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Continuous Dependence Results for Subdifferential Inclusions
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N

In this paper we examine the dependence on a parameter of the solution set of a class of nonlinear
evolution inclusions driven by subdifferential operators. We prove that under mild hypotheses on the
data, the solution set depends continuously on the parameter for both the Vietoris and Hausdorff
topologies. Then we use these results to study the variational stability of the class of semilinear
parabolic optimal control problems and we also indicate how our work incorporates the stability
analysis of differential variational inequalities.
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1. Introduction

Let T =[0,b] and H a separable Hilbert space. We consider the following parametrized
family of evolution inclusions of subdifferential type:

— £(t) € Bp(z(t),A) + F(t,z(2),]) ae., z(0) = zo()). 1)

Denote the set of strong solutions (see Section 2) of (1) by S(A) € C(T,H). The purpose
of this note is to study continuity properties of the multifunction A—+S()). Analogous
continuous dependence results were obtained earlier by Vasilev [21] and Lim [9] for
differential inclusions in R" and by Tolstonogov [19] and Papageorgiou [12], who
considered differential inclusions in Banach spaces, but without subdifferential operators
present. In fact, their hypotheses are such that preclude the application of their work
to multivalued partial differential equations and to distributed parameter optimal
control problems. More recently, Kravvaritis and Papageorgiou [8] considered evolution
inclusions of subdifferential type and under more restrictive hypotheses on the data
established that the solution multifunction S(-) has a closed graph (see Theorem 4.1 in
Kravvaritis and Papageorgiou [8]).

In this paper, under gemeral hypotheses on the data (weaker than those in
Theorem 4.1 of Kravvaritis and Papageorgiou [8]), we prove that S(-) is continuous for
both the Vietoris and Hausdorff metric topologies (see Theorems 3.2 and 3.3). Then we
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i

use these results to establish a sensitivity result for a class of semilinear parabolic

. . 4y
distributed parameter optimal conirol problems.

2. Preliminaries

In what follows, T = [0,r], equipped with the Lebesgue measure dt, and H is a separable
Hilbert space. Throughout this paper we will use the following notations:

Py.(H) ={AC H: nonempty, closed (convex)}

Puyie)(H) ={AC H: nonempty, (weakly-) compact (convex)}.

A multifunction F:T—P/(H) is said to be measurable if, for all z € H, t—d(z, F(t)) =
inf{|]|z—v|:v € F(t)} is a measurable R -valued function. By S} we will denote the
set of selectors of F(-) that belong to the Lebesgue-Bochner space LY(H); i.e.,
St ={f € L\(H):f(t) € F(t) a.e.}. This set may be empty. For a measurable F(-), it
is nonempty if and only if t — inf{||v||:v € F()} € L,.

Let o:H — R=RU{+00}. We will say that o(-) is proper, if it is not
identically +oo. Assume that ¢(-) is proper, convex and lower semicontinuous. It is
customary to denote this family of R-valued functions by I'((H). By dom ¢, we denote
the effective domain of ¢(-); i.e., dom ¢ = {z € H:p(z) <oo}. The subdifferential of
¢() at z is the set dp(z) = {z* € H: (z*,y — z) < @(y) — ¢(z) for all y € dom ¢}, where
(+,-) denotes the inner product of H. H (-) is Gateaux differentiable at z, then
9¢(z) = {¢'(z)}. We say that ¢(-) is of compact type, if for every A €R the level set
{z€ H:||z||* + ¢(z) < A} is compact. Also for u> 0, we define Ju=(I +pdp)~* (the
resolvent of 9yp(-)). It is well known (see for example the book of Brezis [3]) that, for
all 4> 0, D(J,) = H and furthermore J (- ) is nonexpansive.

Let X a Banach space and {4, A},51 C2%{0}. Let s denote the strong
topology on X and w- the weak topology on X. We define:
slimA, ={z€ X:lim d(z,A,) =0}
={z€ X:z=slimz,, z,€ A,, n>1)},
slimA, ={z € X:lim d(z,4,) = 0}
={z€ X:z=slim Ty Tny € Apy m <ny<...<np <.,
w-limA, ={z€ X:z=wlim Tny Ta, € A, ﬁl <my<...<n <.}

It is clear from the above definitions that we always have s-lim A,Cslim A, C w-lim
A, I slim A,=slm A,=A, then we say that the A,’s converge to A in the
Kuratowski sense and denote it by A, %A as n—oo. If s-lim A, = w-lim A, = A, then
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we say that the A,'s converge to A in the Kuratowski-Mosco sense, denoted by
A K=MA,

Let A be a complete metric space. A multifunction G:A — P,(X) is said to be
upper semicontinuous (resp. lower semicontinuous) if for all U C X nonempty, open, the
set G*(U)= {A € A:G(\) C U} (resp. the set G~ (U) = {A € A:G(A\)NU # @}) is open in
A. A multifunction. G(-) which is both upper semicontinuous and lower semi-
continuous, is said to be continuous or Vietoris continuous, to emphasize that it is
continuous into the hyperspace P/(X) equipped with the Vietoris topology (see Klein
and Thompson [7]). If G(A)= U, aG(}) is compact in X, then G(-) is Vietoris
continuous if and only if for A, — X in A, we have G(),) % G()\). This follows from"
Remarks 1.6 and 1.8 of DeBlasi and Myjak [4].

On PyX) we can define a generalized metric, known in the literature as
Hausdorff metric, by ‘ .

h(A, B) = maz [s:;gAd(a, B), sggad(b, A)

Recall that (Py(X),h) is a complete metric space. A multifunction G:A — Py(X) is
said to be Hausdorff continuous (h-continuous), if it is continuous from A into the
metric space (P/X),h). On Py(X) the Vietoris and Hausdorff metric topologies
coincide (see Klein and Thompson (7, Corollary 4.2.3, p. 41]). So a multifunction G:A
— P,(X) is Vietoris continuous if and only if it is h-continuous (see DeBlasi and Myjak
[4, Remark 1.9]). From Theorem 3.3 of Papageorgiou [13], we know that if F:Tx X —
Py(X) is a multifunction such that F(-,z) is measurable and F(¢,-) is h-continuous,
F(-,-) is jointly measurable. Finally a multifunction G:A — P,(X) is said to be d-
continuous if, for all z€ X, A — d(z,G()\)) is continuous. Clearly if G(-) is k-
continuous, then it is d-continuous, too.

The following theorem was first proved by the author (see [12, Theorem 3.1])
. and recently improved by Rybinski (see [18, Theorem 1 and the remark on page 33)).
Here we state the improved version obtained by Rybinski [18].

Theorem 2.1: If X is a Banach space, K € Py(X), F,, F:K — P;(K) are h-
Lipschitz multifunctions with the same Lipschitz constant k € (0,1) such that if z, 2 z,
then F (z,) XM F(z), then if L, = {z€ X:z € F,(2)} and L = {z € X:z € F(z)}, we

have L, %£— L asn — oo.

Remark: The fixed point sets L,, L are nonempty by Nadler’s fixed point
theorem [11].

Let A be a complete metric space (the parameter space), T ={0,b] and H a
separable Hilbert space. The following hypothesis concerning ¢(z,)) will be in effect
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throughout this work:
H(ip) prHxA - R=RU{+cc}is a funciion such that

(i) for every A € A, (-, )) is proper, convex, lower semicontinuous (i.e.

"¢(+,) € To(H)) and of compact type,
() if A, = Xin A, then for every u > 0, we have (I + pdy(-,),)) "'z —
(I + pOy(-,A)) "'z for every z € H.

Also we will make the following hypothesis concerning the initial condition z4()) of (1):
H, A — z4() is continuous from A into H and for all A € A, z4()) € domep( -, ).
Given g € L*(H), consider the following evolution inclusion:

— &(t) € Op(z(t), A) + g(t) a.e., z(0) = zo(N). 2
From Brezis (3, Theorem 3.6, p. 72], we know that (2) has a unique strong solution
P(9:A)(-)=2(-)€C(T,H), and in addition since z4()) € domep(-,)), we have
[E3]] 2 S llgll Lz(H)-i-tp(zo, A2, and ¢(z(-),)) is absolutely continuous on T. So
we can define the solution map p:L*(H)xA — C(T,H) by (9,2) — p(g,2)(:). The
following continuity result concerning p(-, -) can be found in Attouch [1, Theorem 3.74,
p. 388].

Theorem 2.2:If hypotheses H(yp) and H, hold, then the solution map p:
L*H)x A — C(T, H) is continuous.

By a strong solution of evolution inclusion (1) we mean a function z € C(T, H)
such that z(-) is absolutely continuous on any compact subinterval of (0,5), z(t) € dom
@(-,A) ae and —i(t) € p(z(t),A) + f(t) ae., f(-)€L¥H), f(t)€F(tz(t),\) ae.,

.2(0) = z5(A). We will denote by S(A) C C(T,H) the set of all strong solutions of the
multivalued Cauchy problem (1).

An important selection theorem that we will use in the sequel is that of Aumann
and can be found in Wagner [22, Theorem 5.10]. It says that if G:T — 270} is a
multifunction such that GrG={(t,v) € T x H:v € G(t)} € B(T)x B(H) (i.e. G(-) is
graph measurable), then we can find g:T — H, a Lebesgue measurable function, such
that g(t) € G(¢) for all t € T..

A particular case of Theorem 3.1 in Papageorgiou [14] tells us that if
{f,,,f}"N_L‘(H), fo = f in L[}(H) and, for all n>1 and almost all teT,
| £(®) || < 8, where 6, > 0, then f(t) econw w-lim (£ (t)}, >, ae.

Also from Lemma A.5 of Brezis [3] we know that if m € LY(T,R), m >0 ae.

a€R, and u G C(T,R) satisfy ju’(t) <}a’+ f m(s)u(s)da for all t€ T, then we have
|u(t)| <a+ j'm(s)ds forall teT.
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Finally from Lemma §, p. 71 of Papageorgiou [16] we know that if S:A —
P(C(T,H)) is a multifunction such that for each K C A compact, the restriction of §
on K is upper semicontinuous, then S(-) is upper semicontinuous.

3. Ct_)ntinuous dependence results

In this section we study continuity properties of the solution multifunction S(-). For
this, we will need the following hypothesis on the orientor field F(t,z,)):
H(F) F:Tx Hx A—P ;. (H) is a multifunction such that
() t—F(t,z,)) is measurable,
(#) h(F(t,=,A),F(t,y,2)) < kg(t) || z~y|| ae. for all A€ BC A, B compact
and with kg(-) € LY,
(#i) A — F(t,z,)) is d-continuous,
(iv) [F(t,z,2)| = sup{||v]:v€ F(t,z,A)} < ap(t) +Bp(t) || || ae. for all
A€ BC A, B compact and with ag(-), B5(-) € L%.
Because of hypothesis H(F') above we know that, for every A € A, S(}) is nonempty and
compact in C(T,H) (see Kravvaritis and Papageorgiou [8, Theorem 3.1] and
Papageorgiou (15, Theorem 4.1]).
Theorem 3.1: If hypotheses H(p), H(F), Hy hold and A, — X in A, tben-S(z\,,)'
£ S()) in C(T,H) as n — co.
Proof: Let B C A be a nonempty, compact subset. First we will derive an a
priori bound for the elements in UJ, ¢ gS(A). To this end, let A € B, z(-) € S()) and let
uy(-) € C(T, H) be the unique solution of the Cauchy problem

— u,(t) € Ap(uy(t),A) a.e., u(0) = z4(A).
Exploiting the monotonicity of the subdifferential operator, we have
(= 2() + ux(2), ua(t) — 2(2)) < (f(2), ua(t) — () ae.
with f € L*(H), f(t) € F(t,z(t),)) a.e. and — &(t) € dp(z(t),A) + f(t) a.e. Then we have
ALz -w®I? < IO I2)-m®)] ae

IECEINCTER Y| tn £ - | 2(s) — ux(s) || ds.
Apply Lemma A.5, p. 157 of Brezis [3(; (see Section 2) to get
ll2(8) — w(®) || < / I £() 1 ds < / (c5(s) + Bo(s) | o(s) || )ds
Nzl < fuplloot j (aa(s) + Bs(s) l|2(s) | }ds.
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From Theorem 2.2, we know that we can find 0p >0 such that || uy || ,, < 65 for all

A € B. Hence, we get

t
le®)ll <65+ [ (asls)+Ba(s) | 2(s) 1 )ds, tET.
0

Invoking Gronwall’s inequality, we deduce that there exists Mg > 0 such that, for all
z € Uy eS(A), we have ||z || o(r,m) < Mp. Hence without any loss of generality, we
may assume that | F(t,z,A)| =sup{||v|: ve F(t,z,0)} < ¢5(t)= ag(t)+Bs(t)Mp
ae, Yp(-) €LY for all A€ B. Then let K= {heLN(H): | h(t)| <vs(t) ae}
(viewed as a subset of L'(H)) and consider the multifunction R:K pXB—P;(Kp)
defined by R(f,A) = Sk(.,p(s.2)(-)3)

On L}(H), consider the norm ||l 5= [ expl~ L fo‘ka(s)ds] lg(®)lldt, L>0,

which is clearly equivalent to the usual one. Qur claim is that for L > 1, the family
{R(-,M)}, € p is h-Lipschitz for this norm || - || g, with the same Lipschitz constant
78 € (0,1). To this end let f,g € K and let v € R(g,)). Let

I(t) = {u € F(t, p(f,A)£),A): | v(t) = u || = d(v(2), F(t, p(£,A)(2), V))}-

Note that for every t €T, I'(t) #0 since by hypothesis H(F), F is P, (H)-valued.
Then observe that

GrT' = {(t,u) € GrF(-, p(f,A)(- ), A): | v() — u || — d(v(2), F(t, (£, A)(t), X)) = 0}.
Because of hypotheses H(F)(i) and (#) and Theorem 3.3 of Papageorgiou [13] (see
Section 2), GrF (-, p(f,A)(-),\) € B(T) x B(H), where B(T) (resp. B(H)) is the Borel o-
field of T (resp. of H). Furthermore, (t,u) — ||v(t)—u]|| —d(v(t), F(t, p(f,\)(t),])) is
clearly measurable in t € T and continuous in u € H (i.e. a Caratheodory function), thus
jointly measurable. Therefore GrT' € B(T') x B(H). Apply Aumaun’s selection theorem
(see Wagner (22, Theorem 5.10 or Section 2]), to get w:T — H measurable such that
u(t) € I'(t) a.e. Then we have ‘

dB(v’ R(f1 A)) < " v—u " B

r t
= / lv(2) — u(t) || ezp [—L / kg(s)ds]dt
0 0

b t
= [ d(o(), P, o7, N)(E), Wear [—L / ka(s)d”}“
0 0
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r i
< / h(F(tr P(gl ’\)(t)ﬁ A)) F(t, P(f: A)(t)’ /\))e:!:p |:— L/ ka(s)d\?}“
0 0

r t
< [ st Il p(9, )~ p£, N ll ez [— Lf ka(s)ds}rt.
0 0

As in the beginning of the proof, by exploiting the monotonicity of the subdifferential
operator and by using Lemma A.5, p. 157 of Brezis [3] (see Section 2), we get

t
| 2(g, 2)(&) — p(£, A | < / Il 9(s) — f(s) Il ds for all (¢,1) € T x B.
0 :

So we have

r t t .
a5 RS [ kaltlezp [—L / ka(S)dS} [ lists) = f(s) Il dsdt
0 0 0

=-1/ ( / o) £ ds) d (ezp [— Lf tka(-’)d-’])
0 0 0 A

IA

r t '
% / ezp l:— L / kB(s)ds] Il (s)— f(s)[|ds (by integration by parts)
0 0 .

<}le-fls

Similarly for w € R(f, ), we can get dg(w, R(g,A)) £ % Hlg—fllgie {R(-,A)}repis b
Lipschitz with constant 11:, for the || - || p-norm.
Next’) let [fmAn] i [f)’\] in (KB’ " - " 8) x B imply [fmAn] d [f)A] in LI(H) X B.
We will show that R(f,,),) %= R(f,A). To this end, let u € R(f,\) and set
- Yalt) = d(u(?)), F(2, p(f s An)(2), An). Then

ﬁn(t) < d(u(t), F(t, p(£ (), Aa)) + Bt 5O, )0 A, Fl (S o Aa)(E) An)

< d(u(t), F(t, p(£,2)(2): A)) + ks(2) || (£, A)(8) — P(Fm AND) || ace.

Because of hypothesis H(F)(iii), we have d(u(t), F(¢, p(f,A)(¢),A,) — 0 a8 n — oo.. Also
because of Theorem 2.2, we have || p(f,A)(t) — (£ An)(t) ]| — 0 as n — oo, uniformly
onT.

Therefore, we get 7,(t) — 0 ae. as n — oco. * As before via Aumann’s selection
theorem, we can find u,( ) € Kp such that u,(t) € F(t, p(f ., A.)(t), A,) ae. and
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lu(t) —un(®) || < Valt)+3 ace.,
u,(t) = u(t) ae.in H as n — oo
u, = uin (L(H), || - [ p).
Since u, € R(f,,,A,), n > 1 we have established that
R(f,)) C s-lim R(f,,),). 3)

Next, let v € w-limR(f,,,\,). Denoting subsequences with the same index as
original sequences, we know that we can find v, € R(f,,,) such that v, % vin L'(H).
Apply Theorem 3.1 of [14] (see also Section 2), to get

o) € T w1 {f ()} 3 2 C 07 w-lim F(t,plfmA)(E) ) ace.
Note that, for any v € H, we have
d(v, F(t, (£, 0)(6), M)
< d(v, F(t, p(f s Aa)(2), Aa)) + B(F(E, (£, 2)(£)s An)s F(2, (£ Aa)(2), M)
< d(v, F(t, p(f s Aa)(2), Aa)) + E5(2) || (£, 2)() — p(f s A)(E) | aie

Then by passing to the limit as n — oo and using Theorem 2.2 together-with hypoth%fs
H(F)(ii1), we get
d(v, F(t, p(f, A(t), X)) < limd(v, F(t, p(f s Aa)(£), Av) @
Invoking Theorem 2.2 (iv) of Tsukada [20], we get
wlim Pt p(fmda)(DhA) € F(t, p(f,A)(8)N) ae.
v(t) € F(t,p(f,A)(t), ) a.e.
v € R(f,)).
Thus we have established that
w-lim R(f,,\,) C R(f,A). (4)

From (3) and (8) above, we have that if [f,,, Al = [f,\] in (IH), || - || 5)x B, then
R(fuds) =M R(£,0).

Let ‘I’( o) ={f €Kpf€R(f,)\)} and 2A)={f€KpfeR(f,))}. From

Theorem 2.1, we have

3(\,) 5 8()) in LY(H) as n — oo.
But since p(-) € L% (see the definition of K ), we can easily see that
8(\) & @) in L(H) as n — oo.
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Since the solution map p(-, - ):L*(H)x A — C(T, H) is continuous, we get
P@(\),A) % (X)) in C(T, H) as n — oo,

But note that S(A,) = p(®(),),,) and S(A) = p(&(A),)). So we have S(A,) % S()) in
C(T,H) as n — oo. o

If we strengthen hypothesis H(y) using Theorem 3.1 above, we can have the
Vietoris continuity of the multifunction S:A — Py(C(T, H)). The strengthened version
of H(p) that we will need is the following:

H(pY ¢:HxA—R =RU{+ oo} is a function such that
(1) for every A€A, ¢(-,)) is proper, convex, lower semicontinuous (i.e.
(-,A) € To(H)),
(i) if A, = X in A, then for every u >0 we have (I +udyp(-,),)) 'z —
(I + pdyp(-,A)) "z for every z € H,
(1) if B C A is compact, then U, ¢ g{z € H: ||z || ? + ¢(z,A) < 6} is compact

for every 6 > 0 and {¢(zo()),A):A € B} is bounded.

Theorem 3.2: If hypotheses H(p)', H(F) and H, hold, then S:A — P,(C(T,H))
is Vietoris continuous.

Proof: First, note that for any A € A and any compact set C' containing z,(}),
we have inf {p(z,A):z € C}=¢(%,)) for some € C (Weierstrass theorem). Since
9(p(z,A) — p(Z,X)) = dp(z,)), we may assume without any loss of generality that, for
every A € A, ¢(-,A) >0.

Let BCA compact and let Vg={he L*(H): | h(t)|| <¢p(t) ae}, where
¥5(+) € L% is as in the proof of Theorem 3.1. Let W = p(V g, B), where p(-, -) is the
solution map. Our claim is that W is relatively compact in C(T,H). So let z € W and
0<t<¥<r. Wehave

t t
lo) =2l = || [ #eMsll < [ lx(a)l1ds
t t
r 1/2 r 1/2
< [ / x[,.,,,(s)*ds] [ JREC] 'ds] :
0 0
But from Theorem 3.6, p. 72 of Brezis (3] (see Section 2), we have

¥

r 1/2
(EOT ’dS] S I¥slla+sup (zod)=M <co
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(see hypothesis H(p)(iii)). So we get | z(t')—=z(t)|| < M(t—t)'/? ie. W is
equicontinuous. '

Furthermore, using once more Theorem 3.6 of Brezis [3] (see Section 2), we have
2112+ (a(th ) = (h(t),2(2)),
Lo(a(),)) < (h(2),5(2)) ae.,
wl(=())) S ez )+ [ t 1A 112(s) 1 ds
< (20, 2) + I(I)h lall2 12 < (@) + [l sl M < M,

for all A € B (see hypothesis H(p)(iit)). Thus

W(t) = {=(t):(-) e W} Q'\LEJB{O € H: [[v]|*+¢(v,)) < M,} € Py(H)

(see hypothesis H(p)(3)). Therefore by the Arzela-Ascoli theorem, we deduce that W is
compact in C(T, H) and S(A) CW for all A € B. Combining this fact with Theorem 3.1
above, we gét that S'IB is Vietoris continuous. Since B C A was an arbitrary compact
subset, from Lemma §, p. 71 of [16] (see Section 2) and Remark 1.7 of DeBlasi and
Myjak [4] we conclude that S () is Vietoris continuous o

Finally, recalling that the Vietoris and Hausdorff metri¢ topologies coincide on
P,(C(T, H)) (see Section 2), we also have

Theorem 3.3: If hypotheses H(p), H(F) and Hy hold, then S:A — P, (C(T,H))
i3 h-continuous.
4. Sensitivity analysis in optimal control
In this section, we use the previous theorems to study the variational stability of a
class of nonlinear distributed parameter optimal control problems.

So let T =[0,r] and Z =[0,b]. Let A be a complete metric space (the parameter
space). We consider the following parametrized parabolic optimal control problem:

b
[ n(a,2(r,2), Mz — inf = m(x)
0
subject to a—zg—t’jz - Ba;(z(z,h)g%) = f(¢,2,2(t,2),\)u(t,2) a.e.

¢
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2(0,z) = zo(2, A), z(t,0) = z(t,b) = 0 and | u(t,2)| < v(t,2,A) ae
u( -, - }-measurable.

We will need the following hypotheses on the data of (5):
H(a) 0<m; <a(tz)<m,ae
H(f) fiTxZxRxA — Ris a function such that
(®) (t,2) = f(,2,z,]) is measurable,
(#) 1 ftz,2,X)— f(t,2,2,0)| <kg(t,2)|z—2'| ae with kBGL‘(TxZ)
A € BC A, B = compact,
(#) X — f(t,2,z,)) is continuous,
() | f(t,2,2,2)| <ap(t,2z) +cp(t,2)|z| ae with ag€ LT x2), cge
L*(TxZ),A\e BC A, B= compact.
H(r) (t,z) — wu(t,z,A) is measurable, A — u(t,z,)) is continuous and
|v(t,2,A)| <0p(t,2) a.e. with 8g(-,-) € LT x Z), A€ BC A, B = compact.
H(n) 7 ZxRxA — R is an integrand such that
(¥) z— 5(z,z,)) is measurable,
(#) (z,A) — n(2,z,)) is continuous,
@) | n(z,2,2) | < yp(2) +¥28(2) | 2|* ace. with ¢p(-) € LY, ¥yp€ LT,
A € BC A, B = compact.

H, zo( -, ) € Hy(Z) and A—zo( -, ) is continuous from A into L*(Z).
H, If A, — Ain A, then 74y % —isin I¥(2).

Let Q(X) € C(T,L*(Z)) be the set of optimal trajectories of (5).

Theoren 4.1: If hypotheses H(a),H(f),H(r),H(n),Ho and H. hold, then for
every A€ A, Q) #£0, Q:A — Py(C(T, L*(2))) is upper semicontinuous and m:A — R is

continuous.

Proof: Let H=L*Z) and Ay(z,)) = —£(a(z,1)52) with D(Ag(-,)) = {z€
HY(Z): $(a(z,\)32) € L*(Z)}. Then from Attouch (1, p. 379], we know that Ay(-,)) is
maximal monotone and linear on L*(Z) and furthermore, Ag(-,)) = 8y( -, )), where

1/2 / afz, ,\)( Z)tdz if z € HY(2)
P(z,2) =

+ 00 otherwise.

Because of hypothesis H, and using Theorem 29 of Zhikov, Kozlov and Oleinik [23], we
have that if A, — X in A, then Ag(-,),) S Ay(- »A) a8 n — 0o, and this by Theorem
3.62, p. 365 of Attouch [1], tells us that
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(I +p0p(-,A,)) "1 — (I +pdp(-,X))~" as n — oo,
for all peR. Let f:TxHxA — H defined by f(t,z,A)(:)=f(t -,2z(-),A) and
U(t,)) = {u € L*¥2): | u(z) | S v(t,2,)) ae}. Set
F(t,2,3) = f(t,2,)0(t,)) € PouLX(3)).

We will now check that F(-,-) satisfies hypothesis H(F). To this end, let
w € H = L*(Z) be given. Then we have

d(w, F(t,z,))) = inf {||w—f(t,z,\)u|| veU(t,)\)}

L3zy

N 1/2
=inf [ J1w(2) = £t,2,2(2), u(2)|* d: w e Ut ,\)]
Z
R 1/2
= [in f / |w(z) — £(t,2,2(2),\u(z)|* dz:u € U(t, /\):|
Z

1/2
- ( [ing [wl) - £t 2,2() 0] * :u € U, A)]dz)
Z

~(see Theorem 2.2 of Hiai and Umegaki [6])

1/2
- ( [ dtw(),6(0., )\))’dz)
z

(with G(t,z,A) = f(t,2,2(2),\)U(t,2,A) and U(t,z,A) =[—v(t,2,A),v(t,2,A)]). But note
that because of hypotheses H(f), H(r), it is clear that (¢,z) — G(t,2,)) is measurable
and so all the transformations

1/2
1 ( [ dtta) 6t ,\))’dz) , d(w, F(t,z,)), F(t,z,)) .
VA .

are measurable. Also note that because of hypothesis H(f)(:), if z,y € L*(Z), we have
h(F(t,z,2), F(t,y, ) < || F(t,2,0) = Ft,p, ) all vl or < Eflz—y |2 B> 0.
We will also show that, for every w € L¥(Z), A — d(w, F(t,z,))) is continuous.
To this end, let A, — X and let u € U(¢,)). Because of hypothesis H (r), clearly f](t, )
is continuous and so we can find u, € U(t,),), 4, - u in L*(Z). We have
d(w, F(t,z,),)) < [[w— f(t,z,\)unlla
fim d(w, F(t,2,0,)) < || w— f(t,z,\)u |5
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since A — f(t,7,)) is continuous (hypothesis H(f) (iii)). Since u € U(t,)) was arbitrary,
we get

lim d(w, F(t,z,\,)) < d(w, F(t,z,))). (6)

On the other hand, let u, € U(t,),) be such that

d(w,F(t,z,2,)) = || w—} (tz, A\)un |l 2
Its existence follows from the fact that U(t,\,) € Poi(L*(Z)). Because 8g(-,-)€
L*(TxZ), B= {).,,,)\}">l (see hypothesis H(r)), by passing to a subsequence if
necessary, we may assume that u, % uin L*(Z). Then, for every p(-)€ L*Z), we
have

(Fth 2 Aum B3y = [ Ftzs2(2 AJun()p(2)dz
¥4

= (b2 p) a5 = [ £(t,2,2(2), Nu(2)p(2)dz 23 n = oo.
Z

Hence f(t,2,A\\)u, > F(t,z,\)u in L*(Z) and clearly u € U(t,)). Recalling that the
norm is weakly lower semicontinuous, we get
lhw—F(t,2,\)u |5 S lim || w— F(t,2,A\0)uq || 5

d(w,F(t,z,))) <lim d(w,F(t,z,],)) (M

From (6) and (7) above, we conclude that
A — d(w, F(t,z,])) is continuous and A — F(t,z,)) is d-continuous.
Finally, note that
|F(t,z 0[S lastt )l alirllwt el slirllwlizll 2 A€ B A, B = compact.

So we have satisfied hypothesis H(F).
Next let 7: H x A — R be defined by #i(z,A) = [n(z,2(z),\)dz. Using hypothesis
H(n), we can easily check that #j(-, - ) is in fact continuous. Now rewrite problem (5) in
the following equivalent abstract form:
fi(z(b),A) = inf = m())
such that
— (t) € dp(x(t),A) + F(t,2(t), A) a.e., z(0) = zo(}). (8

i
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We know (see Theorem 3.1) that, for every A € A, problem (8) above has a nonempty
set S()) of admissible trajectories, which is compact in C(T,L%(Z)). Since (-, ) is
continuous, we deduce that Q()) # 0 for every A € A.

Next we will establish the continuity of the value function m(-). So let A\,—A in
A. Let z € 5(A) be such that m()) = f(z,)). From Theorem 3.1 we know that S(),) &
S(A) in C(T,L*Z)) and so we can find z,, € S(/\,,), n > 1 such that z, %z in C(T, L*(2)).

Then we have
m(An) £ iz Aa)s lim m(A,) < lim (2, Aa) = fi(z, A) = m(A). 9)
Note that if B C A is compact, then for any 8 > 0 we have that

U {= € BY2): 12113+ ¢(z,)) < 8}
A€eB

is bounded in L*(Z). Since H}(Z) embeds compactly in L*(Z) (Sobolev embedding
theorem), we have that

U {= € HY2): =113+ ¢(z,)) < B}
A€B

is compact in L*Z). Then from the proof of Theorem 3.2, we know that
Ui e a5 € Py(C(T,L*(2))). So if A\,—A in A B= {,\,,,z\}">1 and z, € S(},,) is such
that m(,) = f)(z,,A,), by passing to a subsequence if necessary,we may assume that
z,—>z in C(T,L*(Z)). Then we have

i(z,A) = lim fi(zn, Aa), m(A) < lim m(A,,). . (10)
From (9) and (10) above, we get the continuity of m(-). Using it, we can easily check
that
s-lim Q(\,.) € Q(\), Q| is upper semicontinuous
and this by Lemma § of (16] (see Section 2) implies that Q- ) is upper semicontinuous.0

Bemark: Our result extends the work of Przyluski [17), who considers linear
systems and the parameter A appears only on the control constraint set.

Our formulation of the probiem also incorporates “differential variational
inequalities” (see Aubin and Cellina [2, p. 264]). These are differential inclusions of the
following form:

- #(t) € Nyu(a(t) + F(t,2(2),3) ae., 2(0) = ). (11)

Recall that the normal cone N k(»)(2) to the closed, convex set K(\) CR* at the
point z 18 defined to be the set NK(‘\)(Z) =36x0)(z), where SK(‘\)(:L') =0if z € K(A),

\
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6x(r(z) = + oo otherwise (indicator function of the set K(}). Also Ng)(z)=
Trpyz) = {veR": (v,u) <0 for all u € Tg(y)(2)}, with Tyy)(z) being the tangent
cone to K(A) at the point z. In fact, problem (11) is equivalent to the following
“projected differential inclusion” (see Aubin and Cellina [2]):

&(t) € proj (F(t,2(t), A); Txe(a(=(t)) a.e., (0) = zo(A)- (12)

Here proj (-;T k(x)((t))) denotes the metric projection on the tangent cone T ko)(z(t)
and proj (F(t,2(t),A); Txy(2(t) = U[proj(z;TK(,\)(z(t))):z € F(t,x(t),A)] . In many
applications like control theory, theoretical mechanics and mathematical economics, we
encounter systems with state constraints. In describing the effect of the constraint on
the dynamics of the system, it can be assumed in many cases that the velocity (t) is
projected at each time instant on the set of allowed directions toward the constraint set
at the point z(t). This is true for electrical networks with diode nonlinearities and for
unilateral problems in mechanics. Also in Aubin and Cellina [2, Chapter 5, Section 6},
the interested reader can find an example concerning monotone trajectories converging
to Pareto minima in a problem of efficient allocation of resources (planning pfocedures)
(see also Henry [5]). So inclusion (12) arises naturally in applications and'(12) in turn is
equivalent to (11), which fits in the general framework of this paper. -

Note that if K:A.— P,(R¥) is continuous, then for A\, — X in A we have
bk A,,)(') 56 k() ), where 7 denotes the convergence in the epigraphical sense (see
Mosco [10]). So by Theorem 3.66, p. 373 of Attouch [1}, we have that for all x4 > 0,

(I + w0 3) "'z = (T +uNiqp ) 7'z = (T +pBby)) ™" = (T+4Ny )’

for all z € R*. Thus if S(),), S(A) are the solution sets for (11), by Theorem 3.1 we have
5(A) & S(A) in C(T,R*). Furthermore, if K(-) is P, (R*)-valued, then for BC A
‘compact we have K(B)€ Py(R¥) and so hypothesis H(yp) is satisfied. Thus, via
Theorems 3.2 and 3.3, we can get that S(-) is Vietoris and Hausdorff continuous from-A
into P(C(T,R¥). '
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