Norms of Best Smoothness in Orlicz Spaces

R.P. MALEEV

Equivalent norms of best smoothness are constructed for large classes of Orlicz sequence and function spaces.

Key words: Orlicz spaces, Frechet differentiability AMS subject classification: 46B20, 46E30

1. Introduction

It is well known [1, 12] that the usual norm in the spaces l_p and L_p (p > 1, p not even) is E(p)times uniformly differentiable, and the Taylor remainder term is of order p - E(p), where

$$E(p) = \begin{cases} p-1 & \text{if p is an integer} \\ [p] & \text{otherwise} \end{cases}$$

Moreover, this order can not be improved by equivalent renorming [1]. For the Orlicz spaces l_M and L_M , the exact order, up to equivalent Orlicz renorming, of the reminder term after differentiation of the norm was found in [9]. This order gives information about the type of l_M , L_M (see, e.g., [6: Section 1.e.16]).

Recently, the best order of Frechet and uniformly Frechet differentiability of the norm (up to equivalent renorming) in Orlicz sequence and function spaces was found in [10]. As usual, in every case an appropriate Orlicz function is constructed so the corresponding Orlicz norm, equivalent to the initial one, is of highest order of differentiability. Our aim is a further investigation of the smoothness of this "good" norm, which is related to a precise estimation of the remainder term after the last derivative. It turns out that in many cases it is also norm of best smoothness. We note that, in a separable Banach space, the existence of an equivalent norm (or more generally bump function) from some smoothness class implies the existence of a partition of unity from the same class (see, e.g., [13: Section 3.1.6]).

Some of the results contained in this paper were announced in a talk given by the author at the 17-th Winter School on Abstract Analysis, Srni, CzechoSlovakia, 1990.

2. Preliminaries

We begin with some notations and definitions. In the sequel X, Y denote Banach spaces, S(X) the unit sphere of X, B(x;r) the ball centered at x of radius r, and N the set of all naturals, R of all reals, \mathbf{R}^+ of all positive reals. Everywhere differentiability is understood in Frechet sense.

ISSN 0232-2064 C 1993 Heldermann Verlag Berlin

R. P. Maleev: Acad. Sci., Inst. Math. & Comp. Centre, 8 G. Bonchev, 1090 Sofia, Bulgaria Res. supp. in part by the Bulg. Ministry of Educ. and Sci., Grant No MM-3/91

We denote by $B^{j}(X,Y)$ the space of all continuous symmetric *j*-linear forms

$$\overline{T}: \underbrace{X \times X \times \ldots \times X}_{j-times} \to Y$$

equipped with the norm

$$||T||_1 = \sup \{ ||T(x_1, \ldots, x_j)||; x_i \in X, ||x_i|| \le 1 \ (i = 1, \ldots, j) \}.$$

In the next we use the notation $x^{(j)} = \underbrace{(x, \ldots, x)}_{j-times}$ for $x \in X$. An equivalent norm (see, e.g., [13:

Section 1.3.8]) is given by

$$||T|| = \sup \left\{ \left| \left| T(x^{(j)}) \right| \right| ; x \in X, ||x|| \le 1 \right\}$$

and $||T|| \leq ||T||_1 \leq \kappa ||T||, \kappa = (2j)^j / j!$. If $Y = \mathbf{R}$, the space of all continuous symmetric *j*-linear functionals on X is denoted $B^j(X)$.

Definition 1: A map $f: X \to Y$ is said to be k-times differentiable at $x \in X$ if there exist $T_j \in B^j(X,Y)$ (j = 1,...,k) such that

$$f(x+th) = f(x) + \sum_{j=1}^{k} \frac{t^{j}}{j!} T_{j}(h^{(j)}) + o_{x}(|t|^{k})$$

uniformly for h in the unit sphere S(X) of X, i.e. given $\varepsilon > 0$ there is a $\delta > 0$ independent of $h \in S(X)$ such that $\left| f(x+th) - \sum_{j=0}^{k} \frac{t^{j}}{j!} T_{j}(h^{(j)}) \right| < c(x)\varepsilon |t|^{k}$ provided $|t| < \delta$. T_{j} is called j-th derivative of f at x and is denoted $D^{j}f(x)$ or $f^{(j)}(x)$.

Let $\omega : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ be a non-decreasing function with $\lim_{t\to 0} \omega(t) = 0$, and k the greatest integer such that $\omega(t) = o(t^k)$. Set $\omega_1(t) = \omega(t)/t^k$.

Definition 2: A map $f: X \mapsto Y$ is called H^{ω} -smooth in $V \subset X$ (see, e.g., [2]) if f is k-times continuously differentiable and for every $x \in V$ there exist δ , A(x) > 0 such that

$$\left\| f^{(k)}(y) - f^{(k)}(z) \right\| \le A(x) \ \omega_1(\|y - z\|), \tag{1}$$

provided $y, z \in B(x; \delta) \cap V$.

The norm in the left-hand side of (1) is understood as the norm of the k-linear continuous symmetric form $f^{(k)}(y) - f^{(k)}(z)$ from $B^k(X,Y)$. The space of all H^{ω} -smooth functions on V is denoted $H^{\omega}(V,Y)$. If the norm in a Banach space is H^{ω} -smooth in $X \setminus \{0\}$, then X is called H^{ω} -smooth. A H^{ω} -smooth map (space) with $\omega(t) = t^p$ is called H^p -smooth.

Let us recall some definitions and facts about Orlicz spaces which will be necessary in what follows. An even convex continuous function M, defined and non-decreasing on $[0, \infty)$, is called

Orlicz function if M(0) = 0, $M(\infty) = \infty$. Let (S, Σ, μ) be a measure space. The space of all equivalent classes of μ -measurable functions x on S such that

$$\int_{S} M(x(s)/\lambda) d\mu(s) = \widetilde{M}(x/\lambda) < \infty$$

for some positive λ with the norm

$$||x|| = \inf \left\{ \lambda > 0; \widetilde{M}(x/\lambda) \le 1 \right\}$$

is a Banach space, which is called the Orlicz space generated by M and denoted by $L_M(S, \Sigma, \mu)$. The subspace of $L_M(S, \Sigma, \mu)$ which consists of all x such that $\widetilde{M}(\lambda x) < \infty$ for every $\lambda > 0$ is denoted $H_M(S, \Sigma, \mu)$.

The most interesting Orlicz spaces considered usually in the literature are the sequence spaces l_M , h_M and the pairs of function spaces $L_M(0,1)$, $H_M(0,1)$ and $L_M(0,\infty)$, $H_M(0,\infty)$ corresponding to the cases: S is a countable union of atoms of equal mass, S = [0,1] or $S = [0,\infty)$, and μ the usual Lebesgue measure. We note that if the Orlicz function M satisfies the Δ_2 -condition at 0 (at ∞ , at 0 and ∞), i.e. there exists k > 0 such that

$$M(2t) \leq kM(t), t \in [0,1] \quad (t \in [1,\infty), t \in [0,\infty)),$$

the spaces l_M and h_M ($L_M(0,1)$ and $H_M(0,1)$, $L_M(0,\infty)$ and $H_M(0,\infty)$) coincide. Obviously l_M , $L_M(0,1)$ and $L_M(0,\infty)$ essentially depend on the behaviour of the function M near $0, \infty$, and 0 and ∞ , respectively. It is well known (see, e.g., [5]) that if two Orlicz functions M and N are equivalent ($M \sim N$) at 0 (at ∞ , at 0 and ∞), i.e.

$$c^{-1}M(c^{-1}t) \leq N(t) \leq cM(ct), \ t \in [0,1] \ (t \in [1,\infty), t \in [0,\infty))$$

for some positive constant c, then $h_N(H_N(0,1), H_N(0,\infty))$ is isomorphic to $h_M(H_M(0,1), H_M(0,\infty))$. Using this result equivalent norms in h_M , $H_M(0,1)$ or $H_M(0,\infty)$ are usually constructed through Orlicz functions, equivalent to M at 0, at ∞ or at 0 and ∞ , respectively.

Now we recall that the Boyd indices for h_M , $H_M(0,1)$ and $H_M(0,\infty)$ can be expressed by the formulas (see, e.g., [6: Section 2.b.5])

$$\begin{aligned} \alpha_M^0 &= \sup\left\{p; \ \sup\left\{\frac{M\left(uv\right)}{u^p M\left(v\right)}; \ u, v \in (0, 1]\right\} < \infty\right\}, \\ \alpha_M^\infty &= \sup\left\{p; \ \sup\left\{\frac{u^p M\left(v\right)}{M\left(uv\right)}; \ u, v \in [1, \infty)\right\} < \infty\right\}, \\ \alpha_M &= \min\left(\alpha_M^0, \alpha_M^\infty\right), \end{aligned}$$

respectively.

A detailed study of the problem of the isomorphic embeddings of the h_M spaces into Orlicz spaces is contained in [7] and [8]. Here we only mention that always $\alpha_M \ge 1$ and that $h_{\alpha_M^0}$ is isomorphic to a subspace of h_M . Finally we consider a class of smooth Orlicz functions that was introduced in [10].

Definition 3: $AC^k, k \in \mathbb{N}$ is the class of all functions M such that:

i) $\alpha_M > k$;

ii) the k-th derivative $M^{(k)}$ of M is absolutely continuous in every finite interval; iii) $t^{k+1} |M^{(k+1)}(t)| \leq cM(ct)$ as $i = i [0, \infty)$ for some s > 0.

(i)
$$t^{k+1} |M^{(k+1)}(t)| \le cM(ct) \ a.e. \ in [0,\infty) \ for \ some \ c > 0.$$
 (2)

It is not hard to check that every $M \in AC^k$ satisfies for fixed $a \in (k, \alpha_M)$ the inequalities

$$M(\lambda t) \le c_1 \lambda^a M(t), \ \lambda \in [0,1], \ t \in [0,\infty)$$
(3)

and

$$t^{i}\left|M^{(i)}(t)\right| \leq c_{1}M(c_{1}t), \ t \in [0,\infty) \ (i=1,\ldots,k),$$
(4)

where c_1 is a constant depending on a and M. Without loss of generality we shall assume in the sequel that $c_1 = c \ge 1$, i.e. that for a fixed $a \in (k, \alpha_M)$, M satisfies (2), (3) and (4) with the same constant $c \ge 1$.

3. Properties of the class AC^k

In this section we make a further investigation of the class AC^k in order to improve some estimates from [10]. We shall often use the following simple inequalities implied by the convexity of M:

$$uM(v) \le M(uv) + M(v), \qquad (5)$$

$$M(\max(|u|,|v|)) \le (M(2u) + M(2v))/2, \tag{6}$$

for any real u, v.

Let $k \in \mathbb{N}$. Put

$$F_{k}^{M}(u,v) = M(uv)\left(u^{k+1}M(v)\right)^{-1}$$

For any $k \in \mathbb{N}$ and interval $I \subset \mathbb{R}^+$ we associate to M the function $r_{k,I}^M$ defined as

$$r_{k,I}^{\mathcal{M}}(t) = t \sup \left\{ F_k^{\mathcal{M}}(u,v); (u,v) \in [t,1] \times I \right\}.$$

If $I = \hat{\mathbf{R}}^+$, we simply choose $r_{k,I}^M = r_k^M$. We set $R_{k,I}^M(t) = t^k r_{k,I}^M(t)$ and $R_k^M(t) = t^k r_k^M(t)$. Obviously

$$r_{k}^{M}(t) \geq t, \ r_{k}^{M}(t) \geq M(t) / t^{k}, \ t \in (0,1],$$
(7)

$$M(uv) \le u^{k+1}M(v)r_k^M(t)/t, \ t \in (0,1], \ (u,v) \in [t,1] \times \mathbf{R}^+.$$
(8)

The following properties of R_k^M will be useful.

Lemma 1: Let $M \in AC^k$. Then r_k^M , and of course also R_k^M , are non-decreasing in $[0, t_0]$ for some $t_0 \in (0, 1)$.

Proof: According to (3) for a suitable $t_0 \in (0, 1)$

$$M(uv) \leq u^{k} M(v), (u,v) \in [0,t_{0}] \times \mathbf{R}.$$

First we show that $r_k^M(t) \leq r_k^M(a)$ for any $t \in [a^2, a]$ and $a \in (0, t_0]$. Indeed, the above inequality implies

$$\sup\left\{F_{k}^{M}\left(u,v\right);\ \left(u,v\right)\in\left[t,a\right]\times\mathbb{R}^{+}\right\}\leq\left(\frac{a}{t}\right)sup\left\{F_{k}^{M}\left(u,v\right);\ \left(u,v\right)\in\left[a,\frac{a^{2}}{t}\right]\times\mathbb{R}^{+}\right\},$$

with $a^2/t \leq 1$. Using this inequality and the representation

$$r_{k}^{M}(t) = t \max\left(\sup\left\{F_{k}^{M}(u,v); (u,v) \in [t,a] \times \mathbb{R}^{+}\right\}, \sup\left\{F_{k}^{M}(u,v); (u,v) \in [a,1] \times \mathbb{R}^{+}\right\}\right)$$

we immediately obtain $r_k^M(t) \le r_k^M(a)$. Let now $0 < t_1 < t_2 \le t_0$. Then $t_2^{2^j} \le t_1 \le t_2^{2^{j-1}}$ for some $j \in \mathbb{N}$ and the sequence of inequalities

$$r_{k}^{M}(t_{1}) \leq r_{k}^{M}(t_{2}^{2^{j-1}}) \leq r_{k}^{M}(t_{2}^{2^{j-2}}) \leq \ldots \leq r_{k}^{M}(t_{2})$$

completes the proof.

We note that $r_{k}^{M}(\lambda t) \leq \lambda r_{k}^{M}(t), \ \lambda \geq 1$.

Lemma 2: If $M \sim N$ at 0 and ∞ , then $R_k^M \sim R_k^N$ at 0.

Proof: Without loss of generality we may assume that M(1) = N(1) = 1. Let $c^{-1}M(c^{-1}t) \leq N(t) \leq cM(ct)$ for some $c \geq 1$. Then

a) for $c^{-2} \le u \le 1, v \in \mathbb{R}^+$,

$$\frac{N(uv)}{u^{k+1}N(v)} \leq c^{2(k+1)} \frac{M(u_1v_1)}{u_1^{k+1}M(v_1)}, \quad u_1 = v_1 = 1;$$

b) for $t \le u \le c^{-2}$, $v \in \mathbb{R}^+$,

$$\frac{N(uv)}{u^{k+1}N(v)} \leq \frac{c^2 M(cuv)}{u^{k+1}M(c^{-1}v)} = c^{2(k+2)} \frac{M(u_1v_1)}{u_1^{k+1}M(v_1)}, \ t \leq c^2 u = u_1 \leq 1, v_1 = c^{-1}v,$$

which implies

$$\sup\left\{F_{k}^{N}\left(u,v\right);\left(u,v\right)\in\left[t,1\right]\times\mathsf{R}^{+}\right\}\leq c^{2\left(k+2\right)}\sup\left\{F_{k}^{M}\left(u,v\right);\left(u,v\right)\in\left[t,1\right]\times\mathsf{R}\right\}$$

and symmetrically

$$\sup\left\{F_{k}^{M}(u,v);(u,v)\in[t,1]\times\mathbb{R}^{+}\right\}\leq c^{2(k+2)}\sup\left\{F_{k}^{N}(u,v);(u,v)\in[t,1]\times\mathbb{R}\right\}.$$

Thus $c^{-2(k+2)}R_{k}^{M}(t)\leq R_{k}^{N}(t)\leq c^{2(k+2)}R_{k}^{M}(t),t\in(0,1].$

Lemma 3: For any real a and $b, t \in (0, 1]$, the inequality

$$b^{k+1}M(a) \le (M(a) + M(ab/t))R_k^M(t)$$
(9)

holds.

Proof: If $b/t \leq 1$, then (7) implies

$$(b^{k+1}/R_k^M(t)-1)M(a) \le ((b/t)^{k+1}-1)M(a) \le 0 \le M(ab/t).$$

Suppose now b/t > 1. Obviously $t \le t/b < 1$, and (9) immediately follows from

$$r_k^M(t) \ge t \frac{M(a)}{\left(t/b\right)^{k+1} M(ab/t)} = \frac{b^{k+1} M(a)}{t^k M(ab/t)}.$$

Thus Lemma 3 is proved.

Lemma 4: Let $M \in AC^k$. Then for any real u, v with $u^2 + v^2 \neq 0$ we have $\left| M^{(k)} (u+v) - M^{(k)} (u) \right| \leq c_1 |v| M (2c\xi) / \xi^{k+1},$

where $c_1 = 2^{k+1}c$, $\xi = \max(|u|, |v|)$.

Proof: Suppose first that |v| < |u|/2. In this case $\xi = |u|$, and using (2) we have

$$\begin{aligned} \left| M^{(k)} \left(u + v \right) - M^{(k)} \left(u \right) \right| &= \left| \int_{u}^{u+v} M^{(k+1)} \left(t \right) dt \right| \\ &\leq c \int_{\min(|u|, |u+v|)}^{\max(|u|, |u+v|)} \frac{M\left(ct \right)}{|t|^{k+1}} dt \leq c \frac{|v| M\left(c\left(|u| + |v| \right) \right)}{\left(|u| - |v| \right)^{k+1}} \leq 2^{k+1} c \left| v \right| \frac{M\left(2c\xi \right)}{\xi^{k+1}}. \end{aligned}$$

If $|v| \ge |u|/2$, then $|v|/\xi \ge 1/2$ and using (4) and (3) we obtain

$$\left| M^{(k)}(u+v) - M^{(k)}(u) \right| \le c \left(\frac{M(c(u+v))}{|u+v|^{k}} + \frac{M(cu)}{|u|^{k}} \right)$$
$$\le \frac{c|v|}{2^{k-1}\xi^{k+1}} \left(\left(\frac{2\xi}{|u+v|} \right)^{k} M(c(u+v)) + \left(\frac{2\xi}{|u|} \right)^{k} M(u) \right) \le 2^{2-k} c|v| \frac{M(2c\xi)}{\xi^{k+1}}$$
wwa 4 is proved -

Thus Lemma 4 is proved.

We associate to every $M \in AC^k$ and $x \in X = L_M(S, \Sigma, \mu)$ the symmetric *i*-linear forms (i = 1, 2, ..., k) defined by

$$\widetilde{M}_{i}(x; y_{1}, y_{2}, \ldots, y_{i}) = \int_{\mathcal{S}} M^{(i)}(x(s)) \prod_{k=1}^{i} y_{k}(s) d\mu(s)$$

and the symmetric (i - j)-linear forms $(0 \le j < i)$

$$\widetilde{M}_{i,j}(x; y_1, y_2, \ldots, y_{i-j}) = \int_{S} M^{(i)}(x(s)) x^j(s) \prod_{k=1}^{i-j} y_k(s) d\mu(s),$$

where $y_1, y_2, \ldots, y_i \in X$. Obviously $\widetilde{M}_{i,0} = \widetilde{M}_i$ and $M_0 = \widetilde{M}$.

Lemma 5: Let $M \in AC^k$. Then $\widetilde{M}_{i,j}(x) \in B^{i-j}(X)$ for every $x \in X$ $(i = 1, 2, ..., k; 0 \le j < i)$ and

$$\left\|\widetilde{M}_{i,j}(x)\right\| \leq c^{k+1} \left(\widetilde{M}(cx) + c\right).$$

Proof: It is sufficient to show that for fixed $x \in X$

$$\sup\left\{\left|\widetilde{M}_{i,j}\left(x;\ h^{(i-j)}\right)\right|;\ ||h||\leq 1/c\right\}<\infty\ (i=1,2,\ldots,k;\ 0\leq j< i).$$

Denote $S_1 = \{s \in S; 0 \le |x(s)| \le |h(s)|\}$ and $S_2 = S \setminus S_1$. Using (3) and (4) we have

$$\begin{split} \left| \widetilde{M}_{i,j} \left(x; \ h^{(i-j)} \right) \right| &\leq \int_{S} \left| M^{(i)} \left(x(s) \right) \right| \ |x(s)|^{j} |h(s)|^{i-j} d\mu(s) \\ &\leq c \left(\int_{S_{1}} M \left(cx(s) \right) \left(|h(s)| / |x(s)| \right)^{i-j} d\mu(s) + \int_{S_{2}} M \left(cx(s) \right) d\mu(s) \right) \\ &\leq c^{2} \int_{S_{1}} M \left(ch(s) \right) d\mu(s) + c \int_{S_{2}} M \left(cx(s) \right) d\mu(s) \leq c \left(\widetilde{M} \left(cx \right) + c \right) . \end{split}$$

The next lemma essentially shows that $M^{(k)} \in H^{\omega}(\mathbf{R}^{+}), \ \omega(t) = r_{k}^{M}(t).$

Lemma 6: Let $M \in AC^k$. For any real u, v, w, t such that $u^2 + v^2 \neq 0$, $|t| \leq 1/4c$, the inequalities

$$\left| \left(M^{(k)} \left(u + tv \right) - M^{(k)} \left(u \right) \right) u^{i} w^{k-i} \right| \le c_{2} \left(M \left(4cu \right) + M \left(v \right) + M \left(w \right) \right) r_{k}^{M} \left(|t| \right)$$
(10)

for $0 \leq i \leq k-1$ and

$$\left| \left(M^{(k)} (u + tv) - M^{(k)} (u) \right) u^k \right| \le c_2 \left(M (4cu) + M (v) \right) r_k^M (|t|)$$
(10')

hold, where $c_2 = 2c_1 (2c)^{k+1}$.

Proof: Lemma 4 implies

$$\left| \left(M^{(k)} \left(u + tv \right) - M^{(k)} \left(u \right) \right) u^{i} w^{k-i} \right| \le c_{1} \left| tv \right| \left| w \right|^{k-i} M \left(2c\xi \right) / \xi^{k+1-i}$$
(11)

where $\xi = \max(|u|, |tv|)$. It is clear that to estimate the right-hand side of (11) it suffices to consider only positive u, v, w, t, and M(1) = 1. We separate the following cases:

a) $w \leq 2c\xi$. Using (5) and (6) we obtain

$$tvw^{k-i}M(2c\xi)/\xi^{k+1-i} \le (2c)^{k+1-i}tvM(2c\xi)/(2c\xi)$$
$$\le (2c)^{k+1-i}t(M(2c\xi) + M(v)) \le 3(2c)^{k+1-i}t(M(4cu) + M(v)).$$

b) $2c\xi \leq w \leq 2c\xi/t$. Now

$$\frac{tvw^{k-i}M(2c\xi)}{\xi^{k+1-i}} \leq (2c)^{k+1-i}t\left(\left(\frac{v}{2c\xi}\right)^{k+1-i} + \left(\frac{w}{2c\xi}\right)^{k+1-i}\right)M(2c\xi).$$
(12)

If $i \neq 0$ using once more (5) and (6) we obtain

$$\frac{tvw^{k-i}M(2c\xi)}{\xi^{k+1-i}} \leq (2c)^{k+1-i}t(2M(2c\xi) + M(v) + M(w))$$

$$\leq 2(2c)^{k+1-i}t(M(4cu) + M(v) + M(w)).$$

If i = 0 we continue the estimation in (12) using Lemma 3:

$$\frac{tvw^{k-i}M(2c\xi)}{\xi^{k+1-i}} \leq (2c)^{k+1}t^{-k}\left(\left(\frac{tv}{2c\xi}\right)^{k+1} + \left(\frac{tw}{2c\xi}\right)^{k+1}\right)M(2c\xi)$$

$$\leq (2c)^{k+1}(2M(2c\xi) + M(v) + M(w))r_k^M(t)$$

$$\leq 2(2c)^{k+1}(M(4cu) + M(v) + M(w))r_k^M(t).$$

Finally we consider

c) $w \ge 2c\xi/t$. This case is quite easy. Indeed

$$\frac{tvw^{k-i}M(2c\xi)}{\xi^{k+1-i}} \leq \left(\frac{w}{\xi}\right)^{k-i}M(2c\xi) = (2c)^{k-i}t^{i-k}\left(\frac{wt}{2c\xi}\right)^{k-i}M(2c\xi)$$
$$\leq (2c)^{k-i}t^{i-k}M(wt) \leq (2c)^{k-i}t^{i}\tau_{k}^{M}(t)M(w),$$

where we used (8) in the last inequality.

Combining the estimates obtained in the cases a), b) and c) it is easy to get (10) with $c_2 = 2c_1(2c)^{k+1}$. The proof of (10') is the same. Thus Lemma 6 is proved.

Corollary 1: Let $M \in AC^k$. Then for every $x, h \in X$ and any $t \in (0, 1/4c)$ the estimate

$$\left|\widetilde{M}(x+th) - \sum_{j=0}^{k} \frac{t^{j}}{j!} \widetilde{M}_{j}\left(x; h^{(j)}\right)\right| \leq c_{3}\left(\widetilde{M}(4cx) + \widetilde{M}(h)\right) R_{k}^{M}(t), \quad (13)$$

holds, where $c_3 = 2c_2/k!$.

Proof: Obviously, for every $s \in S$:

$$\left| M(x(s) + th(s)) - \sum_{j=0}^{k} \frac{(th(s))^{j}}{j!} M^{(j)}(x(s)) \right| \leq \frac{|th(s)|^{k}}{k!} \left| M^{(k)}(x(s) + \theta_{s}th(s)) - M^{(k)}(x(s)) \right|$$

for some $\theta_s \in (0,1)$. Lemma 6 applied for $i = 0, u = x(s), v = \theta_s h(s), w = h(s)$ gives

$$\left| M(x(s) + th(s)) - \sum_{j=0}^{k} \frac{(th(s))^{j}}{j!} M^{(j)}(x(s)) \right| \le \frac{2c_{2}}{k!} (M(4cx(s)) + M(h(s))) R_{k}^{M}(t).$$

Now to obtain (13) we only have to integrate over S the last inequality.

Remark 1: Corollary 1 is a quantitative improvement of Lemma 4 in [10], where only $o(|t|^k)$ instead of $|t|^k r_k^M(|t|)$ in the right-hand side of (13) was given. The estimate (13) implies, of course, that $\widetilde{M}_i: X \to B^i(X)$ is (k-i)-times differentiable in X for $i = 0, \ldots, k-1$ $(B^0(X) = \mathbb{R}^+)$ and $D^j \widetilde{M} = \widetilde{M}_j$ $(j = 1, 2, \ldots, k)$, $D^i \widetilde{M}_j = \widetilde{M}_{i+j}$ $(i+j \leq k)$.

Corollary 2: We have $\widetilde{M}_{k,j} \in H^{\omega}\left(X, B^{k-j}(X)\right)$ (j = 0, 1, ..., k), where $\omega(t) = r_k^M(t)$.

Proof: We shall prove that for any y, z from the ball B(x; 1/8c) the inequalities

$$\left\| \widetilde{M}_{k,j}\left(y\right) - \widetilde{M}_{k,j}\left(z\right) \right\| \le c_4 \varphi\left(z\right) r_k^M\left(\left\| y - z \right\| \right), \ j = 0, 1, 2, \dots, k-1,$$
(14)

$$\left|\widetilde{M}_{k,k}\left(y\right)-\widetilde{M}_{k,k}\left(z\right)\right|\leq c_{4}\varphi\left(z\right)\tau_{k}^{\mathcal{M}}\left(\left|\left|y-z\right|\right|\right),$$
(14')

where $c_4 = \kappa 8^{k-2} c^{2k} c_2$, $\varphi(x) = (8c ||x|| + 1)^{k-2} (\widetilde{M}(8cx) + 8c + 1)$, hold. Indeed, let $h \in S(X)$, $s \in S$. Obviously

$$\begin{split} \widetilde{M}_{k,j}\left(y;\ h^{(k-j)}\right) &- \widetilde{M}_{k,j}\left(z;\ h^{(k-j)}\right) \Big| \\ &\leq \left| \int_{S} M^{(k)}\left(y\left(s\right)\right) \left(y^{j}\left(s\right) - z^{j}\left(s\right)\right) h^{k-j}\left(s\right) d\mu\left(s\right) \right| \\ &+ \int_{S} \left| M^{(k)}\left(y\left(s\right)\right) - M^{(k)}\left(z\left(s\right)\right) \right| |z\left(s\right)|^{j} |h\left(s\right)|^{k-j} d\mu\left(s\right). \end{split}$$

The second member of the last sum is easily estimated for j < k using (10) for u = z(s), v = ((y(s) - z(s))) / ||y - z||, t = ||y - z||, w = h(s) and (6):

$$\begin{split} &\int_{S} \left| M^{(k)} \left(y \left(s \right) \right) - M^{(k)} \left(z \left(s \right) \right) \right| \left| z \left(s \right) \right|^{j} \left| h \left(s \right) \right|^{k-j} d\mu \left(s \right) \\ &\leq c_{2} \left(\widetilde{M} \left(4cz \right) + \widetilde{M} \left(\left(y - z \right) / \left| \left| y - z \right| \right| \right) + \widetilde{M} \left(h \right) \right) r_{k}^{M} \left(\left| \left| y - z \right| \right| \right) \\ &\leq \frac{c_{2}}{2} \left(\widetilde{M} \left(8cz \right) + 5 \right) r_{k}^{M} \left(\left| \left| y - z \right| \right| \right). \end{split}$$

To obtain (14) for j < k with $c_4 = \kappa 8^{k-2} c^{2k} c_2$ and $\varphi(k) = (8c||x||+1)^{k-1} (\widetilde{M}(8cx)+8c+1)$, it is enough to estimate the first member of (15) in the following way:

$$\begin{split} \left| \int_{S} M^{(k)} (y(s)) \left(y^{j}(s) - z^{j}(s) \right) h^{k-j}(s) d\mu(s) \right| \\ &\leq \left| \left| \widetilde{M}_{k} (y) \right| |_{1} ||y - z|| \sum_{i=0}^{j-1} ||y||^{i} ||z||^{j-i-1} ||h||^{k-j} \\ &\leq \kappa c^{k+1} \left(\widetilde{M} (cy) + c \right) (||x|| + 1/8c)^{j-1} ||y - z|| \\ &\leq \kappa 8^{k-1} c^{2k} \left(\frac{\widetilde{M} (2cx) + \widetilde{M} (2c(y - x))}{2} + c \right) (8c ||x|| + 1)^{k-2} ||y - z|| \\ &\leq \kappa 8^{k-2} c^{2k} \left(4 \widetilde{M} (2cx) + 8c + 1 \right) (8c ||x|| + 1)^{k-2} ||y - z|| . \end{split}$$

We used Lemma 5, the relation between the norms $\|\cdot\|$ and $\|\cdot\|_1$ in $B^k(X)$ and the convexity of M. The proof of (14') uses (10') and is practically the same.

Remark 2: Obviously $\widetilde{M}_j \in H^1(X, B^j(X))$ and $\widetilde{M}_{i,j} \in H^1(X, B^{i-j}(X))$ for $0 \le j \le i < k$.

4. Main result

We are ready to prove the following

Theorem 1: Let $M \in AC^k$ and (S, Σ, μ) be a measure space. Then $X = H_M(S, \Sigma, \mu)$ is H^{ω} -smooth, where $\omega(t) = R_k^M(t)$.

Proof: Set n(x) = ||x||. Using Remark 1 and the implicit function theorem applied to the equation $\widetilde{M}(x/n(x)) - 1 = 0$ we obtain as in [10, Theorem 6] $n'(x) = \widetilde{M}_{1,0}(x/n(x))/\widetilde{M}_{1,1}(x/n(x))$, which, by an easy induction argument, implies that n is k-times differentiable in $X \setminus \{0\}$. What we have to prove in addition is that $n^{(k)} \in H^{\omega_1}(X \setminus 0, B^k(X))$, $\omega_1 = r_k^M$. To this end we need some more information about the k-th derivative of the norm.

First for sake of brevity we introduce the notation

$$\overline{M}_{i,j}(x) = \widetilde{M}_{i,j}(x/n(x)).$$

Using the equality

$$D\left(\frac{x}{n(x)}\right)(y) = \frac{y}{n(x)} - \frac{x}{n^2(x)}Dn(x; y) = \frac{y\overline{M}_{1,1}(x) - \overline{M}_{1,0}(x; y)}{n(x)\overline{M}_{1,1}(x)},$$

we obtain by induction

$$n^{(k)}(x) = \frac{\sum_{i=0}^{k} C_{k}^{i}(-1)^{i} \overline{M}_{k,i}(x) \overline{M}_{1,1}^{k-i}(x) \overline{M}_{1,0}^{i}(x) + P\left(\overline{M}_{i,j}(x)\right)}{n^{k-1}(x) \overline{M}_{1,1}^{k+1}(x)},$$
(15)

where $P\left(\overline{M}_{i,j}(x)\right)$ is a polynomial with respect to $\overline{M}_{i,j}$ (i < k) and $P\left(\overline{M}_{i,j}(x)\right) \in B^k(X)$ for fixed x.

Let $\omega_1 = r_k^M$. It is easy to check that $f \in H^{\omega_1}(X, B^k(X))$, $g \in H^1(x, \mathbb{R}^+)$ imply $f/g \in H^{\omega_1}(X \setminus A; B^k(X))$, where $A = \{x \in X : g(x) = 0\}$. Indeed, fix $x \notin A$. Then for sufficiently small $\delta > 0$,

$$\left\| \frac{f(y)}{g(y)} - \frac{f(z)}{g(z)} \right\| \le 6 \frac{\||f(y) - f(z)|| \, \|g(x)\| + \|g(y) - g(z)\| \, \|f(x)\|}{\|g(x)\|^2},\tag{16}$$

for any $y, z \in B(x; \delta)$. Let now $x \neq 0, r = \min(||x||/2, 1/8c)$. As

$$\left\| \frac{y}{\|y\|} - \frac{z}{\|z\|} \right\| \le 4 \frac{\|y - z\|}{\|x\|}$$

for $y, z \in B(x; r)$, from (14) and (14') and Lemma 1 it follows for any $y, z \in B(x; r)$ that

$$\left\| \overline{M}_{k,j}(y) - \overline{M}_{k,j}(z) \right\| \leq c_4 \varphi(x) r_k^M \left(\left\| \frac{y}{\|y\|} - \frac{z}{\|z\|} \right\| \right)$$
$$\leq c_4 \varphi(x) \max\left(\frac{4}{\|x\|}, 1 \right) r_k^M \left(\left\| y - z \right\| \right) \left(j = 0, 1, \dots, k \right).$$
(17)

Obviously *n* and $\overline{M}_{i,j}$ are in $H^1(X, B^{i-j}(X))$ for every $i = 1, 2, ..., k-1, 0 \le j \le i$ and therefore $n\overline{M}_{1,1} \in H^1(X, \mathbb{R}^+)$. Now from the representation (15) of $n^{(k)}$, (16) and (17) it follows that $n^{(k)} \in H^{\omega_1}(X \setminus \{0\}, B^k(X))$. Thus Theorem 1 is proved. \bullet

5. Smooth renormings in arbitrary Orlicz spaces

We shall treat in details only the case of sequence spaces. The cases $H_M(0,1)$, $H_M(0,\infty)$, and the general case $H_M(S, \Sigma, \mu)$ can be analogously treated. It is not hard to see that, without some kind of smoothness of the Orlicz function M, the condition $\alpha_M^0 > 1$ cannot ensure the differentiability of the usual norm in h_M . Nevertheless, equivalent smooth Orlicz renorming, i.e. one generated by a suitable Orlicz function, equivalent to M at 0, is possible. Namely, the following theorem holds true.

Theorem 2: Let $\alpha_M^0 \in (1,\infty)$. Then in h_M there exists an equivalent H^{ω} -smooth norm, where $\omega(t) = R_{k,[0,1]}^M(t), k = E(\alpha_M^0)$.

Proof: As usual we suppose M(1) = 1, and since the behaviour of M at ∞ is unessential, we "correct" it near ∞ to a function N in such a way that $\alpha_N = \alpha_M^0$. For example:

$$N(t) = \begin{cases} M(t), & t \in [0,1] \\ t^{k+1}, & t \in [1,\infty) \end{cases}$$

Put $N_2(t) = \int_0^t N_1(u) \exp(u/(u-t)) du/u$, where $N_1(t) = \int_0^t N(u) du/u$. It is not hard to check that

$$(1/4) N(t/4) \le e^{-1} N(t/4) \le N_2(t) \le N(t), \ t \in [0,\infty).$$
⁽¹⁹⁾

This implies that h_{N_2} is isomorphic to h_M . Moreover, it is easily verified that $N_2 \in AC^k$ for any k, and we may apply Theorem 1: h_{N_2} is H^{ω} -smooth, $\omega(t) = R_k^{N_2}(t)$, $k = E(\alpha_{N_2}) = E(\alpha_M^0)$.

Lemma 2 and (19) imply

$$4^{-2(k+2)}R_{k}^{N}(t) \leq R_{k}^{N_{2}}(t) \leq 4^{2(k+2)}R_{k}^{N}(t), \ t \in [0,1].$$

To finish we observe that $R_k^N = R_{k,[0,1]}^M$. Indeed, $R_k^N \ge R_{k,[0,1]}^M$ is obvious, and we only have to prove $R_k^N \le R_{k,[0,1]}^M$. Analogously to the proof of Lemma 2 we show that for any $(u, v) \in [t, 1] \times \mathbb{R}^+$ there are u_1 and $v_1, (u_1, v_1) \in [t, 1] \times [0, 1]$ with $F_k^N(u, v) = F_k^M(u_1, v_1)$. If $v \le 1$ we take simply $u_1 = u, v_1 = v$. Let v > 1 and $uv \le 1$. Then

$$F_{k}^{N}(u,v) = (uv)^{-(k+1)} M(uv) = F_{k}^{M}(u_{1},v_{1}), u_{1} = uv, v_{1} = 1.$$

Finally, if uv > 1, then $F_k^N(u, v) = 1 = F_k^M(u_1, v_1)$, $u_1 = v_1 = 1$. Theorem 2 is proved

Remark 3: This result is of no interest if $M \sim t^{2p}$ at 0, $p \in \mathbb{N}$, because it is well known that in l_{2p} the usual norm is infinitely many times differentiable. On the other hand if $M \not\sim t^{2p}$ at 0, $p \in \mathbb{N}$, the best order of smoothness in h_M by equivalent renorming is not better than $t^{\alpha_M^0}$. Indeed, for $\alpha_M^0 \neq 2p$, $p \in \mathbb{N}$ this follows simply from the fact that $l_{\alpha_M^0}$ is isomorphic to a subspace of h_M , if we combine this with the result from [1] formulated in the Introduction. If $\alpha_M^0 = 2p$, $p \in \mathbb{N}$, but $M \not\sim t^{2p}$ at 0, it was shown in [11] that in h_M there is no equivalent α_M^0 -times differentiable norm, i.e. any equivalent norm in h_M is again at most $H^{\alpha_M^0}$ -smooth.

Corollary 3: Let $M \not\sim t^{2p}$ at 0, $p \in \mathbb{N}$. Then

a) the order of smoothness $R_{k,[0,1]}^M$, $k = E(\alpha_M^0)$ cannot be improved with respect to power type orders;

b) *if*

$$M(uv) \leq c u^{\alpha_M^0} M(v), \ u, v \in [0,1],$$

$$(20)$$

then in h_M there is an $H^{\alpha M}$ -smooth norm, i.e.norm of best order of smoothness.

Proof: To obtain a) it is sufficient to observe that from the definition of α_M^0 it follows for any $u, v \in [0, 1]$ and fixed $\varepsilon > 0$ that $M(u, v) \le c_{\varepsilon} u^{\alpha_M^0 - \varepsilon} M(v)$, for some $c_{\varepsilon} > 0$, which implies for $k = E(\alpha_M^0)$ that $R_{k,[0,1]}^M(t) \le c_{\varepsilon} t^{\alpha_M^0 - \varepsilon}$, $t \in [0, 1]$.

b) In this case $R_{k,[0,1]}^M(t) \leq ct^{\alpha_M^0}$, $k = E(\alpha_M^0)$

Remark 4: The condition (20) is fulfilled for example if $M\left(t^{1/\alpha_{M}^{0}}\right)$ is quasi-convex. Results analogous to those from Theorem 2 and Corollary 3 b) can be obtained for the function spaces $H_{M}(0,1)$ and $H_{M}(0,\infty)$ and for general Orlicz spaces $H_{M}(S,\Sigma,\mu)$, as well, using the same techniques and results on embeddings of l_{p} spaces in Orlicz function spaces [8]. The corresponding orders of smoothness for $H_{M}(0,1)$ and $H_{M}(0,\infty)$ are respectively

$$\Re_{k}^{M}(t) = t^{k+1} \sup \left\{ 1/F_{k}^{M}(u,v); \ u \in [1,1/t], \ v \in [1,\infty) \right\}, \ k = E(\alpha_{M}^{\infty})$$

and $R_k^M(t), k = E(\alpha_M).$

Remark 5: Very probably the orders of smoothness from Theorem 2 and Remark 4 are the best ones in general as they agree with those from [10] for the cases α_M^0 , α_M^∞ , $\alpha_M \in (1,2)$ that are the best possible up to arbitrary (not only Orlicz) equivalent renorming (see [3, 4]).

Finally we give some examples.

Examples: Let $M(t) = t^p (1 + |lnt|)^q$, p > 1. Obviously M satisfies the Δ_2 -condition at 0 and at ∞ and $\alpha_M^0 = \alpha_M^\infty = p$. Therefore $h_M = l_M$, $H_M(0,1) = L_M(0,1)$ and a) if q < 0:

 $R^{M}_{E(p),[0,1]}(t) \leq t^{p}$, l_{M} is H^{p} -smooth and the usual norm is norm of best smoothness;

 $\Re_{E(p)}^{M}(t) \leq 2/M(1/t)$ for small t and $L_{M}(0,1)$ is H^{M} -smooth.

b) if q > 0:

 $R_{E(p),[0,1]}^{M}(t) \leq 2M(t)$ for small t and l_{M} is H^{M} -smooth;

 $\Re_{E(p)}^{M} \leq ct^{p}$ and $L_{M}(0,1)$ is H^{p} -smooth and the usual norm is norm of best smoothness.

REFERENCES

- BONIC, R. and J. FRAMPTON: Smooth functions on Banach manifolds. J. Math. Mech. 15 (1966), 877 - 898.
- [2] DEVILLE, R.: A characterization of H[∞]-smooth Banach spaces. Bull. London Math. Soc.
 22 (1990), 13 17.
- [3] FIGIEL, T.: On the moduli of convexity and smoothness. Studia Math. 56 (1976), 121 155.
- [4] FIGIEL, T. and G. PISIER: Series aleatoires dans les espace uniformement convexes ou uniformement lisses. C. R. Acad. Sci. Paris (Serie A) 279 (1974), 611 - 614.
- [5] KRASNOSELSKII, M. and YA. RUTICKII: Convex Functions and Orlicz Spaces. Groningen: Wolters-Noordhoff 1961.
- [6] LINDENSTRAUSS, J. and L.TZAFRIRI: Classical Banach Spaces. Vol. II: Sequence Spaces. Berlin Heidelberg New York: Springer-Verlag 1979.
- [7] LINDENSTRAUSS, J. and L. TZAFRIRI: On Orlicz sequence spaces I. Isr. J. Math. 10 (1971), 379 390.
- [8] LINDENSTRAUSS, J. and L. TZAFRIRI: On Orlicz sequence spaces III. Isr. J. Math. 14 (1973), 368 - 389.
- [9] MALEEV, R. P. and S. L. TROYANSKI: On the moduli of convexity and smoothness in Orlicz spaces. Studia Math. 54 (1975), 131 - 141.
- [10] MALEEV, R. P. and S. L. TROYANSKI: Smooth norms in Orlicz spaces. Can. Bull. Math. 34 (1991), 74 - 82.
- [11] MALEEV, R. P. and S. L. TROYANSKI: Smooth functions in Orlicz spaces. In: Banach Space Theory. Proc. Res. Workshop, July 5 - 25, 1987. Contemp. Math. 85 (1989), 355 - 370.
- [12] SUNDARESAN, K.: Smooth Banach spaces. Math. Ann. 173 (1967), 191 199.
- [13] SUNDARESAN, K. and S. SWAMINATHAN: Geometry and Analysis in Banach Spaces. Lect. Notes Math. 1131 (1985), 1 -

Received 26.06.1991; in revised form 24.07.1992