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We construct C l - and C2-interpolating fractal functions using a certain class of iterated function systems. 
An estimate for the box dimension of the graph of nonsmooth fractal functions generated by this new class 
is presented. We then generalize this construction to hi variate functions thus obtaining C'-interpolating 
fractal surfaces. Finally, C'-interpolating fractal surfaces are constructed via integration over C° fractal 
surfaces. 
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1 Introduction 
Continuous fractal interpolation functions and surfaces are useful tools for interpolating and 
approximating highly complex sets or images. Unlike the classical approximations that treat 
each image component as a single entity arising from a random assemblage of objects, fractal 
approximations consider the image component as an interrelated single system. At this point 
we refer to [1] or [2] for a more complete overview of the techniques involved. 

The graphs of these fractal functions and fractal surfaces are attractors of iterated function 
systems whose maps are affine functions, and provide examples of nowhere differentiable uni-
or bivariate real-valued functions. The usefulness of such functions in interpolation and approx-
imation theory is hampered by the lack of a degree of differentiability as is so often required 
from interpolants or approximants. 

We introduce classes of iterated function systems whose attractors are C l - and C2-interpo-
lating functions and C"-interpolating surfaces, n > 1. (Here we abuse common 'language' by 
referring to these attractors as smooth fractal functions. But we think of a fractal as a set that 
is generated by a recursive procedure - random or deterministic - yielding a high degree of 
geometric selfness at all scales of approximation.) These new classes of smooth fractal curves 
and surfaces have all the power and advantages of their continuous analogs but provide now a 
new means of smoothly interpolating and approximating highly complex images. 

The outline of this paper is as follows: In Section 2 we briefly review some basic results 
from the theory of iterated function systems, fractal functions and surfaces. Then we consider 
a broader class of iterated function systems yielding smooth fractal functions provided certain 
conditions apply. At the end of this section we present upper and lower bounds for the box 
dimension of those fractal curves in this new class that fail to be smooth. In Section 3 we 
introduce smooth fractal surfaces. This is done in two ways: Firstly, by extending the results 
obtained in Section 2 to bivariate functions. This yields a new class of fractal surfaces that are 
smooth. Secondly, by integrating over C O fractal surfaces. This method gives C"-interpolating 
fractal surfaces,for any n E N. 
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2 Smooth Fractal Functions 
Before we commence with the construction of smooth fractal curves, let us recall some definitions 
and results from the theory of iterated function systems and fractal interpolation functions. 

Let X := [0,1]x R, let N be an integer greater than one, and let w1 : X -+ X, i = 1,.. .,N, 
be a collection of contractions on (X, d), where d denotes a metric on X. We set w := {w1 

1,.. .,N}. The pair (X, w) is called an iterated function system on (X, d). If there exists 
a non-negative constant 3 E (-1,1) suchthat d(w1(x),w2(x')) sd(x,x'), for all x, x' E X 
and i = 1,. . ., N, then (X, w) is called a hyperbolic iterated function system with contractivity 
constant 3. It is well-known that every hyperbolic iterated function, system possesses a unique 
compact attractor. For, if 11(X) denotes the set of all non-empty compact subsets of X and h 
the Hausdorif metric on 11(X), then the map W : 11(X) - 11(X), A W(A) := U1 w1(A), 
is a contraction with contractivity s on the complete metric space (11(X), h). Hence W has a 
unique fixed point A and

N' 
A*=Uw,(A).	 (1) 

Equation (1) expresses the fact that the fractal A is a finite union of self-images (at every scale). 
In [1] and [4] special attractors were generated; namely, attractors that are graphs of continuous 
univariate real-valued functions. This construction was generalized in [5] and [8]: the attractors 
are fractal surfaces in R3 , i.e., the graphs of bivariate real-valued functions defined on certain 
two-dimensional simplicial complexes. For the sake of completeness and to set notation and 
terminology, let us review these constructions. 

Let J:={(x,,y3)€X: O=xo<xj< ... <xN=1;j=0,1,...,N}bea given set . of 
data or interpolation points. Define w1(x,y) (u(x),v(x,y)),where 

u2 (z) := bx + x,,.. 1 ,	v1(x,y) := a1 x + Sj + c 

and
u2(0) = X2 _.i, , 14; ( l) = x, v(0,yo) = y,...j, v(1,yN) = y 

for all i = 1,... ,N. The coefficients a1 , b,, and c, are then given by 

a) a2 = (y, - y_ 1 ) - Si(YN - yo)	b) ii =	-	c) c 2 = Y ... i. — 31110. 

The si have to satisfy 0	1311 < 1, but are otherwise arbitrary parameters. With the maps

wi as defined above, (X, w) is clearly an iterated function system. If we introduce the norm 

lie on R2, ll(x , y)lIe := lxi + 9 l y l, for some 0 < 9 < min 1 {(1 - b1 )/(1 + l c i)}, then each w, 
becomes a contraction in the norm 11 lie. The unique attractor G is the graph of a continuous 
function f :1 — R satisfying 1(x3 ) = y, for all j = 0,1,...,N (here and in what follows, I 
always denotes the unit interval [0,1]). This function is called a fractal interpolation function. 
By equation (1), G is self-affine, i.e., it is a finite union of affine images of itself. To show that 
G is the graph of a continuous function' interpolating .7, one defines an operator T : C(I) -+ 
by

(T)(x) := Vj(U1(X),p(u1(x))), x € u2 (I),	 '	(2) 
where O(I) : IV € CO(I): (x) = y,, = 0,1,..., N}. One proceeds by showing that T maps 
into C(I), is well-defined and contractive in the sup-norm with contractivity 3 maxI{1 311}. For 
.a more detailed introduction to fractal interpolation functions we refer the reader to [1, 2, 4]. 

Fractal surfaces are defined in an analogous fashion: Given is a set of interpolation points 
.7 = { (x3,y,,z3) : (x,, y,) € a2 , zj € 1, and z = 0 if (x3 , y,) E 0a2 ,j = 0,1,...,m} in ll3. 
Here a2 denotes the standard 2-simplex in 1R3. (This definition follows the developments in [8] 
rather than [5]. There a more general initial set-up is considered.) Suppose that a 2 = U o 
with ? n	= 0, for i i', and such that each a? = tt 2 (a2 ), for some unique affine map u2 , and



Smooth Interpolating Curves and Surfaces 203 

such that the vertices of a are in {(z,, y,) j = 0,1,..., m}. We define maps v, : a2 xR - R by 
v,(x, y, z) := a,z+b,y+s,z+c,, for given I s,J < 1, and the a,, b,, and c, are uniquely determined by 
V,(Xj,yj ,Zj ) = Z((,j). Here we defined the labelling map 1: {1,...,N} x 11, 2,3} - {1,...,m} 
such that {(XI( , ) , Y1(i,j)) j = 1,2,3) are the vertices of a. 

Now define an operator T on C(a2), the set of all W E C°(a2 ,IR) with ç(z,,y1) = z2, 
j=0,1,...,m,by 

T : O(a2) - R,2'(Tp)(x,y) := vj(u'(x,y),c(u1(x,y))),	 (3) 

for (x,y) e u,(a), i = 1,...,N. This operator T maps O(a2) into.itself, is well-defined and 
contractive in the sup-norm with contractivity 8 = max,{ I s ,I} . Its unique fixed point is a fractal 
function f : a2 -+ Il satisfying f(x,, y,) = z3 , j = 0, 1,..., m. The graph of I is called a fractal 
surface. At this point we refer the interested reader to [5] and [8] for an elaborate description 
of these fractal surfaces. Let us note that the graph of 1, as constructed above, is the attractor 
of the iterated function system (a2 x R, w), where w, = (ui , v). 

2.1 Cl - and C 2-interpolating fractal functions. We now proceed with the construction 
of smooth fractal curves. We assume without loss of generality that the attractor of the iterated 
function system is contained in X = I x [-1,1]. Let 7 := {(Xj ,yj) : 0 = x0 < x 1 < < Xj = 
1, y3 E IR, j = 0,1,..., N; 1 < N E N) be a given set of interpolation points. We define affine 
maps u,:I—*Iby

u,(x)	b,x + x,_j, x E u,(I),	 (4) 

where b, = x, = z, 1 , i = 1,...,N. Now let IC,(E,i) be a symmetric bilinear form on 1R2 For 
=(x,y) E 1R 2 let v,():= K,(,)+di , d, E IR and i = 1,...,N. Then v, :X -* ,and it can 

be written as
v,(x,y) = a,x 2 + 2s,xy + t,y2 + d.	 (5) 

The coefficients a, and d, are uniquely determined by requiring that 

v,(0, yo) = y,,	v(1,yt..r) = y,.	 (6)


We thus obtain

a, = - v— - 28 iYN - t(y + y,)	and	d, = y,...j - t,y.	(7) 

In order for w,(x,y) = (u,(x),v,(x,y)), i = 1,.. .,N, to be contractive on X we have to 
require that v( . ,y) is Lipschitz for all y E IR, and v,(x, .) contractive for all z E I. Then 

Iv(x, y) - v(x', )I = ia,(x 2 - x'2 ) + 2s,(x - x')i 
12a,+2s,i Ix — x'i < £ Ix—x'I, 

for all x,x' E I, ally E [-1,1], and £ > max {i 2a, + 2s,i} . Also, 

iv(x, y) - v,(x, y') l = 12s,x(y - y') + t,(y 2 - 
= 12s,+t1(y+ y') l l y — y' i :5 ry — y'l, 

for all x E I, y, y' E [-1,1], whenever 

max {i s,i + 1t11 : i = 1,...N} :5 r < 1/2.	 (8) 

Hence the s, and t,, as long as they satisfy inequality (8), are free parameters. Now let 0 < 0 < 
(1 - max,{ i biI))/L It is straight-forward to show that each w, is contractive in the complete 
normed linear space (X, lie), where ll( x , ) Ile := lxi + 0 I Y I , (x, y) E X. Hence the iterated 
function system (X, w) has a unique attractor C.
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• We will show that under certain conditions G is the graph of a C 1 -function interpolating J. 
To this end, let O'(I) denote the complete metric space (in the C'-topology) consisting of all 
w € C'(I, 1l) such that ,(x 3 ) = y,, j = 0,1,..., N, and '(0) = a and '(1) = 3, for some given 
a,/3 E R. Define an operator T : C'(I) - IR by 

(Tp)(x) := v(u'(x),ca(tç1(x))), x € u,(I),	 (9) 

1,.. ., N. Then 

(Tv)' = Ei (atz 1 ( . ) + sjço(u'(.)) + su'(.)'(u'(.)) + 

If we require that 

(T)'(0) = '(0), (T)'(1) = '(1), 1im(T)'(x) = lim(Tço)'(x),	(10) 

for i = 1,. . . , N - 1, then this together with equations (4) and (6) implies that Tça € C1 (1, IR). 
Furthermore, since ui and v(x, •) are contractive, T is contractive on C 1 (I) in the C'-topology 
with contractivity factor 2 maxj{I s I + I tiI} . Thus, by the Contractive Mapping Theorem, T has 
a unique fixed point f : 'I - [-1,1] in C'(I) Moreover, 1(x3 ) = y,, for all j 0,1,..., N. We 
refer to f as a C'-interpolating fractal function. 

In the special case where P0 = YN = 0, the following conditions on the Si and on a have to 
hold for I to be of class Cl:

bN Si	ai	 N.— 1),	SN=	 '(0)=a=0. 

The coefficients t, as long as they satisfy (8), are free parameters Figures 1 - 3 show examples 
of such C'-interpolating fractal functions. The set of interpolation points for Figures 1 and 2 is 
3 = { (0,O),(1/2,1/2),(1,o)). 

Figure 1: S1 = , s2 = 0, 
it = —i2 = 

= —2.

Figure 2: si=,s2=, 
1	__1 

.tl=iTh t2_, 
= —10. 

It is also possible to obtain C2-interpolating fractal functions: one has to require the addi-
tional conditions 

lim(Tp)"(r) = Iirn(Tça)"(x) (i = 1,. . . , N - 1),	(Tc)"(1) = ca"(l).	. (11) 

If we denote by O 2(I) the complete metric space consisting of all w € 0 1 (I) satisfying ca"(l) = 
for some.fixed7 E R, and define T as in equation (9), we see that T is a contraction on C2(I) in 
the C2-topology and that its unique fixed point is a C 2-function f : I - [-1, 1] interpolating J.
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We refer to f as a C2 -interpolating fractal function. Using again the special case lb = I/N = 0 
as an example, we obtain 

	

- 2a,	a11 ()2+a(i+)
(i=1,...,N-1),

ET


	

(Tço)"(0) - T'
	-	I(1)[(p'(1) +,R"(')] 

tN = bqcd'(1) - 2aN - 2sN(2 '( 1 ) - 
2'(1)[9(1) + co"(l)] 

Figure 4 shows the graph of a C2-interpolating fractal function. 

Figure 3:	3' =	 ,),(,—), ( i3O)},!
S1 =-29, 2 = 91 , 53 =

Figure4: J={(O,O),(,.),(l,O)}, 
— _1 —	_1 Sj - - , 1 - - 2 - 

= —4 = _(TV)" (0) 

Remark. Since f is the unique fixed point of T, we have 

f = aI (u, " ( .)) + su"(.)f(u''(.)) + t2[f(uT'(.))]2 + d2, 

and if we set s = s and t1 = 0; for all i = 1,..., N, then it can be shown that the set 
V0 := {f : R -+ 1: for all j E Z there exists a fractal interpolation function g on [ j , j + 11 with 
8 = si and b = 11N such that f	= g I(ii+l) } is a linear space and that the mapping 
(yo,y1,...,yN) I is linear. If one defines'linear spaces Vk, k E Z, by f E Vk if and only if 
f(N" . ) E Vo, then a nested sequence of linear spaces is obtained. This sequence of spaces can 
then be used to define a multiresolution analysis on P(R) (see [71). The author will discuss this 
approach in a forth-coming paper. 

The set of fractal functions generated by (4) and (5) and which satisfy (6) is denoted by K°. 
We denote by K' those fractal functions in K° that also satisfy (10), and by K2 those in K' 
that obey (11). Clearly, K° 3 10 3 Next we present a formula for the box dimension of 
graph(f) when f E K° \ 

2.2 Estimates for the box dimension of graph f, f E )CO \ K 1 . Let us briefly recall 
the definition of box dimension of a bounded set E C R . The upper and lower box 'dimensions 
of E are defined by 

dlmB E := lirn sup loHE	and	dim R E := lirninf — loge'	(12) 

respectively, where .AI0 E denotes the minimum number of c-cubes necessary to cover E. 'If 
iliTflBE = aT 8E, then their common value is called the box dimension of E and denoted by 
dimB E. We present an upper, bound for dimBE and a lower bound for J1.IIBE in the case wkere 
E = graph f, and f E K°\ftC' is generated by N maps with b, =' 11N, i = 1.....N. 

In [6] it is shown that in the above-mentioned case it is sufficient to consider covers C of 
graph f which are of the form 6 = {[(k - 1)/N a , k/N5] x [a, a+ 1/N't] k, n E N,a E R). It
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should also be clear that one can replace the continuous variable e in (12) by any sequence {e} 
with e,. 1 0 and log c i / log E - 1. 

The following lemma is needed in the proof of the next theorem. 

Lemma 1. Assume that the free parameters s i and t, satisfy inequality (8). Let B 1 := 2 Zf4 l I sil. 
If B 1 > 1 and J is not collinear, then lim_..,,,, NH(n) = 00. 

Proof. The proof is essentially the same as the one for the corresponding lemma in [6] with only 
minor changes (1 a21 - 2s I, for instance) and will not be repeated here U 

Theorem 1. Let f e K° \ AC' be the unique fixed point of the operator T defined by (9) with 
b1 = 11N, for all i = 1,. . . , N, and let G be its graph. Suppose that the free parameters s i and 
t1 satisfy inequality (8). Let B, := 2 Isd and B2 2 E,(I s I + t11) . If J is not collinear 
and if B,>1, then

1 + logs B 1 :5 iliin2 G <_ dimG < 1 + logs B2. 

If either J is collinear or B2 < 1, then dimBG = 1. 

Proof. Let C, E C be a minimal cover of G consisting of .V(n) 1/N' s x 1/Nn- squares with 
disjoint interiors. Consider the intervals 'nk	[(k - 1)/Na, k/N a], k	1, . . , N'1. Then 
G	is contained in a rectangle R of width 1/N'1 and height h = max{f i,, } - min If Ink).

Let H(n, k) denote the least number of squares from C, needed to cover R. Note that X(n) 
> i Ai(n,k). Let i E {1,...,N}. The image of R under the map w 2 is then contained in a 
rectangle of width 1/N'1 ' and height h = max{f IIn,}_mihl {f kki' where I,,; 
Setting Yk = max{f j } and Yk—i = min{f 'n,,, } one easily shows that 

	

h
i,-  

ak2	2slkyk	2 a(k - 1) 2 2s 2 (k - l )yk-1	2 

-	
+	 . N +.ttYk - N2	-	N	-- 

Hence, if .iV(n + 1, k, i) denotes the minimum number of 1/N'1 x 1/N'1+ -squares from C, 
needed to cover w(R), we have 

	

J%f(n,k,i)	N'1' [2ItIh+	kh+	jr(2 k— 1)+ -?k'Iyk_II] 
[N(2t, + 2 1 s21)]jV(n) + 7j(2k - 1) + 2NIs1I. 

Since the cardinality of a minimal cover C41 E C is given by Jtf(n + 1) =	EN"
 JtI(n, k, i), 

we have	 - 
N 

N(n + 1) :5 (NB2 ).Af(n) +	(Jail + 2Is1I)N'11. 

Thus, by induction on n, 

	

Y(n) ^ (N B2 	+ c,N'(1 + B2 + . . . + B'), 

where c1 := Ei(IajI + 2 I s I) . Therefore, if B2 :^ 1, N(n) :5 c2nN'1 , where c2	N(1) + c1,

and thus dimBG _< 1, i.e., dim  = 1. If B2 > 1, we have N(n) :5 c3(B2 N)'1 , where c3 
.A((1) + ci /(1 - B2 ). Thus dimBG 1 + logy B2. 

Now let us obtain the given lower bound for dimBC. We note that - after possibly inter-
changing the min and max in the definition of Yk-i and Yk - G Ji,, must contain a rectangle 
of height at least	 - 

— 1)/N'1,yk)— v$(k1N'1,yk_l)I.
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This height, however, is atleast equal to

-	- lt(y - y_ 1 ) + 2s (yk - Yk-1)i - N2"	N "J 1
-2-

N"I 

=	- Ilk-il 1t1( yk + Ilk-1) + 2sl 
-1(2k-1)a, - 

N2" 
l(2k_j), 

I - 
1.2.1 ^ 2 l silIYk-Yk_li--1 N"	IN"v 

Hence, after summing over k and i, and by induction on n, we obtain 

N 
fif(n + 1) ^ (2IsI) H(1) - C4N'1, 

for some c4 > 0. By Lemma 1 we can choose n large enough to ensure that the right-hand 
side of the above inequality is positive. Therefore, X(n) ^! c5(NB1 )5 , for some c5 > .O. Thus, 
fliG>l+logB1• 

3 Smooth Fractal Surfaces 

In this section we present two methods for constructing smooth fractal surfaces. The first one is 
an extension of the method given in the previous section, the second one defines smooth fractal 
surfaces as indefinite integrals of CO- fractal surfaces. 

-3.1 Construction via iterated function systems. Let Q = [0, 1] x [0, 1], let e 1 = (1, 0), 
e2 = (0, 1), and let N be a fixed integer greater than one. Let r = {(m/N)ei + (-IN)e2


	

m, n E Z} be a lattice in R2. Suppose that for each lattice point (,	E r n Q we are given

a real number z11 , i,j E {0,1,...,N}. The set J := {(x,,y1,z21) : i,j = 0,1,...,N} can be 
thought of as a given set of data or interpolation points on Q. We will define a smooth fractal 
surface interpolating J. 

Let u : Q - Q be given by -

( ; ) + 
0	( -- I. 

-° *) 
and let v, : Q x R - R be defined as 

v,1 (x, y, z) = A 1 x2 + B,y2 + Cz2 + D 3 zy + E,,yz + F,,zr + G,,, 

such that

vt,(o, 0, ZO,O) =	v13(0, 1, ZO,N) = z1_i;,	 13 v,(1,0,zN,o) = z, ,,.. 1 ,	v23(1,1,ZN,1V) = z,,,, 

i,j = 1,. . . , N, and that the following join-up conditions are satisfied: 
For j=1,...,N and yE[(j-1)/N,j/N] 

v21 (0, y, (0, y)) = v,_ i,,(1, y, (1, y)),	i = 2,..., N,	 (14) v1,(1,y,ço(1,y)) = v1i,(0,y,ço(0,y)),	i = 1,...,N -1, 

and for i = 1,..., N and x E [(j - 1)/N, i/N] 
v23 (x, 0, (x,0)) = v, ,3 ... 1 (x, 1, (x, 1)),	j = 2,. . . , N, 
vii (x, 1, (z, 1)) = v , + 1 (x, 0,(z,0)),	j = 1,..., N - 1.	(1) 

Here W denotes any C°-function interpolating J.
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Conditions (13), (14), and (15) uniquely determine some of the coefficients A1 , . . . , G1 ,. For 
instance, if z0,0 = Zfj,N = ZN,O = zN,N = 0, we obtain 

A1, =	- z_ 1 ,_ 1 ,	 B, =	-	
(16) = (zn, - ;,,_i)	- z1 _ 1, _ 1 ),	Gij = zi__1,j_1, 

for i,j = l,...,N. If ç	0 on OQ, then A 1, = B,3 = D1, a 0, and the join-up conditions 
are automatically satisfied. If (0, y)	(1, y) and (x, 0)	ç(x, 1), then in addition to

equation (16) we also have to have 

A1, = A1,1 . 1 ,	 B1, = B_1,1 
C,, = C1 _ 1,, = C_ 1 ,	Eij = F1, = 0 

in order for the join-up conditions to be satisfied. 
Now let O°(Q) := {ç, E C°(Q,l1): (X,yj ) = zj , i,j = 0,1,.. .,N}. We define a mapping 

T : O°(Q) - RQ by 

(Tcp)(x, y)	v(u'(x, y), (u'(x, y))), (x, i ) E u,,(Q).	 (17)


Suppose, without loss of generality, that JJwJJ :5 1 on Q and that s := 2 maxi ICjI+max, IE1,I+ 
max , I F 1J <1. 

Theorem 2. T maps O°(Q) into itself, is well-defined and contractive in the sup-norm with 
contractivity 8. 

Proof. The results follow inmmediately from the definition of T, conditions (13), (14), and (15) 
and the assumption on s  

The unique fixed point of T is the graph of a C°-function I : Q -* R that interpolates J. The 
graph of f is called a fractal surface. The following figures display the fifth level approximation 
of two of these surfaces with z= z02 = z20 = z22 = 0, z01 = Z10 = z12 = z j = 1/2, z11 = 1 

	

Figure 5: C,, = 9/20.	 Figure 6: C1 = 1/4. 

If we impose the following C' join-up conditions, we can guarantee that f is a C1-function: 
Suppose ço € O'(Q)	{& € C'(Q,llk) :	y) = z,, i,j = 0,1,..., N}. Let 

V(v,3(u'(., .) , ( u '( . , .)))) = V(v,j_i(u,J_1(., .), ç(uJ_1(.,.)))),	(18)
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for all (x, y) E [i/N, (i + 1)/N] x {j/N}, and similarly for the three other edges. In the case 
where z0,0 = ZON = :N,o = 2N,N = 0, this implies that E,, F,, = 0 and that VçIaQ 0. If 
we consider the class C'(Q) := IV E C'(Q) : V	0], then we have the next result. 

Theorem 3. Let the mapping  : O°(Q) -+ RQ be defined as in (17). Suppose that condition (18) 
is satisfied. Then T maps C'(Q) into itself, is well-defined and contractive in the C'-topology 
with contractivity s. 

Proof. This follows directly from Theorem 2 and the above considerations U 

3.2 Smooth fractal surfaces via integration. In this subsection we consider fractal 
surfaces defined on Q that are generated by choosing 1¼, as in Subsection 3.1, but require v,3 to 
be of the following form: v,3 (, ., z) - v,3 (0, 0,20) is a symmetric quadratic form for all z, Zo ' E R, 
and v,3 (x,y,.) - v,3 (x,y,z0) is a linear form for all (x, Y) E Q and 20 E R. Furthermore, we 
require that conditions (13), (14), and (15) also hold for this choice of v,. In the special case 

= 2N,o = zo,N = 2N,N = 0, we obtain the same expressions for At,, B,,, D, and C,, as 
above, if

v,,(x,y)z)= A1x2+B,y2+C11z+D1xy+G11. 
Note that (14) and (15) follow whether p 0 on OQ or p s Io,1x{1} and VI{o}xlo,11 
'I{1}x[0,1I, (P E O°(Q). 

Defining an operator T as in (17) and assuming S = max1,1 IC,,I < 1, we obtain the following 
theorem whose proof is straight-forward. 

Theorem 4. The unique fixed point of T is a C°-function f : Q -* 1l such that f(x,, y,) = 
for all i,j=0,1,...,N. 

The reason for choosing this particular form of the vij will become clear shortly. Let 
-	 ,z fy 
f(x):=2oo+J Jf(s,t)dtds, 

00 

for some 2o,o E R. Denote the integral operator fox f( . )dtds by and let u,,(x, y) = 
(ic,(x),A(y)), where K,(x) := (11N)x + (i - 1)/N and Ai(y) : (11N)y + (j - 1)/N, i,j = 
0, 1, . . ., N. Then 

J(u,,(x,y)) =	+ 1_1_1)(f) + 
(0,0) ,o) 

l,J) (x._,,y,_1) 

- ZOO + Ii_1hh1_1)(f) + 1((x)v1_1)(f) + 
(r,_,,O) 	(1) (0,0)

0 ti1). (0,0)	I' 

Since Jo u,1 = v,,( . , 1), we have 

= (200 +	 + J_1)(f) + 
(z_i3O) 

	

+	I(v 1 Iz=o) (0,0) J 

jfJ(x , y) + R,,(x, y). 

Hence / is the unique fixed point of the operator W : C'(Q,1I) -+ C1(Q,1l), 

i51(u 1 (, .),ça(u'(., .))),	 (19)tj 

where t,1 (x, y, z) = R,, (x, y, z) +

	

	z, or equivalently, graph f is the unique attractor of the
C. 
iterated function system (Q x R,r) with * = {ti,1 : Q x R — Q x IlL: ti 1 = (u 1 , 1 ), i,j =
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(z,y),	 - 1, . . . ,N}. Since the operator '(00) i.) is continuous, f is continuous at its interpolation points 
i,j = 0,1,...,N}. To determine the i,,, notice that u,(0,0) = (Zj,yj) =!

	

z_i,.,_i, and thus J(u,(0,0)) = o,o + 1(0, 0) 
i_1v_1)(f) 	Therefore, 

iij = t-1-1 +	' ? (f) +	I?(vj =o) + 4;)(f) ,3	 + 
(1,1)	i =	- o,o) + lhI(oO)(vij =o) + ( ii_i,, - 21 _i,_i) + k-i 

Hence the 2,, can be expressed . in terms of 2o,o, Ci.,, and I((01 , 01)) ( VI) Iz=O), (i,j) 34 (0, 0). Let us 
summarize these results in a theorem. 
Theorem 5. Let graph f be a fractal surface generated by the iterated function system (Q x IR, w), 
where w 7 = (u13 , v,,) with

t-1 
ujj(x,y)(
	 + (	), - 0 

and
v,(x, y, z) = A 13 x 2 + B,,y2 + C11 z + Dxy + G,, 

such that max , ICt < 1. Let 

f(x, y) := 4 '0 + I I f(s, t) dt ds,	for some 2o,o E R. 
Jo Jo 

Then graph J is the attractor of the iterated function system (Q x R, it) with ti = 
where

y, z) = 21-1,j-1 +	+	jf' v(s,i, 0)dtds, i,j =1, :..N. 

Furthermore, the 2,,, (i,j) j4 (0, 0), are recursively and uniquely determined by io,o which is a 
free parameter, Cij , and f foy v13 (s, t, 0) dt ds. Also, Vf(x, y) = (gy (x), h5(y)), where 

r•l,	 i-s 
gy (x)= I f( 

.	 Jo
x,t)dt and h__(y) 	I f(s,y)ds. 

Jo  
a a _ a a I - Moreover,	-	= fay  

Proof. The last part of the theorem follows from Calculus 

It should now be clear how one can construct C"-interpolating fractal surfaces, n E N: the 
above procedure can be iterated an arbitrary number of times. 
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