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An Existence Theorem for Control Problems with Unbounded Control Domain 
H. KRAUT 

Control problems of Dieudonné-Rashevsky type for multiple integrals, generalized in 
the sense of E.J. McShane and L. C. Young, are considered. For the case of unbounded 
control domains an existence theorem for optimal generalized processes is proved. 
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The question of the existence of an optimal solution of a given programming problem 
can often be answered only under strong assumptions, as for example convexity. To 
answer this question for optimal control problems the sets of feasible solutions were 
enlarged and the problems generalized (cf., e.g., [9, 14, 15, 171), so that the existence of 
an optimal generalized process could- be proved under weak assumptions; where the 
importance of the generalized processes exceeds this effect and lies also in their ap-
plications [19]. Most of the existing literature refers to bounded control sets; a few 
papers consider the existence of optimal generalized processes in case of an unboun-
ded control domain but most in case of one-dimensional t-variable [3,9, 11, 13, 161. 

The existence of an optimal generalized process has . also been proved for problems 
of Dieudonné-Rashevsky type involving multiple integrals, in which there is now a 
multidimensional t-variable. However a bounded control domain is always assumed. 

Our paper shows the existence of optimal generalized processes for control prob-
lems of Dieudonnd-Rashevsky type for multiple integrals and with unbounded control 
domains, where our assumptions are similar to those of [9]. 

Let us consider the following generalized control problem: 

(P) Minimize J(x,t) = fff(t,x(t),v)dlL t(v)dt	(OcRtm, m;^_1) 

subject to all generalized processes (x,i) E	 x ftt u (p > m) satisfying the 

state constraints	x(t) E C R'1 for all t E D 

control constraints	SUPPILt Q U r R' for a.a. t tO 

process equation	xt(t) Jg(t,x(t),v)d(v) a.e. in C) 

boundary conditions	x(s) = t(s) on c)C) 
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with continuous functions F and g (cx = 1.... . m) and with .t E M U if {t}tefl is a fa-
mily of probability measures on U having the property that for each couuiiiuous func-
tion p on Q x Uthe function h(t) = fu cp(t,v)di(v) is Lebesgue measurable.. 

Without loss of generality, we will restrict the boundary conditions to the case 
x(s) = 0 on 10; the general case x(s) = C(s) on c)C) can be reduced to this case easily. 
Furthermore let 0 be a Lipschitz domain in the sense of [7,101. Than we can put the 
process equation and the boundary conditions together and write them as variational 
equation 

ff(xt)xt) +	
= 0 for all X  C,m(o) 

OU 

which is sometimes more convenient to use. 
We shall say that a function f defined on A x Uis of slower growth than a function 

g, also defined on A x U (or the function g is of faster growth than F) uniformly on A if 
g 2! 0 and for each E 2! 0 there is a bounded subset U. C Uso that I fl ^ Eg on A x (U\1JE) 
(cf. [91). 

Now we can formulate our main existence theorem. 

Theorem: Let (x' t') be a minimizing sequence of Problem (P), whose trajectories 
all lie in a bounded closed subset A c x , and assume that there is a continuous 
function F = F(t, E, v) on A x U having the following properties: 

(i) The integrals 

fLI 	xk(t), v)d(v)	and	j(fF(t, x'(t), v)di4'(v))'dt (k E N) 

exist (i.e. they are finite) for a.a. t E 0 resp. exist and are bounded by a constant Mr in-
dependent of k.  

(ii) The function F is of faster growth than 1 uniformly on A. 
(iii) The functions F ^_- 0 and g are of slower growth than F uniformly on A. 

Then there exists an admissible generalized process (x°, i0) so that J(x°, i.c°) = infJ(x,14. 

Before we start the proof of the theorem we want to prove the following lemma 
which is needed. 

Lemma: Let {ix"} be a sequence of (real) Radon measures on 0 which are absolutely 
continuous with respect to the Lebesgue measure I D and are such that li"I(0) < M for 
all k, for a constant M> 0 which is independent of k. Then there exist a subsequence 
{k'} and a (real) Radon measure ' on 0, absolutely continuous with respect to t'L such 
that limw,. i.t"(E) = v(E) for each -integrable subset E of Q. 

Proof: Let ("} be such a sequence of Radon measures. Since every (real) Radon 
measure on 0 is the difference of two positive measures, we can without loss of gene-
rality assume that all ti"are positive. Byour assumption there exists a subsequence 
{ i. c } which is weakly convergent (cf. [5: p. 1371). Let our sequence {i"} be already of 
this property. Then by [4: p. 1051 the sequence {c} is bounded in the vector space 
MR(0), the vector space of all real measures on 0. Therefore, by virtue of [4: Theorem
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13.15.41 there exists an increasing subseqeunce {k'} such that v = supk. 11k' is in MR(C)). 
Then by [4: Theorem 13.15.9] for each function f that is i"- integrable for all k' and for 
which SUPk'SC) If I di ' <m we have fdv = "Mkl.fl fdt.t"i 

Now let E be an arbitrary iL-measurable subset of C) and XE its characteristic 
function. Then the above proves the lemma, since v(E) J- X E dv and ii'(E) = fo xE d1.t1' 
< M for all k' U 

Proof of the Theorem: Let ( X
1 

[Lk) be a minimizing sequence of Problem (P), so that 
the trajectories {x"(t)I t € C)) (k E N) lie in a bounded closed subset A 5 x . Then by 
assumptions (i) and (ii) it follows that the sequence {x') is bounded in the Sobolev 
space W"(C)) and thus weakly compact, so that, because of Sobolev's imbedding 
theorem, there exists a subsequence {x'} which converges uniformly on Tito  a conti-
nuous function x°, with (t,x°(t)) € A for all t. For the sake of simplicity we assume 
that our starting sequence is already of such type. As we shall see later on, the functi-
on x° is the state function of  minimizing generalized process in M. 

Now we want to construct the corresponding generalized control i° First, with no 
loss of generality we assume that F a 1. Let 4) be a continuous function on A x U such 
that the integrals 

J4)(t,xk(t),v)d(4(v) exist for a.a. t E C) (k E N). 

Now by 

4)[k](,) =ff4i(t,x'(t),v)d [Lk(v)dt (k € N) 

we define absolutely continuous (with respect to ILL), countable additive set functions 
(measures) on C) (cf. [121), where e is an arbitrary measurable subset of C). By assump-
tion (i) there exists a real constant Mr such that 

Jfr(t,x1(t),v)d14c(v)dt < Mr (k € N).	 (1) 

Since (xt") is a minimizing sequence there exists a real constant M0 such that 

ffIf(t,x"(t),v)I d(v) dt < M0 (k € N).	 (2)


OU 

By assumption (iii) the functions g, ((x = 1.... . m) are of slower growth than F uniformly 
on A. Hence for a positive c there is a bounded subset 14, such that IgI -1 €F (a = 1.... . m) 
on Ax (U\U), while g (a = 1,...,m) is bounded on A x U6 . Hence by (1) there exist real 
constants M such that 

ffIg(t,x16(t),v)Id1i(v)dt< Ma	(k€ N; a 1.... . rn)	 (3)

OU 

Let 4) be r, F, g (a = 1.... . rn) or an arbitrarily chosen function of c?.'(AxU), the set of 
continuous functions with a compact support in A x U. Then because of our lemma we 
can choose a subsequence {k'} such that lim k. a,4i"(e) = (e) for all measurable e c
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C), where is a Radon measure absolutely continuous with respect to ILL. Then there 
exists a summable function 4)' such that (e) =4(t)dt for all e [12]. Let our starting 
sequence {k} be already of this type. Furthermore there exists a countable subset D of 

x U) such that every function 4) in x U) can be uniformly approximated by 
functions in Ci>. Since we have the above assertion for each p E G and f, F, g, respecti-
vely, by the diagonal process we can select a subsequence {k} so that 1imk.,,4J"1(e) 
= (e)for all measurable subsets e  C), for f,F,,(cz = I.... . m) and all p e ci>. We assume 
that our starting sequence is already of this type. 

Now let 4) be a function of CNA x LI), e a measurable subset of C) and E > 0 arbitrarily 
chosen. Then there exist a function p E 0 and a constant k0(E) such that 

I4)[kI(e) - 4)[m1(e) 

4i 1 (e) — p[id(e)I + Ip UJ(e) - p[ m](e)I +Ip[mJ(e) - 4,[mJ(e) 

+ 2qi,(e)	for m, k > k0(E). 

Then limk. ,.o,4)[1c'J(e)= (e) exists for each measurable subset e c C) and the above 
considerations are valid (cf. [6]). Now let 4) be an arbitrary function in '(A x U). Ac-
cording to the above there is for each t E C) a positive linear functional p0 on CO (Ax U) 
defined by p0(4),t) = 4)(t). By Riesz' representation theorem there exists a unique corre-
sponding Borel measure on Ax U depending on the parameter t and such that p0(4),t) 
=SA=U 4)(t, ,v)d(t, ,v). Then by construction of p 0( - , ,c), putting B(c,E) = {t € UI It- t  :5 

we have 

1 p0(4>,t)I	tim 4)(B(t,E)) I urn sup' (B(t,E))	tim sup' 
lim 4)[kI(B(t,E)I) 

_° ILL(B(t,))	 I t4L((,E))I	EO Ik-' t.LL(B(t,E)) 

urn J 54)(t,xc(t),v)d4(v)dtI 
I 

:5 lim sup

lim sup f max I4)(t,xc(t),v)Idt 
v c U 

^ lim sup
ILL(B(t,E)) 

Further, [4: Theorem 13.8.3/p. 123] implies the continuity of the maximal value function 
(cf. Cl: p. 116]) and the uniform convergence Xk - x°. Thus we can continue the above 
estimation as follows: 

	

f limsup maxI4)(t,xc(t),v)Idt	 f maxj4)(t,x°(t),v)Idt k-+°' v€U	 C)'er.I 
1 p0(4),t)I -.5tim sup 

B(t,$)	 :5 lim sup B(t,
 t.LL(B(t,E))	 EO	 ILL(B(t,E)) 

limsup	max	I4)( t, x°(0,0I	maxl4)(c,x°(t),v)I. 
€-0 VEIl, tEB(t,E)	 vcU 

Thus 4 is a Borel measure on A x U concentrated on {(t, x°(t))} x U (for all t € M. Then
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can be considered as a Radon measure on U and acting on an arbitrary function g € 

'(U)according tofg(v)d(v) = 90(h(t,)g(v),t), where h €C(A)and h(t,x°(c)) =1. 
Since4k l(e) = I LL(e) for all k, with t	1, we have 1(e) = xL( e) and hence 4f(c) = 1 = 

fu ld ( E') (c £1)), that is,	is a probability measure. 
Now let 4i be continuous on A x Uand of slower growth than f uniformly on A, and 

a continuous function on R', with 

0:5p1(v) l	and	I if y e B(O,1)	 (4) 

Hence 4)j= 4p 1 is in i(AxU) and we have ,(e) =feVj(t)'t 
for' all measurable e g C) and all 1€ N. 

Now we want to show that for each €> o there exists an i(€) such that 

14 [ "(e) -	e for all measurable e C) and all k	 (5) 

if 1 a 1(€). Let € > 0 be arbitrarily given. Then we set = s/Mr, and choose for U1 (cf. (iii)) 
so large that U1 C B(0, 1(s)) and following U \B(0, 1) C U\ UE for all ];-t 1(s). Since 

4i is of slower growth than r uniformly on A we get 

[kI( e) - 

-q I ffVt,xk(t),v)d4'(v)dt _J'J'4j(t,xk(t),v)dl4(v)dt 

:5
 I
f	f 4. (t'Xk(t)'v)d 1Lk(v)dt +f	- p1))(t,xk(t),v)d(v)dt 
e LI\B1 1	 e Bj1\Bj 

^ f	j' N(t,x"(t),v)I d(v)dt +f	fi (I)(t,xk(t), Ol d [Lk( 

e 1J\Bj+1	 e B1+1\Bj 

.q f	f hi(t,x'(t),v)i dtx(v)dt	Mr :g E if I a 1(s),

eU\Bj 

where B1 denotes B(0, 1). 
Furthermore we want to prove f0fu f(t,x0(t),v)d14(v)dt :5 Mr. Let pj be defined 

as before in (4)and F1 = F 1. Then we have 0 :5 F1 ^ F1 . 1 for all 1 e N and limj ,.,Fj(t,,v) = 

on A x U. Hence 

JJrj(t,x"(t),v)d(v)dt JJ r(t,x"(t),v)dii'(v)dt Mr for all k,i 

and following 

urn f fFj (t,x"(t),v)dui'(v)dt :5 j' fr,(t , x0(t) , v)d(v)dt :5 Mr for all 1 kcoç) (j	 0(1 

since F, '(A x U). By the theorem of Beppo Levi (cf. [8: p. 305]) it follows that
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t,x0(t),v)d(v)dt Mr ^ urn ffrj(  
C) LI 

f f tim F,(t, x°(t), v)d(v)dt f fr(t,x°(t), v)d(v)dt. 
ciu 

Now we can show that limk,, [kJ(e) feft,XO(t),d0It Let E > 0 be ar-
bitrarily given and L ;_^ 10(t) chosen according to (5). Since L € '(A x U) we can find a 
k0(€,10(€)) = k0(€) such that, fork ;-, k0(€), 

4j[kI( e) - fJ4I(t,x0(t),v)d(v)dt 
eu 

^ I[k]() -	'(e)I +i4jk1 (e) _J'fL(t,x0(t),v)d(v)dt 

+ ffL(t,x0(t),v)dL(v)dt _ff41(t,x0( t),v)d(v)dt 

^ E + £ +J 4J (t,x0(t),v)Id lL (v)dt ^ 2€ + £Mr. 
eLI BL	 PM 

Hence	 (e) =J' Ek] fu 4(t,x0(t),v)di(v)dt for all measurable subsets e C 0 and 
all functions 4i e C(AxU) with slower growth than r uniformly on A. This shows also 
that we can extend all our previous considerations to such tP, so that 110 = {t}ç in-
deed is a generalized control.  

Let now x be an arbitrary function in c m(0) and (t,,v) Xa(t) + 

which implies that 4,[1d(ç)) = 0 for all k, since the generalized processes (xJdjk) are 
feasible. It follows that limk.. , [k](0) r J OfU 4)(tX0(t)V)dIi(V)dt = 0. Hence (x°,ii°) 
is feasible and J(x°,ii°);_^ infJ(x,ti)in (P). To prove that (x°, 11°) is optimal let us assume 

> infJ(x,11) in (P). Then there exists an € > 0 such that	- 

J(x°,i°) - € > infJ(x,1i) in (P).	 (6) 

As in the previous consideration the function f1 = p j f is in '(A x U) and we have f1 ^ 

:5 f for all land lim1 ., fj(t,,v) = f(t,,v) on Ax U. Hence there is an I such that 

fJf1 ( t,x°(t),v) dp(v)dt >fff(t,x0(t), v) dp.(v)dt - €12.	 (7) 

Furthermore we have 

f ff7 ( t,x°(t),v)d(v)dt = lim J' f f7 (t,x'( t), v)d14(v)dt
(8) 

:5 tim f fr(t,x h1(t),v)d11(v)dt = infJ(x,11). 

k-.c C) LI 

But then by (6)- (8) we get 

fJfj(t,x0(t),v)d11(v)dt ^ infJ(x,i) < J(x°,t°) - € <JJf(t,x°(t),v)d11(v)dt 

which is a contradiction. Hence (x°,11°) is optimal I
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Remark: Often the state domain is a compact subset of R", for instance a Lipschitz 
domain, so that we can set A = n x in this case. But even if is not bounded such a 
bounded closed subset A c x exists. Then, if we first assume A to be only closed 
(but not necessary bounded), the other assumptions of the theorem imply that we can 
assume A to be bounded. Because of the process equation, assumptions (i) and (iii) 
there is a real constant M(analogous to (3)) such that f Ix(t)I°dt < M(k E N) and by 
the equivalence of the different norms in the Sobolev spaces [18: p. 1033] it follows 
that the sequence x 1' } is bounded in the Sobolev space W' 1 (Q) and, as in the begin-
fling of our proof, we get the uniform convergence of a subsequence to a continuous 
function x° on i'i, with (t, x°(t)) c A. Since 0 is bounded and x° is continuous No is 
bounded. So, because of the uniform convergence, we can choose a subsequence and a 
bounded closed subset B C A so that all trajectories of this subsequence and x°(t) lie 
in B.

If the functions g (cc = 1.... . m) are bounded on 0 x G x LI, each sequence of state 
functions {x"} of admissible generalized processes (xi") is bounded in the Sobolev 
space W"(0). Thus, in this case, the choice p = I in assumption (I) is sufficient for our 
prove. Furthermore it is possible to replace the assumption fa 0 with the assumption 
that f is of slower growth than r uniformly on A. 

If I is bounded below than (by adding a constant) we can satisfy the condition f;-- 0. 
If further the set of admissible generalized processes is non-empty, then the existence 
of a minimizing sequence of generalized processes is guaranteed and by our theorem 
even a minimal generalized process exists. 

Example: Finally we want to give an example with C) = [0,1] x [0, 1] and LI R2, which 
satisfies the assumptions of our theorem ( but does not satisfy the assumptions made, 
for example, in [ii]). Minimize 

ii 2	2\2 .. x 2(t) - v12v22) d 1I ( v ) dt J(x,t) 5f5 (( 1 - vi V2) 
0 0 1R2 

subject to all generalized processes (x,.L)c I4(C))=frtR2 satisfying the process equations 
x(t) =j2 vd i.t ( v ) a.e. in C) (,z 1.2) and the boundary conditions x(s) 0 on cfl. Since 
F is bounded below and the set of admissible generalized processes is non-empty the 
assumptions of the theorem are satisfied with r(t,,v) =IV14 /3 and p = 3. Here we do not 
need a special minimizing sequence to show that the assumptions are satisfied. The 

existence of a minimizing sequence is guaranteed. Let (x k, 1k ) be an arbitrary minimi-
zing sequence of the example. Then the sequence of 

J(x k, ILk) 
= f f(i * v *	*	- 2v - 2v *(xk)2)d1(v)dt 

flu 
is bounded. There follows the boundedness of the sequences of 

f J(v(v -2) *v22(v22 -2) .^vv22)d(v)de	and	J' fvv2 dIL(v)dt 
fiLl	 (>11 

(note the positivity of the summands for V 1 a 2 and v22 x 2), respectively of 

f fvd(v)dt and fJ'vd(v)dt. 
C)U	 flu 

too. Since the integrand of the objective functional can be written as r- 2v 1 - 2v2 - 
+ x 2 + I. the sequence of
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ff{(r3(t, x'(t),v) - 2v -2 V  - vv22)dIY(v)dt 

is bounded. Together with the above it shows that (i) of the theorem is satisfied 
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