq 1.
$$
\nV at 0 and ∞ , then $R_k^M \sim R_k^N$ at 0.

\nloss of generality we may assume that M .

\n
$$
M(ct) \text{ for some } c \geq 1. \text{ Then}
$$
\n
$$
\in \mathbb{R}^+,
$$
\n
$$
\frac{N(uv)}{u^{k+1}N(v)} \leq c^{2(k+1)} \frac{M(u_1v_1)}{u_1^{k+1}M(v_1)}, \quad u_1 = v_1 = 1;
$$
\n
$$
\in \mathbb{R}^+,
$$
\n
$$
\frac{N(uv)}{M(v_1v_1)} = c^{2(k+2)} \frac{M(u_1v_1)}{u_1^{k+1}M(v_1)}, \quad t \leq c^2 u = u_1
$$

a) for
$$
c^{-2} \le u \le 1
$$
, $v \in \mathbb{R}^+$,
\n
$$
\frac{N(uv)}{u^{k+1}N(v)} \le c^{2(k+1)} \frac{M(u_1v_1)}{u_1^{k+1}M(v_1)}, \quad u_1 = v_1 = 1;
$$
\nb) for $t \le u \le c^{-2}$, $v \in \mathbb{R}^+$,
\n
$$
\frac{N(uv)}{u^{k+1}N(v)} \le \frac{c^2M(cuv)}{u^{k+1}M(c^{-1}v)} = c^{2(k+2)} \frac{M(u_1v_1)}{u_1^{k+1}M(v_1)}, \quad t \le c^2u = u_1 \le 1, v_1 = c^{-1}v,
$$

which implies

$$
\sup\left\{F_k^{\mathcal{N}}\left(u,v\right);(u,v)\in[t,1]\times\mathbf{R}^+\right\}\leq c^{2(k+2)}\sup\left\{F_k^{\mathcal{M}}\left(u,v\right);(u,v)\in[t,1]\times\mathbf{R}\right\}
$$

and symmetrically

which implies
\n
$$
\sup \{F_k^N(u, v); (u, v) \in [t, 1] \times \mathbf{R}^+\} \le c^{2(k+2)} \sup \{F_k^M(u, v); (u, v) \in [t, 1] \times \mathbf{R}\}
$$
\nand symmetrically
\n
$$
\sup \{F_k^M(u, v); (u, v) \in [t, 1] \times \mathbf{R}^+\} \le c^{2(k+2)} \sup \{F_k^N(u, v); (u, v) \in [t, 1] \times \mathbf{R}\}.
$$
\nThus $c^{-2(k+2)} R_k^M(t) \le R_k^N(t) \le c^{2(k+2)} R_k^M(t), t \in (0, 1].$
\nLemma 3: For any real a and b, t \in (0, 1], the inequality
\n
$$
b^{k+1} M(a) \le (M(a) + M(ab/t)) R_k^M(t)
$$
\nholds.

Lemma. 3: For any real a and $b, t \in (0, 1]$, the inequality

$$
b^{k+1} M(a) \leq (M(a) + M(ab/t)) R_k^M(t) \tag{9}
$$

holds

Proof: If $b/t \leq 1$, then (7) implies

$$
(b^{k+1}/R_k^M(t)-1) M(a) \le ((b/t)^{k+1}-1) M(a) \le 0 \le M (ab/t).
$$

Suppose now $b/t > 1$. Obviously $t \leq t/b < 1$, and (9) immediately follows from

$$
t \le t/b < 1, \text{ and } (9) \text{ immediately for}
$$
\n
$$
r_k^M(t) \ge t \frac{M(a)}{(t/b)^{k+1} M(ab/t)} = \frac{b^{k+1} M(a)}{t^k M(ab/t)}.
$$

Thus Lemma 3 is proved. \blacksquare

Lemma 4: Let $M \in AC^k$. Then for any real u, v with $u^2 + v^2 \neq 0$ we have $\left|M^{(k)}(u + v) - M^{(k)}(u)\right| \leq c_1 |v| M (2c\xi) / \xi^{k+1},$

 $where \ c_1 = 2^{k+1}c, \ \xi = \max(|u|, |v|).$

Proof: Suppose first that $|v| < |u|/2$. In this case $\xi = |u|$, and using (2) we have

$$
\left| M^{(k)}(u+v) - M^{(k)}(u) \right| \leq c_1 |v| M (2c\xi) / \xi^{k+1},
$$
\n
$$
L^{k+1}c, \xi = \max(|u|, |v|).
$$
\nSuppose first that $|v| < |u| / 2$. In this case $\xi = |u|$, and using (2) we have\n
$$
\left| M^{(k)}(u+v) - M^{(k)}(u) \right| = \left| \int_u^{u+v} M^{(k+1)}(t) dt \right|
$$
\n
$$
\leq c \int_{\min(|u|, |u+v|)}^{\max(|u|, |u+v|)} \frac{M(ct)}{|t|^{k+1}} dt \leq c \frac{|v| M (c(|u|+|v|))}{(|u|-|v|)^{k+1}} \leq 2^{k+1} c |v| \frac{M (2c\xi)}{\xi^{k+1}}.
$$
\n2, then $|v| / \xi \geq 1/2$ and using (4) and (3) we obtain\n
$$
\left| M^{(k)}(u+v) - M^{(k)}(u) \right| \leq c \left(\frac{M (c(u+v))}{|u+v|^k} + \frac{M (cu)}{|u|^k} \right)
$$
\n
$$
\frac{c |v|}{|v|} \left(\left(\frac{2\xi}{\xi} \right)^k M (c(u+v)) + \left(\frac{2\xi}{\xi} \right)^k M (u) \right) \leq 2^{2-k} c |u| \frac{M (2c\xi)}{|\xi|}.
$$

If $|v| \ge |u|/2$, then $|v|$ / $\xi \ge 1/2$ and using (4) and (3) we obtain

$$
|M^{(k)}(u + v) - M^{(k)}(u)| = \left| \int_{u}^{u+v} M^{(k+1)}(t) dt \right|
$$

\n
$$
\leq c \int_{\min(|u|, |u+v|)}^{\max(|u|, |u+v|)} \frac{M(ct)}{|t|^{k+1}} dt \leq c \frac{|v| M(c(|u|+|v|))}{(|u|-|v|)^{k+1}} \leq 2^{k+1}c|v| \frac{M(2c\xi)}{\xi^{k+1}}.
$$

\nIf $|v| \geq |u|/2$, then $|v|/\xi \geq 1/2$ and using (4) and (3) we obtain
\n
$$
|M^{(k)}(u + v) - M^{(k)}(u)| \leq c \left(\frac{M(c(u+v))}{|u+v|^k} + \frac{M(cu)}{|u|^k} \right)
$$

\n
$$
\leq \frac{c|v|}{2^{k-1}\xi^{k+1}} \left(\left(\frac{2\xi}{|u+v|} \right)^k M(c(u+v)) + \left(\frac{2\xi}{|u|} \right)^k M(u) \right) \leq 2^{2-k}c|v| \frac{M(2c\xi)}{\xi^{k+1}}
$$

\nThus Lemma 4 is proved.

Thus Lemma 4 is proved. .

We associate to every $M \in AC^k$ and $x \in X = L_M(S, \Sigma, \mu)$ the symmetric *i*-linear forms $(i = 1, 2, ..., k)$ defined by

$$
\widetilde{M}_{i}(x; y_{1}, y_{2}, \ldots, y_{i}) = \int_{S} M^{(i)}(x(s)) \prod_{k=1}^{i} y_{k}(s) d\mu(s)
$$

and the symmetric $(i - j)$ -linear forms $(0 \leq j < i)$

$$
\widetilde{M}_{i,j}(x; y_1,y_2,\ldots,y_{i-j})=\int_{S}M^{(i)}(x(s))x^j(s)\prod_{k=1}^{i-j}y_k(s)d\mu(s),
$$

where $y_1, y_2, ..., y_i \in X$. Obviously $\widetilde{M}_{i,0} = \widetilde{M}_i$ and $M_0 = \widetilde{M}$.

Lemma 5: Let $M \in AC^k$. Then $\widetilde{M}_{i,j}(x) \in I$
 $(i = 1, 2, ..., k; 0 \leq j < i)$ and $\left|\left|\widetilde{M}_{i,j}(x)\right|\right| \leq c^{k+1} \left(\widetilde{M}(cx) + \sigma\right)$ Lemma 5: Let $M \in AC^k$. Then $\widetilde{M}_{i,j}(x) \in B^{i-j}(X)$ for every $x \in X$ $(i = 1, 2, \ldots, k; 0 \leq j < i)$ and

$$
\left|\left|\widetilde{M}_{i,j}\left(x\right)\right|\right|\leq c^{k+1}\left(\widetilde{M}\left(cx\right)+c\right).
$$

Proof: It is sufficient to show that for fixed $x \in X$

It is sufficient to show that for fixed
$$
x \in X
$$

\n
$$
\sup \left\{ \left| \widetilde{M}_{i,j} \left(x; h^{(i-j)} \right) \right|; ||h|| \leq 1/c \right\} < \infty \ (i = 1, 2, ..., k; 0 \leq j < i).
$$

Denote $S_1 = \{s \in S; \ 0 \leq |x(s)| \leq |h(s)|\}$ and $S_2 = S \setminus S_1$. Using (3) and (4) we have

Proof: It is sufficient to show that for fixed
$$
x \in X
$$

\n
$$
\sup \{ \left| \widetilde{M}_{i,j} \left(x; h^{(i-j)} \right) \right|; ||h|| \leq 1/c \} < \infty \quad (i = 1, 2, ..., k; 0 \leq j < i).
$$
\nnote $S_1 = \{ s \in S; 0 \leq |x(s)| \leq |h(s)| \}$ and $S_2 = S \setminus S_1$. Using (3) and (4) we have\n
$$
\left| \widetilde{M}_{i,j} \left(x; h^{(i-j)} \right) \right| \leq \int_S |M^{(i)}(x(s))| |x(s)|^j |h(s)|^{i-j} d\mu(s)
$$
\n
$$
\leq c \left(\int_{S_1} M \left(cx(s) \right) (|h(s)| / |x(s)|)^{i-j} d\mu(s) + \int_{S_2} M \left(cx(s) \right) d\mu(s) \right)
$$
\n
$$
\leq c^2 \int_{S_1} M \left(ch(s) \right) d\mu(s) + c \int_{S_2} M \left(cx(s) \right) d\mu(s) \leq c \left(\widetilde{M} \left(cx \right) + c \right) \quad \bullet
$$
\nThe next lemma essentially shows that $M^{(k)} \in H^{\omega}(\mathbf{R}^+), \omega(t) = r_k^M(t).$
\nLemma 6: Let $M \in AC^k$. For any real u, v, w, t such that $u^2 + v^2 \neq 0, |t| \leq 1/4c$, the
\nrequires\n
$$
\left| \left(M^{(k)}(u + tv) - M^{(k)}(u) \right) u^i w^{k-i} \right| \leq c_2(M (4cu) + M (v) + M (w)) r_k^M (|t|) \right|
$$
\n
$$
\text{or } 0 \leq i \leq k - 1 \text{ and}
$$
\n
$$
\left| \left(M^{(k)}(u + tv) - M^{(k)}(u) \right) u^k \right| \leq c_2(M (4cu) + M (v)) r_k^M (|t|) \right|
$$
\n
$$
\text{old, where } c_2 = 2c_1 (2c)^{k+1}.
$$

The next lemma essentially shows that $M^{(k)} \in H^{\omega}(\mathbf{R}^{+})$, $\omega(t) = r_{k}^{M}(t)$.

The next lemma essentially shows that $M^{(k)} \in H^{\omega}(\mathbf{R}^{+})$, $\omega(t) = r_{k}^{M}(t)$.

Lemma 6: Let $M \in AC^{k}$. For any real u, v, w, t such that $u^{2} + v^{2} \neq 0$, $|t| \leq 1/4c$, the

pualities
 $|(M^{(k)}(u + tv) - M^{(k)}(u)) u^{i} w^{k-i}| \le$ *inequalities*

$$
\left| \left(M^{(k)}(u + tv) - M^{(k)}(u) \right) u^i w^{k-i} \right| \leq c_2 \left(M \left(4cu \right) + M \left(v \right) + M \left(w \right) \right) r_k^M \left(|t| \right) \qquad (10)
$$

for $0 \leq i \leq k-1$ *and*

$$
\left| \left(M^{(k)}(u + tv) - M^{(k)}(u) \right) u^k \right| \leq c_2 \left(M \left(4cu \right) + M \left(v \right) \right) r_k^M \left(|t| \right) \tag{10'}
$$

hold, where $c_2 = 2c_1 (2c)^{k+1}$.

Proof: Lemma *4* implies

emma 4 implies
\n
$$
\left| \left(M^{(k)}(u+tv) - M^{(k)}(u) \right) u^i w^{k-i} \right| \leq c_1 |tv| |w|^{k-i} M(2c\xi) / \xi^{k+1-i}
$$
\n(11)

where $\xi = \max(|u|, |tv|)$. It is clear that to estimate the right-hand side of (11) it suffices to consider only positive u, v, w, t , and $M(1) = 1$. We separate the following cases:

a) $w \leq 2c\xi$. Using (5) and (6) we obtain

\n The image shows a formula for a given function
$$
u(w) = M^{(k)}(w)
$$
, where $|w|^{k-1} \leq c_1 |tv| |w|^{k-1} M(2c\xi) / \xi^{k+1-1}$.\n

\n\n The provided HTML representation is:\n
$$
\begin{aligned}\n &\text{where } u, v, w, t, \text{ and } M(1) = 1. \text{ We separate the following cases:}\n \end{aligned}
$$
\n

\n\n The provided HTML representation is:\n
$$
\begin{aligned}\n &\text{where } u, v, w, t, \text{ and } M(1) = 1. \text{ We separate the following cases:}\n \end{aligned}
$$
\n

\n\n The provided HTML representation is:\n
$$
\begin{aligned}\n &\text{where } \int_{0}^{k-1} f(u(v)) \, dv &= \int_{0}^{k+1-i} f(u(v)) \, dv \, dv, \\
 &\text{where } \int_{0}^{k+1-i} f(u(v)) \, dv &= \int_{0}^{k+1-i} f(u(v)) \, dv, \\
 &\text{where } \int_{0}^{k+1-i} f(u(v)) \, dv &= \int_{0}^{k+1-i} f(u(v)) \, dv.\n \end{aligned}
$$
\n

\n\n The provided HTML representation is:\n
$$
\begin{aligned}\n &\text{where } \int_{0}^{k+1-i} f(u(v)) \, dv &= \int_{0}^{k+1-i} f(u(v)) \, dv, \\
 &\text{where } \int_{0}^{k+1-i} f(u(v)) \, dv &= \int_{0}^{k+1-i} f(u(v)) \, dv.\n \end{aligned}
$$
\n

\n\n The provided HTML representation is:\n
$$
\begin{aligned}\n &\text{where } \int_{0}^{k+1-i} f(u(v)) \, dv &= \int_{0}^{k+1-i} f(u(v)) \, dv, \\
 &\text{where } \int_{0}^{k+1-i} f(u(v)) \, dv &= \int_{0}^{k+1-i} f(u(v)) \, dv.\n \end{aligned}
$$
\n

b) $2c\xi \leq w \leq 2c\xi/t$. Now

$$
\max(|u|, |tv|).
$$
 It is clear that to estimate the right-hand side of (11) it suffices to
\n
$$
\nu
$$
 positive *u*, *v*, *w*, *t*, and *M* (1) = 1. We separate the following cases:
\n
$$
ct\xi
$$
. Using (5) and (6) we obtain
\n
$$
t v w^{k-i} M (2c\xi) / \xi^{k+1-i} \leq (2c)^{k+1-i} t v M (2c\xi) / (2c\xi)
$$

\n
$$
\leq (2c)^{k+1-i} t (M (2c\xi) + M (v)) \leq 3 (2c)^{k+1-i} t (M (4cu) + M (v)).
$$

\n
$$
w \leq 2c\xi / t.
$$
 Now
\n
$$
\frac{t v w^{k-i} M (2c\xi)}{\xi^{k+1-i}} \leq (2c)^{k+1-i} t \left(\left(\frac{v}{2c\xi} \right)^{k+1-i} + \left(\frac{w}{2c\xi} \right)^{k+1-i} \right) M (2c\xi).
$$
 (12)
\ng once more (5) and (6) we obtain

If $i \neq 0$ using once more (5) and (6) we obtain

$$
\frac{t v w^{k-i} M (2c\xi)}{\xi^{k+1-i}} \le (2c)^{k+1-i} t (2M (2c\xi) + M (v) + M (w))
$$

$$
\le 2 (2c)^{k+1-i} t (M (4cu) + M (v) + M (w)).
$$

If
$$
i = 0
$$
 we continue the estimation in (12) using Lemma 3:
\n
$$
\frac{t v w^{k-i} M(2c\xi)}{\xi^{k+1-i}} \leq (2c)^{k+1} t^{-k} \left(\left(\frac{t v}{2c\xi} \right)^{k+1} + \left(\frac{t w}{2c\xi} \right)^{k+1} \right) M(2c\xi)
$$
\n
$$
\leq (2c)^{k+1} (2M (2c\xi) + M (v) + M (w)) r_k^M (t)
$$
\n
$$
\leq 2 (2c)^{k+1} (M (4cu) + M (v) + M (w)) r_k^M (t).
$$
\nFinally we consider
\n
$$
c) w \geq 2c\xi/t.
$$
 This case is quite easy. Indeed
\n
$$
\frac{t v w^{k-i} M(2c\xi)}{\xi^{k+1-i}} \leq \left(\frac{w}{\xi} \right)^{k-i} M(2c\xi) = (2c)^{k-i} t^{i-k} \left(\frac{wt}{2c\xi} \right)^{k-i} M(2c\xi)
$$
\n
$$
\leq (2c)^{k-i} t^{i-k} M (wt) \leq (2c)^{k-i} t^{i-k} M (t) M (w),
$$

Finally we consider

c) $w \geq 2c\xi/t$. This case is quite easy. Indeed

$$
\frac{t v w^{k-i} M(2c\xi)}{\xi^{k+1-i}} \leq \left(\frac{w}{\xi}\right)^{k-i} M(2c\xi) = (2c)^{k-i} t^{i-k} \left(\frac{wt}{2c\xi}\right)^{k-i} M(2c\xi)
$$

$$
\leq (2c)^{k-i} t^{i-k} M(wt) \leq (2c)^{k-i} t^i r_k^M(t) M(w),
$$

where we used (8) in the last inequality.

Combining the estimates obtained in the cases a), b) and c) it is easy to get (10) with $c_2 = 2c_1 (2c)^{k+1}$. The proof of (10') is the same. Thus Lemma 6 is proved.

Corollary 1: Let $M \in AC^k$. Then for every $x, h \in X$ and any $t \in (0, 1/4c)$ the estimate

$$
\xi^{k+1-i} = \xi \int \xi^{k-i} t^{i-k} M(wt) \leq (2c)^{k-i} t^{i} r_k^M(t) M(w),
$$
\n(8) in the last inequality.
\nthe estimates obtained in the cases a), b) and c) it is easy to get (10) with
\n¹. The proof of (10') is the same. Thus Lemma 6 is proved.
\n1: Let $M \in AC^k$. Then for every $x, h \in X$ and any $t \in (0, 1/4c)$ the estimate
\n
$$
\left| \widetilde{M}(x+th) - \sum_{j=0}^k \frac{t^j}{j!} \widetilde{M}_j(x; h^{(j)}) \right| \leq c_3 \left(\widetilde{M}(4cx) + \widetilde{M}(h) \right) R_k^M(t),
$$
\n(13)
\n $s = 2c_2/k!$.
\nviously, for every $s \in S$:
\n(s)) $-\sum_{j=0}^k \frac{(th(s))^j}{j!} M^{(j)}(x(s)) \leq \frac{|th(s)|^k}{k!} M^{(k)}(x(s) + \theta_s th(s)) - M^{(k)}(x(s))|$
\n(0,1). Lemma 6 applied for $i = 0, u = x(s), v = \theta_s h(s), w = h(s)$ gives

holds, where $c_3 = 2c_2/k!$.

Corollary 1: Let
$$
M \in AC^k
$$
. Then for every $x, h \in X$ and any $t \in (0, 1/4c)$ the estimate
\n
$$
\left| \widetilde{M}(x+th) - \sum_{j=0}^k \frac{t^j}{j!} \widetilde{M}_j(x; h^{(j)}) \right| \le c_3 \left(\widetilde{M}(4cx) + \widetilde{M}(h) \right) R_n^M(t), \qquad (13)
$$
\nholds, where $c_3 = 2c_2/k!$.
\nProof: Obviously, for every $s \in S$:
\n
$$
\left| M(x(s) + th(s)) - \sum_{j=0}^k \frac{(th(s))^j}{j!} M^{(j)}(x(s)) \right| \le \frac{|th(s)|^k}{k!} \left| M^{(k)}(x(s) + \theta_s th(s)) - M^{(k)}(x(s)) \right|
$$
\nfor some $\theta_s \in (0, 1)$. Lemma 6 applied for $i = 0, u = x(s), v = \theta_s h(s), w = h(s)$ gives

for some $\theta_s \in (0, 1)$. Lemma 6 applied for $i = 0$, $u = x(s)$, $v = \theta_s h(s)$, $w = h(s)$ gives

$$
\left| \begin{array}{l} x(s) + th(s) \end{array} \right| - \sum_{j=0} \frac{\zeta^{(1)}(y)}{j!} M^{(j)}(x(s)) \le \frac{\zeta^{(1)}(y)}{k!} \left| M^{(k)}(x(s) + \theta_s th(s)) - M^{(k)}(x(s)) \right|
$$
\n
$$
\text{one } \theta_s \in (0,1). \text{ Lemma 6 applied for } i = 0, u = x(s), v = \theta_s h(s), w = h(s) \text{ gives}
$$
\n
$$
\left| M(x(s) + th(s)) - \sum_{j=0}^{k} \frac{(th(s))^j}{j!} M^{(j)}(x(s)) \right| \le \frac{2c_2}{k!} (M(4cx(s)) + M(h(s))) R_k^M(t).
$$

Now to obtain (13) we only have to integrate over S the last inequality. \blacksquare

Remark 1: Corollary I is a quantitative improvement of Lemma 4 in [10], where only $o(|t|^k)$ instead of $|t|^k r_k^M(|t|)$ in the right-hand side of (13) was given. The estimate (13) implies, of course, that $\widetilde{M}_i : X \to B^i(X)$ is $(k - i)$ -times differentiable in X for $i = 0, \ldots, k - 1$ $(B^{0}(X) = \mathbf{R}^{+})$ and $D^{j} \widetilde{M} = \widetilde{M}_{j}$ $(j = 1, 2, ..., k), D^{i} \widetilde{M}_{j} = \widetilde{M}_{i+j}$ $(i + j \le k).$

Corollary 2: We have $\widetilde{M}_{k,j} \in H^{\omega}\left(X, B^{k-j}(X)\right)$ $(j = 0, 1, ..., k)$, where $\omega(t) = r_k^M(t)$.

Proof: We shall prove that for any y, *z* from the ball *B(z;* 1/8c) the inequalities

For
$$
S
$$
 is the following property:

\nFor S is the following property:

\nProof:

\nWe shall prove that for any y , z from the ball $B(z; 1/8c)$ the inequalities

\n
$$
\left| \left| \widetilde{M}_{k,j}(y) - \widetilde{M}_{k,j}(z) \right| \right| \leq c_4 \varphi(z) r_k^M \left(\left| |y - z| \right| \right), \quad j = 0, 1, 2, \ldots, k - 1,
$$
\n(14)

\n
$$
\left| \widetilde{M}_{k,k}(y) - \widetilde{M}_{k,k}(z) \right| \leq c_4 \varphi(x) r_k^M \left(\left| |y - z| \right| \right),
$$
\n(14')

\nwhere $c_4 = \kappa 8^{k-2} c^{2k} c_2, \varphi(x) = (8c \left| |x| \right| + 1)^{k-2} \left(\widetilde{M} \left(8cx \right) + 8c + 1 \right),$ hold. Indeed, let $h \in S(X)$,

$$
\left|\widetilde{M}_{k,k}\left(y\right)-\widetilde{M}_{k,k}\left(z\right)\right|\leq c_4\varphi\left(x\right)r_k^M\left(\|y-z\|\right),\tag{14'}
$$

*c*₄ φ (*k*) *c* if *c*<sub>*c* i *c*₄ φ (*x*_{*c*} i *(x*_i 1/8*c*) the inequalities

(||y - z||), $j = 0, 1, 2, ..., k - 1$, (14)
 *c*₄ φ (*x*) r_k^M (||y - z||), (14')
 \widetilde{M} (8*cx*) + 8*c* + 1), hold. Indee</sub> $s \in S$. Obviously

$$
\widetilde{M}_{k,j} (y; h^{(k-j)}) - \widetilde{M}_{k,j} (z; h^{(k-j)}) \Big|
$$

\n
$$
\leq \left| \int_{S} M^{(k)} (y(s)) (y^{j}(s) - z^{j}(s)) h^{k-j}(s) d\mu(s) \right|
$$

\n
$$
+ \int_{S} \left| M^{(k)} (y(s)) - M^{(k)} (z(s)) \right| |z(s)|^{j} |h(s)|^{k-j} d\mu(s).
$$

The second member of the last sum is easily estimated for $j < k$ using (10) for $u = v = ((y(s) - z(s))) / ||y - z||$, $t = ||y - z||$, $w = h(s)$ and (6):
 $\int_{S} |M^{(k)}(y(s)) - M^{(k)}(z(s))| |z(s)|^{j} |h(s)|^{k-j} d\mu(s)$ The second member of the last sum is easily estimated for $v = ((y(s) - z(s))) / ||y - z||, t = ||y - z||, w = h(s)$ and (6):
 $\int_{S} |M^{(k)}(y(s)) - M^{(k)}(z(s))||z(s)|^{j} |h(s)|$

$$
\int_{S} \left| M^{(k)}(y(s)) - M^{(k)}(z(s)) \right| |z(s)|^{j} |h(s)|^{k-j} d\mu(s)
$$

\n
$$
\leq c_{2} \left(\widetilde{M} (4cz) + \widetilde{M} ((y-z) / ||y-z||) + \widetilde{M} (h) \right) r_{k}^{M} (||y-z||)
$$

\n
$$
\leq \frac{c_{2}}{2} \left(\widetilde{M} (8cx) + 5 \right) r_{k}^{M} (||y-z||).
$$

To obtain (14) for $j < k$ with $c_4 = \kappa 8^{k-2} c^2 k c_2$ and $\varphi(k) = (8c||x|| + 1)^{k-1} \left(\widetilde{M}(8cx) + 8c + 1\right)$, it is enough to estimate the first member of (15) in the following way:

$$
\leq \frac{1}{2} \left(M \left(\frac{3}{2} \right) + 3 \right) k \left(\frac{1}{2} \right) \right).
$$

\nfor $j < k$ with $c_4 = \kappa 8^{k-2} c^{2k} c_2$ and $\varphi(k) = (8c ||x|| + 1)^{k-1} \left(\widetilde{M} \left(8cx \right) \right)$
\nestimate the first member of (15) in the following way:
\n
$$
\left| \int_S M^{(k)} \left(y(s) \right) \left(y^j (s) - z^j (s) \right) h^{k-j} (s) d\mu(s) \right|
$$
\n
$$
\leq \left| \left| \widetilde{M}_k \left(y \right) \right|_1 ||y - z|| \sum_{i=0}^{j-1} ||y||^i ||z||^{j-i-1} ||h||^{k-j}
$$
\n
$$
\leq \kappa c^{k+1} \left(\widetilde{M} \left(cy \right) + c \right) (||x|| + 1/8c)^{j-1} ||y - z||
$$
\n
$$
\leq \kappa 8^{k-1} c^{2k} \left(\frac{\widetilde{M} \left(2cx \right) + \widetilde{M} \left(2c \left(y - x \right) \right)}{2} + c \right) (8c ||x|| + 1)^{k-2} ||y - z||
$$
\n
$$
\leq \kappa 8^{k-2} c^{2k} \left(4 \widetilde{M} \left(2cx \right) + 8c + 1 \right) (8c ||x|| + 1)^{k-2} ||y - z||.
$$

We used Lemma 5, the relation between the norms $\|\cdot\|$ and $\|\cdot\|_1$ in $B^k(X)$ and the convexity of M . The proof of (14') uses (10') and is practically the same.

Remark 2: Obviously $\widetilde{M}_j \in H^1(X, B^j(X))$ and $\widetilde{M}_{i,j} \in H^1(X, B^{i-j}(X))$ for $0 \leq j \leq i < k$.

4. Main result

We are ready to prove the following

R.P. MALEEV
 Main result

are ready to prove the following

Theorem 1: *Let* $M \in AC^k$ and (S, Σ, μ) be a measure space. Then $X = H_M(S, \Sigma, \mu)$ is

smooth, where $\omega(t) = R_n^M(t)$.
 Proof. Set $\omega(t) = ||\omega||$. Heing, Perpelis 1, H^{ω} -smooth, where $\omega(t) = R_k^M(t)$.

Proof: Set $n(x) = ||x||$. Using Remark 1 and the implicit function theorem applied to the equation $\widetilde{M}(x/n(x)) - 1 = 0$ we obtain as in [10, Theorem 6] $n'(x)$ $=\widetilde{M}_{1,0}(x/n(x))/\widetilde{M}_{1,1}(x/n(x)),$ which, by an easy induction argument, implies that *n* is k-times differentiable in $X \setminus \{0\}$. What we have to prove in addition is that $n^{(k)} \in H^{\omega_1}(X \setminus 0, B^k(X)),$ $\omega_1 = r_k^M$. To this end we need some more information about the k-th derivative of the norm. to prove the following
 $\mathbf{D} = \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D}$
 $\mathbf{D} \mathbf{D} \mathbf{D$ Remark 1 and
 x)) - 1 = 0 we
 x , by an easy induction,
 x by an easy induction
 x to prove in addition
 $y(x) = \widetilde{M}_{i,j}(x/n(x))$
 $\frac{x}{n^2(x)}D_n(x; y) = \frac{1}{n^2(x)}D_n(x; y)$ $n(x) = ||x||$. Usi

e equation $\overline{M}(x)/$
 $)/\overline{M}_{1,1}(x/n(x))$, which
 $X \setminus \{0\}$. What we has

is end we need some

e of brevity we intro
 \overline{M}

ity
 $\left(\frac{x}{n(x)}\right)(y) = \frac{y}{n(x)}$

duction
 $\sum_{i=0}^{k} C_i^i (-1)^i$ *n*(*x*)) - 1 = 0 we obta
 n(*x*)) - 1 = 0 we obta
 ich, by an easy induction ar

ave to prove in addition is t

more information about tl

duce the notation
 $\overline{I}_{i,j}(x) = \overline{M}_{i,j}(x/n(x)).$
 $-\frac{x}{n^2(x)}Dn(x; y) = \frac{y\overline{M}_{1,j$

First for sake of brevity we introduce the notation

$$
\overline{M}_{i,j}(x)=\widetilde{M}_{i,j}(x/n(x)).
$$

Using the equality

$$
D\left(\frac{x}{n(x)}\right)(y) = \frac{y}{n(x)} - \frac{x}{n^2(x)}Dn(x; y) = \frac{y\overline{M}_{1,1}(x) - \overline{M}_{1,0}(x; y)}{n(x)\overline{M}_{1,1}(x)},
$$

we obtain by induction

n
$$
X \setminus \{0\}
$$
. What we have to prove in addition is that $n^{(k)} \in H^{\omega_1} (X \setminus 0, B^k(X)),$
\nhis end we need some more information about the *k*-th derivative of the norm.
\nke of brevity we introduce the notation
\n
$$
\overline{M}_{i,j}(x) = \widetilde{M}_{i,j}(x/n(x)).
$$
\nality
\n
$$
D\left(\frac{x}{n(x)}\right)(y) = \frac{y}{n(x)} - \frac{x}{n^2(x)}Dn(x; y) = \frac{y\overline{M}_{1,1}(x) - \overline{M}_{1,0}(x; y)}{n(x)\overline{M}_{1,1}(x)},
$$
\nnduction
\n
$$
n^{(k)}(x) = \frac{\sum_{i=0}^{k} C_k^i (-1)^i \overline{M}_{k,i}(x) \overline{M}_{1,1}^{k-i}(x) \overline{M}_{1,0}^i(x) + P\left(\overline{M}_{i,j}(x)\right)}{n^{k-1}(x) \overline{M}_{1,1}^{k+1}(x)},
$$
\n
$$
(15)
$$
\n
$$
(15)
$$
\n
$$
(x)
$$
 is a polynomial with respect to $\overline{M}_{i,j}$ $(i < k)$ and $P\left(\overline{M}_{i,j}(x)\right) \in B^k(X)$ for

where $P\left(\overline{M}_{i,j}(x)\right)$ is a polynomial with respect to $\overline{M}_{i,j}$ $(i < k)$ and $P\left(\overline{M}_{i,j}(x)\right) \in B^k(X)$ for fixed x.

d x.
Let $\omega_1 = r_k^M$. It is easy to check that $f \in H^{\omega_1}(X, B^k(X)), g \in H^1(x, \mathbf{R}^+)$ imply $f/g \in$ $H^{\omega_1}(X \setminus A; B^k(X)),$ where $A = \{x \in X : g(x) = 0\}.$ Indeed, fix $x \notin A$. Then for sufficiently small $\delta > 0$, *(k)* (*x)* = $\frac{\sum_{i=0}^{k} C_k^1 (-1)^i M_{k,i}(x) M_{1,1}^{n-i}(x) M_{1,0}^{i}(x) + P(M_{i,j}(x))}{n^{k-1}(x) M_{1,1}^{k+1}(x)}$,

(*x)* is a polynomial with respect to $\overline{M}_{i,j}$ (*i* < *k*) and $P(\overline{M}_{i,j}(x)) \in B^k(X)$,
 M' . It is easy to check that *g(x)* $\frac{\sum_{i=0}^{k} C_{k}^{i} (-1)^{i} \overline{M}_{k,i}(x) \overline{M}_{1,1}^{k-i}(x) \overline{M}_{1,0}^{i}}{n^{k-1}(x) \overline{M}_{1,1}^{k+1}(x)}$
 g(x) is a polynomial with respect to $\overline{M}_{i,j}$ (*i* < $\overline{M}_{i,j}$ (*i* < $\overline{M}_{i,j}$). It is easy to check that f

$$
\left\| \frac{f(y)}{g(y)} - \frac{f(z)}{g(z)} \right\| \le 6 \frac{\|f(y) - f(z)\| \|g(x)\| + \|g(y) - g(z)\| \|f(x)\|}{\|g(x)\|^2},
$$
(16)
\n
$$
\vdots B(x; \delta). \text{ Let now } x \ne 0, r = \min (||x||/2, 1/8c). \text{ As}
$$

\n
$$
\left\| \frac{y}{||y||} - \frac{z}{||z||} \right\| \le 4 \frac{||y - z||}{||x||}
$$

\n $x; r$, from (14) and (14') and Lemma 1 it follows for any $y, z \in B(x; r)$ that

for any $y, z \in B(x; \delta)$. Let now $x \neq 0$, $r = \min(||x||/2, 1/8c)$. As

$$
\left|\left|\frac{y}{\|y\|} - \frac{z}{\|z\|}\right|\right| \le 4 \frac{||y - z||}{||x||}
$$

for $y, z \in B(x; r)$, from (14) and (14') and Lemma 1 it follows for any $y, z \in B(x; r)$ that

$$
\left\| \int_{0}^{x} f(y) - \frac{f(z)}{g(z)} \right\| \leq 6 \frac{\|f(y) - f(z)\| \|g(x)\| + \|g(y) - g(z)\| \|f(x)\|}{\|g(x)\|^2},
$$
\n(16)
\n
$$
\text{any } y, z \in B(x; \delta). \text{ Let now } x \neq 0, r = \min \left(\|x\|/2, 1/8c \right). \text{ As}
$$
\n
$$
\left\| \frac{y}{\|y\|} - \frac{z}{\|z\|} \right\| \leq 4 \frac{\|y - z\|}{\|x\|}
$$
\n
$$
y, z \in B(x; r), \text{ from (14) and (14') and Lemma 1 it follows for any } y, z \in B(x; r) \text{ that}
$$
\n
$$
\left\| \overline{M}_{k,j}(y) - \overline{M}_{k,j}(z) \right\| \leq c_4 \varphi(x) r_k^M \left(\left\| \frac{y}{\|y\|} - \frac{z}{\|z\|} \right\| \right)
$$
\n
$$
\leq c_4 \varphi(x) \max \left(\frac{4}{\|x\|}, 1 \right) r_k^M \left(\|y - z\| \right) (j = 0, 1, ..., k). \tag{17}
$$
\nObviously *n* and $\overline{M}_{i,j}$ are in $H^1(X, B^{i-j}(X))$ for every $i = 1, 2, ..., k - 1, 0 \leq j \leq i$ and
\nrefore $n \overline{M}_{1,1} \in H^1(X, R^+)$. Now from the representation (15) of $n^{(k)},$ (16) and (17) it follows

i and therefore $n\overline{M}_{1,1} \in H^1(X,\mathbf{R}^+)$. Now from the representation (15) of $n^{(k)}$, (16) and (17) it follows that $n^{(k)} \in H^{\omega_1}(X \setminus \{0\}, B^k(X)).$ Thus Theorem 1 is proved. \bullet

5. Smooth renormings in arbitrary Orlicz spaces

We shall treat in details only the case of sequence spaces. The cases $H_M(0,1)$, $H_M(0,\infty)$, and the general case $H_M(S, \Sigma, \mu)$ can be analogously treated. It is not hard to see that, without some kind of smoothness of the Orlicz function *M*, the condition $\alpha_M^0 > 1$ cannot ensure the differentiability of the usual norm in h_M . Nevertheless, equivalent smooth Orlicz renorming, i.e. one generated by a suitable Orlicz function, equivalent to *M* at 0, is possible. Namely, the following theorem holds true.

Theorem 2: Let $\alpha_M^0 \in (1,\infty)$. Then in h_M there exists an equivalent H^{ω} -smooth norm, *where* $\omega(t) = R_{k,[0,1]}^M(t), k = E(\alpha_M^0).$

Proof: As usual we suppose $M(1) = 1$, and since the behaviour of M at ∞ is unessential, we "correct" it near ∞ to a function *N* in such a way that $\alpha_N = \alpha_M^0$. For example: $(M(1) = 1$, and since the b
tion N in such a way that
 $N(t) = \begin{cases} M(t), & t \in [0,1] \\ t^{k+1}, & t \in [1,\infty] \end{cases}$

$$
N(t) = \begin{cases} M(t), & t \in [0,1] \\ t^{k+1}, & t \in [1,\infty) \end{cases}.
$$

Put $N_2(t) = \int_0^t N_1(u) \exp(u/(u-t)) du/u$, where $N_1(t) = \int_0^t N(u) du/u$. It is not hard to check that *(1)* $\alpha_M^0 \in (1, \infty)$. Then in h_M there exists an equivalent H^{ω} -smooth norm,
 $\alpha_M^1(t)$, $k = E(\alpha_M^0)$.
 α_M we suppose $M(1) = 1$, and since the behaviour of M at ∞ is unessential,
 ∞ to a function N i

$$
(1/4) N(t/4) \le e^{-1} N(t/4) \le N_2(t) \le N(t), t \in [0, \infty).
$$
 (19)

This implies that h_{N_2} is isomorphic to h_M . Moreover, it is easily verified that $N_2 \in AC^k$ for any *k*, and we may apply Theorem 1: h_{N_2} is H^{ω} -smooth, $\omega(t) = R_k^{N_2}(t)$, $k = E(\alpha_{N_2}) = E(\alpha_M^0)$.

Lemma 2 and (19) imply

$$
4^{-2(k+2)}R_k^N(t) \leq R_k^{N_2}(t) \leq 4^{2(k+2)}R_k^N(t), t \in [0,1].
$$

To finish we observe that $R_k^N = R_{k,[0,1]}^M$. Indeed, $R_k^N \ge R_{k,[0,1]}^M$ is obvious, and we only have to prove $R_k^N \leq R_{k,[0,1]}^M$. Analogously to the proof of Lemma 2 we show that for any $(u, v) \in [t, 1] \times \mathbb{R}^+$ there are u_1 and v_1 , $(u_1, v_1) \in [t, 1] \times [0, 1]$ with $F_k^N(u, v) = F_k^M(u_1, v_1)$. If $v \le 1$ we take simply $u_1 = u$, $v_1 = v$. Let $v > 1$ and $uv \leq 1$. Then

$$
F_k^N(u,v)=(uv)^{-(k+1)} M(uv)=F_k^M(u_1,v_1), u_1=uv, v_1=1.
$$

Finally, if $uv > 1$, then $F_k^N(u, v) = 1 = F_k^M(u_1, v_1)$, $u_1 = v_1 = 1$. Theorem 2 is proved \bullet

ally, if $uv > 1$, then $F_k^N(u, v) = 1 = F_k^M(u_1, v_1)$, u
Remark 3: This result is of no interest if $M \sim$
t in l_{2n} the usual norm is infinitely many times diff **Remark 3:** This result is of no interest if $M \sim t^{2p}$ at 0, $p \in N$, because it is well known that in l_{2p} the usual norm is infinitely many times differentiable. On the other hand if $M \not\sim t^{2p}$ at 0, $p \in N$, the best order of smoothness in h_M by equivalent renorming is not better than $t^{\alpha^v_M}$. Indeed, for $\alpha^0_M \neq 2p$, $p \in N$ this follows simply from the fact that $l_{\alpha^0_{i,j}}$ is isomorphic to a subspace of h_M , if we combine this with the result from [1] formulated in the Introduction. If $\alpha_M^0 = 2p$, $p \in \mathbb{N}$, but *M* $\neq t^{2p}$ at 0, it was shown in [11] that in h_M there is no equivalent α_M^0 -times differentiable norm, i.e. any equivalent norm in h_M is again at most $H^{\alpha_M^0}$ -smooth.

Corollary 3: Let $M \nsim t^{2p}$ at 0, $p \in \mathbb{N}$. Then

a) the order of smoothness $R_{k,[0,1]}^M$, $k = E(\alpha_M^0)$ cannot be improved with respect to power *type orders;* $s \ R_{k,[0,1]}^M$, $k = E(\alpha_M^0)$ cannot be improved wit
 $M(uv) \le cu^{\alpha_M^0} M(v), u, v \in [0,1],$

smooth norm, i.e.norm of best order of smoothr

b) if

$$
M(uv) \leq cu^{\alpha^0_M} M(v), \ u, v \in [0,1], \qquad (20)
$$

then in h_M there is an $H^{\alpha}M$ -smooth norm, i.e. norm of best order of smoothness.

Proof: To obtain a) it is sufficient to observe that from the definition of α_M^0 it follows for *M*(*uv*) $\leq cu^{\alpha}M(v)$, $u, v \in [0,1]$, (20)
 then in h_M there is an $H^{\alpha}M^{\beta}$ -smooth norm, i.e.norm of best order of smoothness.
 Proof: To obtain a) it is sufficient to observe that from the definition of α^0_M

b) In this case $R_{k,[0,1]}^M(t) \le ct^{\alpha}$, $k = E(\alpha_M^0)$

Remark 4: The condition (20) is fulfilled for example if $M\left(t^{1/\alpha_{\boldsymbol{M}}} \right)$ is quasi-convex. Results analogous to those from Theorem 2 and Corollary 3 b) can be obtained for the function spaces H_M (0, 1) and H_M (0, ∞) and for general Orlicz spaces H_M (S, Σ, μ), as well, using the same techniques and results on embeddings of l_p spaces in Orlicz function spaces [8]. The corresponding orders of smoothness for $H_M(0,1)$ and $H_M(0,\infty)$ are respectively

$$
\Re_k^M(t) = t^{k+1} \sup \left\{ 1/F_k^M(u, v); \ u \in [1, 1/t], \ v \in [1, \infty) \right\}, \ k = E(\alpha_M^{\infty})
$$

and $R_k^M(t)$, $k = E(\alpha_M)$.

Remark 5: Very probably the orders of smoothness from Theorem 2 and Remark 4 are the best ones in general as they agree with those from [10] for the cases α_M^0 , α_M^{∞} , $\alpha_M \in (1,2)$ that are the best possible up to arbitrary (not only Orlicz) equivalent renorming (see $[3, 4]$).

Finally we give some examples.

Examples: Let $M(t) = t^p(1 + |int)^q$, $p > 1$. Obviously M satisfies the Δ_2 -condition at 0 and at ∞ and $\alpha_M^0 = \alpha_M^{\infty} = p$. Therefore $h_M = l_M$, $H_M(0,1) = L_M(0,1)$ and a) if q *<* 0:

 $R_{E(v),[0,1]}^M(t) \le t^p$, l_M is H^p -smooth and the usual norm is norm of best smoothness;

 $\Re_{E(p)}^{M}(t) \leq 2/M$ (1/t) for small t and $L_M(0,1)$ is H^M -smooth.

b) if $q > 0$:

 $R_{E(p),[0,1]}^M(t) \leq 2M(t)$ for small t and l_M is H^M -smooth;

 $\Re^M_{E(p)} \le ct^p$ and L_M (0, 1) is H^p -smooth and the usual norm is norm of best smoothness.

REFERENCES

- [1] BONIC, R. and J. FRAMPTON: *Smooth functions on Banach manifolds. J.* Math. Mech. 15 (1966), 877 - 898.
- [2] DEVILLE, R.: *A characterization of H^{oo}-smooth Banach spaces.* Bull. London Math. Soc. 22 (1990), 13 - 17.
- *[3] FIG1EL,T.: On the moduli of convexity and smoothness.* Studia Math. 56(1976), 121 -155.
- *[4] FIGIEL.* T. and G. **PISIER:** *Series alcatoires dans les espace uniformement conveXes ou uniformement* **lisses. C. R. Acad. Sci. Paris (Serie A) 279 (1974), 611 - 614.**
- **[5] KRASNOSELSKII. M.** and YA. RUTICKII: *Convex Functions and Orlicz Spaces. Groningen:* Wolters -Noordhoff 1961.
- [6] LINDENSTRAUSS, J. and L.TZAFRIRI: *Classical Banach* Spaces.Vol.11: *Sequence Spa*ces. Berlin - Heidelberg - New York: Springer -Verlag 1979.
- [7] LINDENSTRAUSS, J. and L.TZAFRIRI: *On Orlicz sequence spaces* I. Isr. J. Math. 10 (1971), 379 - 390.
- [8] LINDENSTRAUSS, J. and L.TZAFRIRI: On Orlicz sequence spaces III. Isr. J. Math. 14 (1973), 368 - 389.
- [9] MALEEV, R. P. and S. L. TR0YANSKI: *On the moduli of convexity and smoothness in Or*licz spaces. Studia Math. 54 (1975), 131 - 141.
- [10] MALEEV, R. P. and S. L. TROYANSKI: *Smooth norms in Orlicz spaces.* Can. Bull. Math. 34 (1991), 74 - 82.
- [11] MALEEV, R. P. and S. L.TROYANSKI: *Smooth functions in Orlicz spaces.* In: Banach Space Theory. Proc. Res. Workshop, July 5-25, 1987. Contemp. Math. **85** (1989), 355 -370.
- [12] SUNDARESAN, K.: *Smooth Banach spaces.* Math. Ann. 173 (1967), 191 199.
- [13] SUNDARESAN, K. and S. SWAMINATHAN: *Geometry and Analysis in Banach Spaces.* Lect. Notes Math. 1131 (1985), 1 -

Received 26.06.1991; in revised form 24.07 .1992