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Two-Sided Nevanlinna-Pick Interpolation for a Class
of Matrix-Valued Functions

D. ALPAY and V. BOLOTNIKOV

Families of Matrix - valued analytic functions W{p, P) depending on two parameters ¢ and P
are introduced. These include as special cases the Schur and Carathéodory functions, as well
as classes of functions studied by the authors in [1] and by D. Alpay and H. Dym in [6]. A two
-sided Nevanlinna - Pick interpolation problem is defined and solved in W4{p, P), using -the fun-
damental matrix inequality method.
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1 Introduction

In the present work we pursue our investigations of interpolation problems [1,8] using
the fundamental matrix inequality approach. We introduce families of functions W (p, P),
depending on two parameters p and P, which encémpass most classical cases (such as
C "*"_valued Schur and Carathéodory functions) and a number of new cases. We define
in the classes W (p, P) a two-sided Nevanlinna—Pick type interpolation prob’lém for which
the description of the solutions is given in terms of a linear’fractional transformation.

To introduce the families W (p, P), some notations and definitions are first called
for. The symbol I, denotes the identity matrix in the space C™*" of n x n matrices with
complex entries, and, throughout the paper J denotes the matrix ( “g" I?, ) Given two

functions @ and b analytic in an open connected subset } of C, we set
Q4 = {A €9, laN)] > B},
Q- ={xeq, la(N)| < (6N},
and .
Qo ={r e, la(M)] = |b(N)[}-
A function p,(A) jointly analytic in A and w* in  belongs, by definition, to the class Dq
if it can be written as ' o
pu(A) = a(A)a(w)” — b(A)b(w)", (L.1)
where the two sets Q+, Q_ are nonempty. It follows (see [6]) that there is a point y such
that |a(u)| = |b(x)| # 0, and in particular, 2o is nonempty.
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Such functions and associated reproducing kernel spaces were studied in [5] and
[6] and seem to be a convenient framework to incorporate within a single theory both
the “line” and “circle” cases (which correspond respectively to p,(}) = —2mi(A — w*)
and p,(A) = 1 — Aw*). The representation (1.1) is essentially unique: indeed, if p.(A) =
¢(A)e(w*) — d(A)d(w)" is another representation of p, with ¢ and d two functions analytic
in Q, there exists a ( P )—unitary matrix M such that (c¢()),d(}A)) = (a(R), b(N))M.

Let us recall that a C ™*"-valued function K(z,w) defined for z,w in some set E
is said to be a positive kernel in E if K(z,w) = K(w,z)* (where A* denotes the adjoint
of the matrix A) and if, furthermore, for every choice of >integei‘ N and of 'wl, .e.,wn In
E, the Hermitian block matrix with 5 block K(w;,w;) is nonnegative.

The following lemmas are easy corollaries of the corresponding results for matri-

ces.

- Lemma 1.1.  Let K(z,w) be a C™*"-valued nonnegétive kernel on E and let
A(z) be a C™*"~valued function on E. Then the function. A(2)K(z,w)A(w)* is'a positive
kernel on E. ' :

Lemma 1.2. Let D be a strictly positive r X r matriz and let A(z) and K (z,w)
be funciion§ respectively C ™*n_ gnd C ™" —valued, and defined for z,w in some set E.
Then, the function . .
' : " D A(w)
 Kzw) = ( A(z) K(z,w))

is positive if and only if K(z,w) = A(z) D~ A(w)* is a positive kernel on E.

Definition 1.3. " Let Q be a connected subset of C and let p,, be in Dq. Let P be
aC 2""2."—valued function analytic in Qy and with nonidentically vanishing determinant.
The class W(p, P) consists of the C™*"—valued functions S meromorphic in Q, and such

that the function
P(A)JP(w)*

Ks(h,0) = (SO, 1) =1

(S(w), L)" (1.2)

is positive in Q.

The classes W(p, P) encompass a wide range of cases, some of which are detailed
in Section 2. In Section 3 we study the main properties of the elements in W (p, P). This
section provides the necessary background to Sections 4, 5 and 6, where the following
interpolation problem is studied (in the statement, C"*" denotes the space of r X n ma-

trices with complex entries).

Definition 1.4. Let W(p, P) be as in Definition 1.3. The interpolation problem
IP(p, P) consists of the following: given N € N, given integers r;,s; € N, given matrices
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hiyci € CT%, fi,d; € C**" and v; € C™*% i€ {1,...,N} and given wy, ... ,wy in O
such that
b(wi)al(wﬂ') - a(wi)bl(wi) ?é 0 (2 =1,... aN)a

(1) find necessary and sufficient conditions which ensure the ezistence of a func-
tion S € W(p, P) analytic in w; and such that

hiS(wi) = ¢, fiS(wi)” =di, hiS'(Wi)ff =% (1.3)

fori = 1;...,N and
(2) describe the set of all solutions.

Our approach to solve this interpolation problem relies on Potapov’s method
of the fundamental matrix inequality suitably adapted to the present framework. This
method was developed by V. Potapov and his coworkers to solve matrix-valued versions
of the Nevanlinna-Pick interpolation problem for Schur and Nevanlinna functions (see
[11,13-15]; the definitions of Schur and Nevanlinna functions are reviewed in the next
sectioﬂ). As will be made clearer in the sequel, the problem IP(p, P) is a matrix version
of the classical Nevanlinna—Pick problems for Schur functions. o

In Section 4 we give necessary and sufficient conditions for the pfoblem I1P(p, P)
to be solvable. As is often the case in interpolation theory, a necessary condition for the
pfoblem' IP(p, P) to be solvable is the nonnegativity of a certain block matrix K, the so
called informative matriz of the problem (defined in (4.2)-(4.4)); its strict positivity (under
some additional requirements) is a sufficient condition for the problem to be solvable.
Under the assumption that K > 0, a description of the solutions to IP(p, P) is given
in Section 5 using a linear fractional transformation. Such a description is still possible
when K > 0; this is treated in Section 6.

The interpolation problems IP(p,P) could presumably be solved using other
approaches to interpolation: we have in particular in mind reproducing kernels methods
[3, 4, 6, 9, 10], methods based on operator theory [2] or methods based on the theory of

rational functions [7]. This suggests a number of problems which will be treated elsewhere.

2 Examples

In this section we list a number of examples of classes W (p, P) for various choices of p

and P. We first focus on the case of constant matrices P.

Example 2.1. The case P(A) = I,. When p,()) = 1 — dw*, the family
W (p, P) is equal to the class of C™*"-valued Schur functions, i.e. C™*"-valued functions

analytic and contractive in the unit disk D.
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For p,(A) = —27i(A — w”), we have the analogue class for functions analytic in
the open half plane C ;. More generally, for p in Dq, the function S is in W(p, P) if
and only if the operator of multiplication by S is a contraction from H}* into itself, when
HT™ denote the reproducing kernel Hilbert space of C mx1_valued functions analytic in Q4
with reproducing kernel I,/p,(}) (see [6] for details). One-sided interpolation problems
with derivative in the classes W(p, I,,) were solved in [6].

Most classical families of analytic functions for which Nevanlinna-Pick type inter-
polation problems are considered occur for constant P and p,(A) equal to either 1 — Aw*

or —2mi(A — w*).

Example 2.2. Let P()\) = 715( bt ) and pu(V) = —i(A = w"). Then
Ks(\w) = &/\:iw A function S is in W(p, P) if and only if it has a non-negative
imaginary part in C 4, i.e. if and only if it is a Nevanlinna function.

Example 2.3. Let P(\) = 2= ( % I') and pu(A) = 1 — Ao, We then have

2

Ks(\w) :i(-'}):_%f"l The class W(p, P) coincides with the set of C"*"—valued functions
analytic and with non-negative real part in D, i.e. with the C"*"~valued functions of the

Carathéodory class in D.

The next examples consider the case of nonconstant P. We first recall that the

function , A
puo(d) = 2mi(A = w1 = d”) .. @)
belongs to Dg with & = C and

a(A) = vVa(A +i(A2+1)), b)) =v7(A—i(A2+1)).
Moreover, the corresponding set 2, consists of two connected components: the open up-
per half-disk Dy = DN C, and its reflection under the map A — 1 (see [5]).

‘ Example 2.4. Let p, be as in (2.1) and let S be a C"*"—valued function
analytic in the corresponding set Q1. Then the function

I = SA)Sw)" , SO) = S(w)

Aw) = (2.
KE(w) 1—dw* A —w* (22)}
is of the form (1.2) with this choice of p.,. and P()\) = % ( ((lzfi?)ll':' ((i‘z'_zl))l;‘" )

Functions S for which the kernel (2.2) is positive in the open upper half-disk D,

were studied in our previous paper (1].

Example 2.5. With the notation of the previous ezample, the function
I, — S(A)S(w)*  S(A) — S(w)*
Aw) = -
K(w) (A —w*) + 1— dw*
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is of the form (1.2) with P(\) = J5 (% ).
Example 2.6. Let p,(A) = —1(A? — w‘z). Then p,, belongs to Dq with @ =C

and the corresponding set Q1 is the quarter upper right plane C + . = { A|ReA > 0, Im) >
0} and the function

K(\w) = S('\i :jfw)' + S(,’\A) iif“’)'

is of the form (1.2) with this choice of p,, and P()) = 715 ( _’\fl’; :\11: ) .
We leave to the reader to check that J-contractive functions (in either an open half

-plane or the unit disk) are in some family W (p, P) for adequate choices of P and p.

3 The classes W(p, P)

Let S be a C™"*"-valued function analytic in the open unit disk D. Then, as is well
known (see, e.g:, [13]), for every choice of points A;,..., Ay and wy,...,wp in D such that
Ai # wj the block matrix ( l’;. g ) with the block entries

= = SO)SOy)

Asj TS (=L, N) - (3.1)
1] J .
B,-J-=—_5(A;)_:5F“’f) (G=1,...,N; j=1,...,P) (3.2)

1 ]
In—S i‘S y .. :
DU:% (7,,]=1,.,P) (33)
At}

is nonnegative. The main objective of this section is to prove an analogous result in the

classes W(p, P). We first need some preliminary lemmas.

Lemma 3.1. Let S be in a class W(p, P) and let P = (p;;) be the block decom-
position of P into four C™*™-valued functions. Then
(i) the function A — det(S(A)p12(A) + p22(A)) is not identically vanishing in Q0 ;
(i) the kernel T )
I. — Rs(\)Rs(w)"
Pu(A)

()
with the function Rgs being defined by A
Rs(A) = (S(Mp12(A) + p(N)H(SNpu(A) + pa(V) (3.5)

is positive in Q. .In particular, Rs is analytic and takes contractive values in (.
Proof: Let A be in (2} and let Ks be as in (1.2). Then

(S(M)p12(A) + p22(A))(S(A)pr2(A) + paz(A))"

= (S(Mpu(A) + pa(A)E NP1 (A) + (V) + pa(A)Ks(A, A).
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Therefore, if h(S(A)p12()) + p22())) = 0 for some A in C'*™ it follows that A(S(A)p(A) +
pa1(A)) = 0, so that A(S(A),I)P()) = 0. Hence detP(A) = 0 at the given point A. This
concludes the proof of (i) since, by hypothesis, detP # 0 in €2,.

To prove (ii), let A,w be points in 4 where the function Spi2 + p22 is invertible.
Then,

I, — Rs(A)Rs(w)"
/’w()‘)

which allows us to conclude, at least for those points of Q. where det(Spi2 + p22) does

= (S(N)p12(A) + pz (1) T Ks(A, w)(S(@)pr2(w) + pa(w)) ™ (3.6)

not vanish. Setting A = w we see that Rg()) is contractive at these points. It follows that

any singularity of Rs is removable, which ends the proof. W

Corollary 3.2. Let w € Q, be such that detP(w) # 0 and let S € W(p, P) be
analytic in w. Then det(S(w)pr2(w) + p2a(w)) # 0.

Lemma 3.3. Let A be a subset of D having one accumulation point inside
D and let S be a C™"—valued function defined on A and such that the kernel (I, —
S(A)S(w)*)/(1 — Mw*) is positive on A. Then S has a unique extension to an analytic
function inside D. For this exztension the above kernel is still positive. -

Proof: The set of functions “where c is.in C™*! and w is in A is dense in

the Hardy space H}. From the positivity of the given kernel on A it follows that the
map T, Ti5%= = lﬂ_%}, is a contraction from HY into itself. Its adjoint T™* is still a
contraction and is defined by (T*f}(A) = S(A)f(X) for A in A and f in HE, from which
the claim follows. JJ

The next result is the analogue of the positivity of the matrix ( ;. g ) defined

by (3.1)-(3.3) in the present setting.

Lemma 3.4. Let A — R()) be in W(p,I,). Letwy,...,wn and 1n,...,vp be
points in O such that %(w,-) # g(uj) forie{1,...,N}, 7€ {1,...,P}. Then

r-(5 5)zo

where the block matrices Ty, T, and T3 are defined by

I — R(wi)R(w;)"
Pu; (wi)

_ I — R(v:)"R(v;)

(T3)i; = -—p‘:m—— » (,7 €{1,...,N}) B (3.8)

(T1)i; = el N} 3.7)
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- R(wi) — R(v;)
b(wi)a(vj) — a(w:)b(v;)
In particular, the kernel (8.4) (with R instead of Rs) is positive in ;.

(T2)i; =

(iefl,...,Nsjie{L,...,P}). (3.9)

Proof: Let o be a function defined as ¢ = b/a. In view of (1.2), |o(A)| <
1 for A € Q4. Since the functions a,b are both analytic in Q4, it follows that any
singularity of o in Q, is removable. From [6] it follows that R()) = S(o())) where S is

an analytic contraction. From this identity we obtain the nonnegativity of the matrix

T= (7 ) defined by
N In—R(/\i)R(/\j)' o '
(Tl)ij—m‘—l (1,16.{1,...,N})
(Té)ij=% Ge{l,...,N} ]"e{l,b...,P‘})
(T3)i; = Lo = Rl Riw;) (,j€fl,...,P})

1 - a(wi)ra(w;)
which is equivalent to the nonnegativity of the matrix T’ defined in Lemma 3.4 since the

function a does not vanish in ;. il . : -

We note that the relation R = S 0 o was obtained in [6] using the reproducing
kernel Hilbert space associated to the positive function In/p,(A) (where A\,w € Q). Now

we turn to the main result of this section.

Theorem 3.5. Let S be in the class W(p, P) and let w;,v; € Q4 be points of
analyticity of S and P~ such that o(w;) # o(v;), i € {¢;..., N}, j € {1,...,P}. Then

S= ( gi gz ) >0, | | (3.10)
where
(S1)i5 = Ks(wi,wj) (4,7 €{1,...,N}) (3.11)
= Rs(vivs) = — (L — S PO T Pw) [ 1
(SS)U a I(S(V”VJ) ) (Im S(U‘) ) Pu.-(Vj) < _S(yj) ) :
(3,7 €{1,...,P}) ' (3.12)

s = st s (s )

Ge{l,....,N},je{l,...,P}). (3.13)
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Proof: Let P(A\)™!. = (gi;)ij=1.2 be the block decomposition of P~! into four
C"*"-valued blocks. It is easily checked that A — det(g12(A)S(A) — ¢11(A)) is not identi-
cally vanishing and that the function Rs defined by (3.5) can be reexpressed as -

Rs(A) = —(g2(N)S(A) — gu(M)(@r2(1)S(A) — qua(A)) 7 c(3.14)

To obtain (3.10) we start with the nonnegative matrix T defined by (3.7)-(3.9), with Rs
instead of R. We substitute (3.6) into (3.7).and (3.14) into (3.8). In (3.9) we replace
Rs(w,) by (3.5) and Rs(v;) by (3.14). Then multiplying T from the left by the matrix

_ | diag(S(wi)prz(wi) + paz(wi)), 0 .
N= ( 0 ' —diag(S(vi)qu2(vi)" — qu(v)*), )

and from the right by N* we obtain the required result. [

Coroilary 3;6. Under the assumptions of Theorem 9.5 the kernel

S 11:’1(“’)"' :
Thw=| _ ba(w)? | (3.15)
B0 () Ks(he)

is positive in Q+, where S is defined by (3. 10) (3.13) and

S = PP [ S@) \
(V) = (S(/\)I)__.__._.M(/\) ( “ )
. e POYP(w) [ L
(W20 = (SO L) pui(A) (_S(Vi) )

Proof: It suffices to remark that the positivity of .the function T'(),w) is equiv-
alent to the.nonnegativity of the (N + P + 1)nk x (N + P + 1)nk matrices

Ingp 0 &mrw%uw)"
8 (%0) Br(w) (

Inyp --- Ingp O )
0 L * (KS()‘M)‘ ))

0 - -0 Iy,

1,j=1

for every choice of points A, ..., \x € ;. Applying Theorem 3.5 to the pointswy, ..., wn,
WN41 = A1, . WNeE = Ag and vy, . .., vp we obtain the nonnegativ‘ity of the inner matrix
in this last product. |

Corollary 3.7. - Let S be in W(p,P) and let.Rs be defined by (8.5). Then the
function A — det(p11(A) — p12(A)Rs(A)) does not vanish identically in Q. and

S(A) = (p22(AN)Rs(A) = pa(A)) (P11 () — pr2(A)Rs (X))~
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To prove the.corollary note that in view of (3.14) p11 — pi2Rs = (¢125 — qu1)™".

Lemma 3.8. Let S be in W(p, P), let P and P! be analytic in some neigh-
bourhood U,, C Q. of the point w € £}, and let :

(L < n

(1 0P0IPO) () =) ~upu() <0 (300

for all A €U,. Then S is analytic in Z/(w

Proof: Since detP()) # 0 ini U, (3.16) forces detpii(A) # 0 (A € Us). Thus
pit(A)p12(A) is a contraction for A € U, and
_ " A 0 . . N
i (Mpr2(X) = U( T(O) v ) U (3.17)

for some unitary matrices U and V and a strict contraction () in Z,,. The invertibility
of P and p;; implies (see [9]) det(pa2(A) — paa(A)p (M)p12(X)) # 0 for A € U,.. Let us
define S U(paz — pa1pii p12) " (Spin + p2)U™. Then

S= (Pzz = P21P11 ' p12)U” SUPn - P21Pu S A‘ (3 18)

Substltutmg (3.17), (3. 18) into the inequality Kg(/\ A) > 0 (see (1. 2)) and multlplymg it
by the matrix U(py2 — p21piy p12) from the left and by its adjoint from the right we obtain

+ 30 (T(OA) 3 ) + ( T(S)' ‘9. > SO

+3(0) ( ’(*)*(3)' - ) S0 >0

(3.19)

for A € U,. Let

&= ( S S12 ) : (3.20)
) S21 S22 R

be a block decomposition of § correspondiing to (3.17). Since rr* — I < 0,51; and sy are

bounded in ¥, and thus are analytic there. Using this fact and substituting (3.20) into

(3.19) we obtain the boundedness of the function ( - ) (0, V) + ( ) (3,,83,) in U,,.

This means that ( s12 )(0 V) has a bounded real part in U, and, therefore, is analytic

there. So, the functlon Sis a,nalytlc in U, which on account of (3.17) lmplles the assertion

of the lemmia. [ |

~,Lemma 3.9. Let S bein W(p,P) let P and P71 be analytic inw € Qy, let
(3 18) holds for A = w and let Ks(w,w) > 0. Then S is analytic in w.,

Proof Asin the proof of Lemma 3.8 we obtam that detpn(w) #0 and P (A)p12(A)
is an analytic contraction in some neighbourhood Ll of w. Let Rs be defined by (3.5). By
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Lemma 3.1 the strict positivity of Ks(w,w) implies that Rs is a strict contraction in I4,.
Then det(p11(A) = p12(A)Rs(A)) # 0 for A € U, and by Corollary 3.7 S is analyticin Q. J

In the previous lemma, the condition Ks(w,w) > 0 cannot be relaxed to

Kg(w,w) >0, as we now show on an example.

Example 3.10.  Letp,(\) =1-4z", Qy =D, P = (3 }),w=1eq,.
Then the function S(\) = 2(1 — 2X)7} belongs to W (p, P) since Ks(/\ /\) =0 (Ae ).
We have (I,,0)P(3)J P(3)* ( fn ) =0, but S has a pole in A = }

In conclusion we show the nonernptinéss of W(p, P).

Lemma 3.11. Let A, B be n X n matrices such that ra'nk( g ) =n. Then
there exists a contractive matriz § € C™™ such that (SB + A) is invertible.

Proof: Let us suppose that det(SB + A) = 0 for every contraction in C™*".
Then the function A — det(AB + A) is identically equal to zero, and the pencil AB + A is
singular. By a theorem of Kronecker on the canonical form of. smgular penc1ls [12], there

exist’ nonsmgular matrices P and @ such that -

X 0 0 h . " .
d.lag < 0 L“‘ )i=1 ..... n—r- O " . C 0
FAQ=1, S diag<L‘*' 0) o |’
" 0. L i=1,..,T
0 0 Ag
. 0 0 ‘ .
dlag ( 0 Mu,‘ )}":1 =T ° °
o s 0 Mn. i=1,....T
where Ly and My are k x (k 4 1)-matrices defined by _
/01 0 - .0\ - /10 - c 0
l"k'z 0 01 - D ,' M, _|[o1 0
Co 0 Do 0"
0 -0 0 1 0 ---0 1 0

and r =rank(A, B).' The indicés i €; and 7; are chosen to be of increasing order. and
det( Ao + ABo) % 0. ' o ' o

Let Vi (: = 1,...,n—r) denote the (u; +1) x (u. +1)-matrix with all entries equal
“to zero, at the exceptxon of the first entry of the second column whlch is equal tov; € C

Then the matrix ( >0 Ly ) +'V; ( o Mo ) =( A ,S“ ) is not singular for v; # 0.
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Let U; denote the (e; +' 7 + 1) X (e; + 7 + 1)-matrix with all entries equal to
zero, at the exception of the (¢; + 1)-th entry of the first column which is equal to u; € C-
Then the matrix ( L(; L(f )+ U; ( 1\;-, ) is not singular. for u; # 0. We chose

m

Ul,...,UT,Vy,...,Un_r and Ag such that det(Ao + Ao Bo) # 0 and such that

' diag(V;) 0 0.
S=P1'| 0 diag(U;) 0 P

0 [V 7Y

is a contraction. Then

diag(Vi) 0 0 1
SB+A=P! { ( 0 diag(U;) 0 ) PBQ + PA.Q,} Q'
0 0 AT .

is not singular, which concludes the proof. §

Corollary 3.12. Let A, B be n x n matrices such that rank(A, B) = n. Then
there ezists a contractive matriz S € C™ ™ such that (BS + A) is invertible.

* Corollary 3.13. ' The class Q(p, P)'is nonempty. "'

‘Proof: Let P = (p;;) be the décomposition of P-into‘four € "*"-valued func-
tions . By Corollaty 3.7, it suffices’ to"‘pr‘b\'/e that, for some contractive'matrix R, the
function A — det(py1(A) — p12(A) Rs(A)) does not vanish identically. This, in turn follows
from Corollary 3:12 since rank(py;(A), p12())) =n for.all points A where detP(A) # 0.

4 The 1nterpolat10n problems IP(p, P). -

The mterpolatlon problems IP(p,P) were- mtroduced in Deﬁmtlon 14 In thxs sect:on
we present a necessary and sufficient condition (Theorem 4.1) in terms of positive kernels
for a C™""-valued function S to be a solution of IP(p, P): As a corollary we;obtain a
necessary condition (the nonnegativity of the matrix K defined in (4.2)-(4. 4)) in terms
of the data for the problem to’ have a solutxon :

Theorem 4.1. Let S be a C"""-udl{zcd }ncrorhbrﬁhx'c function analytic in
w; (ii="1,..:,N). Then S is a solution’ of the mterpolatzon problcm ‘IP(p,P) if-and

S Ky Ky ipe(w)” e :
K(zzw)=| K; Ks a(w) ) L (a0)
Hi(D) 6N Ks(hw) /-

only if tliez/un'ction
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is positive in (.. Here the functwn Ks is deﬁned by (1.2), the block-matrices K1, K3, K3
are defined by .

*
2

, P(wi)P(w;)~ 5 £
(s ha) oty b((i.xu(w,)( Zl;) - @#9)

(Ka2)ij = fr ) : (4.3)

7i+(Ci,h;)P’(w;).P(w;)'

—d _
b(wi)a’ (@) —a(wi )b (w;) (z=17) |
P(w;)™" P(w;)! ( £ ) - ' o
i = —(fi, —di) ———F———"— J ,7=1,...,N 4.4
(1(3) ¥ (f ) Pw.'('wj) —d; ( ], 1 ) ' ( )

and the matrﬁ—valu‘éd functions v, P2 are defined by

(X)) = (c;,hi)% ( S(I,Y\t). )

: P(w;)=*P(\)" SA)* Y . .
Pa( X fi, —d; : (i=1,..:,N)."
0 = o= o) = atcmeonr 1o ) _

Proof: We first suppose that the function S belongs to W(p, P) and is a solution
of the interpolation problem IP(p, P). We consider the kernel defined in (3 15) with N
points wy,. ..,wy where w; are the interpolation points and with N points v,...,vn in
Q4 with o(1;) # o(w;), 1,5 € {1,..., N}. Multiplying. T'(},w) from the left by

T fdiag(h) 00
TR _ ,¢=-( -0 diag(f;) 0)
0 0 I,

and from the right by ¢* and letting v; ténd to w; (i.=1;...;N), we obtain (4.1)
by Lemma 1.1. Conversely, let S be a C™*"-valued function analytic at the points
wi;t Z 1,2.., N and for which (4.1) holds. Then in pa,rtlcular the functlon K()\ w) is
posmve in Q+ and the function S belongs to W(p, P). - - :
“The nonnegatw;ty of the matrix—valued function (4.1) implies'that, for A = w, -
(K )i (Ka)a. ($1(A):

( (K3)i  (Ks)u  (2(A))i )
o M@ @ Ks(u) |
Therefore, the function 4, is bounded.in compact neighbourhoods of the poi/nts w;. There-
fore, fiS(wi)* =d; (+ = 1,...,N) so that S satisifes the first interpolation conditions in

(1.3). The other mterpolatlon conditions -are obtamed as follows: we set in (4.5) A = w;

( (A)? )P(A P00 ( g6i, f:)'zo‘

(4.5)

and obtain
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From this we obtain that the matrix

_ Ci h; N £ O (ndri)x2n
M= ( s I ) P(M)€C

is J-nonnegative. Thus, the rank of M is less or equal to n. Since detP(\;) # 0, rankM =
n. Since the rank of the matrix (S(;), I.) is n, there exists a matrix g € C™*" such that
(I,,,g)( 5{;) 4 ) = 0. Hence, h; = —g and G = R:S(N) (i=1,...,N) which form the
second set of interpolation conditions. ’ o

To obtain the last set, multiply (4.5) by the matrix

3

— 0 ]3.‘ 0 (ri+si)x(ritai+n)
N_(In 0 _,hi>eC axry

from the left and by N~ from the right, and let A go to ;.

Taking into account the two first set of interpolation conditions and that
~ :

hi(S(A), In) P(A) P(wi) ™! ( _{:1 ) (cis hi) P'(wi) Pwi) ™! ( 4 ) b hiS () f7

dt
lj . = -
frati b(wi)a(A) — a(w:)b(}) blwi)a'(wi) — a(wi)b(wi)
we obtain the inequality 7
B O ey a
( vi=hiS'(wi) S e )0 IR 20
wYa' (wi)=a(w)b'(w;) . i

from which v, = A S'(N)fr (i=1,...,N) follows. &

t

It follows from the preceding analysis that the nonnegativity of the matrix K" is
a necessary condition to ensure that /P(p, P) is solvable. .

The matrix K will be called the informative block-matriz associated to the prob-
lem /P(p, P).

5 Solution of I'P(p, P) : the nondegenerate case

In'this section we suppose that the informative block matrix K (defined in‘ the previous
section) is strictly positive and describe the set of all solutions under this hypothesis. We
begin with some lemmas. Then we introduce the notion of P-positive pairs and finally

state and prove the main result, Theotem 5.1. The next lemma is taken from {5].

s

Lemma 5.1. Let A and B be in CV*N and M be in C™*V such that:

(i) for some pownt u in Qo, det(a(p)A — b(u)B) #£0;
(i) the_columns of F()) = M(a(A)A — b(A)B)~! are linearly independent as
funciion& of A. A v ' ‘
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Let furthermore K € CN*N be an invertible Hermitian solution of the equation
A"KA~BKB=M"JM. ‘ (5.1)
Then the C *"*** ~yalued function
$(A) = Lo = pu(NF) KT F ()T (5.2).

is J-unitary in Qo and

J = p(N)Jp(w)" = pu(MF(NK T Fw)", (53)

where A and w are points of analyticity of . We note that there always ezists a point p
in Qo for which a(u) # 0 (see [6]).

A formula for ¥~' is presented in the following lemma. We first need’some

notation and introduce the functions
PN =(a(V)A - b(NB)™, o (5.4)
G(A) = (a(A)B™ — b(M)A™)™. o (5.5)
- Lemma 5.2.  The function § defined by o
0\ = L, + Pu(A)MG(y)*K‘Ié(A)M*J | (5.6)

s the inverse of the function ¥ deﬁned in (5.2). Furthermore, for A and w points of

analyticity. of 6,
0N JO(w)" — J = pu(N)MG(p)" K GNG () KG(p) " Glw) KT'G(u)M™;  (5.7)

B(w) JO(A) — J = pu (NI MG(w) K- GOYM*J. (5.8)

-Proof: The proof-is computational.. From(5.1), (5.7) we obtain

O(N)JO(w)* — J = MG(p)" KGN L\, w)G(w) K1G(1)G™, (5.9)

where ) ' ‘ :

- LOWW) = puN)(a(w) B* — b(k) A" K (a(w)" B — b(w)" )
+pu(w) (a(A)B* — b(A)A*) K (a(p)*B — b(p)"A)
+Pul(’\)Pu(w)‘(A‘KA — B*KB),

which can be rewritten as
£(0©) = pu(A)(a(n) B" — b(u)A")K (a(4)" B — b(u)" A). (5.10)

Substituting (5.10) into (5.9) we obtain (5.A7). Equality (5.8) is proved mainly in the same

way.
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We now turn to the proof that §(A)y(A) = I,. We have from (5.2) and (5.6)

O(AB(A) = L + pu(AMG () K'\GONNT(A)K T ()" M*J, . (5.11)
where
N(A) =T(p)" KT Y A) = GV NKG(p)™" - p(A)M*IM.
Substituting (1.1), (5.1), (5.4) and (5.5) into the last equality we obtain

N(\) = (a(u)A - b(k)B) K (a(A)A — b(A)B)
~(a(A)B" — B(A)A*)K (a(n)" B — b(1)" A)
—~(a(Na(p)" ~ b(A)b(n)")(AK A — B"KB) = 0,

which both with (5.11) implies (A)¥(}) = La. B

We will apply the above lemmas to the following set of matrices:

—_ dia’g(a(wi)‘lr.‘)izl,...,N . . 0 )
A= < 0 -diag(b(wi) 1y, )i=1,...N ) (5.12)
= | diag(b(wi).Ir;)i=l,...,N 0
s ( 0 diag(a(wi)l,.)izr,..n ) (5.13)
. ((Cfahi)P(wi)J)i=l ..... N : .
M= ( ((fiy —di)P(wi)™")im1...N ) (5.14)

It is then easily verified that the informative block matrix K is a solution of (5.1).

We now turn to the notion of P-positive pairs.

. Definition 5.3. A pair {p(}),q(A)} of C™*"-valued functions meromorphic in
Q is called P-positive if

(z) det(p(A)p(A)T + g(A)g(A)*) # 0 in Q (nondegeneracy of the pair)

(ii) the function

Kpah) = (o0, o) ZELEEL (20 ) (5.15)

is positive on the set of analyticity of the pair (p,q).

We will denote by P(p, P) the class of all P-positive pairs.-In P(p, P) we intro-
duce an equivalence relation as follows: a pair {p,q} is, by definition, equivalent to a pair
{p1, 1} if there exists a C™*"-valued function X, meromorphic and with nonidentically
vanishing determinant in  and such that (pi(A),q:1(A)) = X(A)(p()), ¢())). In the next
sequence of lemmas we study the set P(p, P) in more detail.
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Lemma 5.4. There ezists a one-to—one correspondence between the classes of
equivalence of P-positive pairs and the set of C™*"—valued analytic contractions in Q4
from the class W(p, I,). -Namely: ' ‘

(i) Every pair {u,v} in P(p, P) is equivalent to some pair {p,q} of the form
(p,9) = (R, 1,) P71, o (5.16)

where R belongs to W(p, I,).
(ii) For every R as in (i) the pair defined by (5.16) is P—positive.

Proof: Let {u,v} be a P-positive pair. Therefore, at those points A in 24 where

u and v are analytic, we have

P (27

and hence .. o '
P1(M)p1(A)" < p2(X)p2(R)7, - o (5.17)

where we have set

e1(A) = u(A)pu(A) + v(A)p1(A),  @2(A) = w(A)pr2(A). + v(A)p2a(). .

We claim that the determinant of p, is not identically vanishing in' 2. Indeed; let Ag be
a point of analyticity of p2 in Q4 where p(Xo) = 0. Without loss of generality we may
suppose that detP()o) # 0. Since detpa()o) = 0, there exists a vector b € C'*" such
that hea(Ao) = 0. From (5.17) we have hep1(Ao) = 0 and thus h(u(Aa),v(Xe))P(As) = 0,
so that hu(Ag) = hv(Xe) = 0. By property (i) in Definition 5.1, A belongs to a set of
isolated points without accumulation points inside Q4. From (5.17), the meromorphic
function R(\) = 3 (A\)¢1(}) is a contraction and thus is analytic in Q4. Moreover,
(), o) = 2RO, T)P=A(A) and hence, Kuo(hw) = ea(W)Kr(hw)pa(w)
Since det p2(X) # 0 Lemma 1.1 insures that the pair {u,v} belongs to P(p, P) if and
only if R belongs to W(p,I1.). I : ‘ :

Definition 5.5. . An equivalence class of P—positive pairs is called proper if for -
all pairs {p(1),q(A)} in the:class, det q is not identically vanishing.

Lemma 5.6. Every equivalence class in P(p; P) is proper if

(0, 1) P(\) T P(\)~! ( ? ) >0 (AeN,) T (519)
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or, equivalently, if

(1, 0)P(A)J P(AY ( In ) <0 (Aey). ' (5.19)

. Proof: Let {p,q} be a pair in P(p,P). Then, up to a multiplicative factor,
{p.q} is of the form (5.16). Using the block decomposition P~! = (g;;) of the function
P! into four € "*"-valued blocks we obtain 9(2) = R(A)g12(A) +g22(A). From (5.18) we
have q12(A)"q12(A) < g22(A)"ga22()), and the nondegeneracy of P forces the determinant of
g22 to be not identically vanishing. Thus, q12(A) g2z (M)t is a strict contraction for A in (1,
where P~! is analytic. Hence det g()\) = det((Io+R(A)q12(A) g22(2) 1) g22(1)) is not iden-
tically vanishing in Q. The equivalence of (5.18) and (5.19) follows from the n x n—blo.ck
decompositions of P and P-! and the evident equality (In, 0)P(A)P(A)? ( 1: ) =0 B

The following subclass of P(p, P) will be of interest.
Definition 5.7. A pair {p,q) in P(p, P) will be in the cIass_@P(p, P) if

GO PPy (P ) =0, i ey,

We now state the analogue of Lemma 5.4 for the subclass dP(p, P).

Lemma5.8.  There ezists a one-to-one correspondence between classes of equiv-
alence of OP(p, P) and the set of unitary n X n-matrices. Namely: a pair {p,q} is in
9P(p, P) if and only if it can be written as

(p (/\) 9(\) = X(\)(R, I.)PTH(A)  for A€ Qy,

where the function X is C"x"—valued ‘and meromorphic in Q+, with nonidentically van-

ishing determinant, and R is a unitary element in C™*".

The proof of this lemma goes along the lines of the proof of Lemma 5.4 and will

be omitted.

With these lemmas out of the way we turn to the main result of this section.

Theorem 5.9. Under the hypothesis that the informatiﬁe block matriz K is strictly
positive, the solutions of the problem I P(p, P) are described as follows: let § be the matriz-
valued function defined in (5.7) and let

A() = P(A)B(A)P(A)™. o (5.20)
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Let A = (a;;) and P = (p;;) be the decompositions of A and P into four C™*"-valued
functions and let P°(p, P) be the set of all P-positive pairs {p,q} such that

det ((p(A),q(A))A(A) (\””“) )) (p(V)arz(A) + a(Naza(1)) 2 0. (5.21)

p22()
. Then the solutions of‘IP(p', ) are parametrized by the linear fractional tmnsformatzon
S(2) =V(P(/\)a12,(f\) +~‘1( )‘122(/\)) Y(p(A)ann(A) +g(A)az(X)) (5-22)

when {p,q} varies in P°(p, P). More precisely: ,

(i) Every solutwn S of IP(p, P) is of the form (5 22) for some ‘pair {p,q} in
P°(p, P).

(ii) Conversely, for every pair {p,q} in P°(p, P) the functzon S deﬁned by (5.22)
isin W(p,P) and is a solution of IP(p, P).

(iii) Two different pairs {p,q} and {pl,ql} lead to the same S in (5 22) if and

only if they are equivalent.

Proof: By Theorem 4. 1; the € "*"“valued function S analytic in w; (2 =1,...,N)
is a solution of I P(p, P) if and only if the kernel K(A,w) defined by (4.1) is nonnegatlve
By Lemma 1.2, this is equivalent to the nonnegativity of the function :

| Ks(A,w) = ($1(0), %2 (V) K (ﬁg g >>O

which can be rewritten as

o L w96
where I' and M are defined via (5.4), (5.12)—(5.1.‘4).. Usrng (5.3) and Temma 5.2, we

rewrite inequality (5.23) as

o e WA EL

n

)é o 52

or, equivalently, as .
1y 7 AR TIP(A)IP(w)  Aw) ™™ ( S(w)* )
S(\), I, >0. 5.24
| (SO0, 1) s i G2
Let {p,q} be defined by (p,q) = (S, I.)A". It follows from (5.23) that {p,q} is a P-
positive pair. Furthermore, : :

paiz + qaxn = In, pair +qan =S

and in view of Corollary 3.2

-1 .. ‘
det ((P, q)A ( ZZ )) " (pa12 + qaze) = det(sp1z + p22) #0
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inw; (i =1,..., N).Therefore, S admits a representation (5.22).
Let conversely {p,q} be in P°(p, P) and let S be defined by (5.22). Then

(S(0), [n) = (p(Marz(A) + g(N)az(X) 7 (p(A), ¢(A)AM)

and the P-positivity of the pair {p,q} is equivalent to (5.24). Let us introduce a pair
{u,v} by o
(u(A),v(2) = (p(1), 9(A))A(X). ‘ (5.25)
Since det A(A\) # 0 and {p,q} is nondegenerate, it follows from (5.24) that {u,v} is
nondegenerate as well. Since {p,q} € P(p, P) and §(A)JO(N)* > J for all A € 0 (see
(5.7)), then, in view of (5.20) and (5.25) (and with some abuse of notation) - ‘

(u,v)PJ[,P‘(v ) (p.9)P e‘iofP‘(z:)z,( )ﬂ(q )20 | (5.26)

and, hence, {u,v} belongs to P(p, P). According to Lemma 5.4

(u,v) = X(R,I,)P™! , (5.27)

"~ for some C ™" ~valued meromorphic function X (det X (A) # 0) and C "*"-valued analytic.
contraction R € W(p, I,,). Since detP(w;) # 0, it follows from (5.27) that the functions
X~lu and X~'v are analytic in w;. By (5. 27) X = up1az + vpgs; and using (5.25) ‘we can

rewrite (5.21) as
det X1 (\Jo(\) £0 for A=uw; (i=1,...,N).  (5.28)

Comparing (5.22) and (5.25) we obtain that the function S = v=lu = (X~1v)"} (X 1u)
is analytic in w; (¢ = 1,..., N). We have shown that S defined by (5.22) is analytic in w;
and satisfies (5.24). According to Theorem 4.1, S is a solution of 1P(p, P).

The proof of (iii) is quite straightforward and will be omitted. [

The matrix-valued functlon .A(/\) given by (5.25) will be called the resolvent ma-

triz of the problem.

We note that the set. P°(p, P). introduced in the above theorem consists of all
pairs-{p,q} € P(p, P) which lead under the linear fractional transformation .(5:22) to a
function S analytic in the interpolating points w; (i =1,...,N). ‘

The set P°(p, P) may be empty; then the strict positivity of the informative ma-
trix K does not ensure the solvablllty of the problem I P(p, P) as we now 1llustra.te on an

example.
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Example 5.10. Letw € O, and c € C'*™ be such that
(¢, 0)P(w)J P(w)" ( f) ) >0 (5.29)

and let h be the zero vector of C'*™. Then the tangential problem with the interpola-
tion data w,c,h (that is, to find all functions S € W(p, P) analytic at w and such that
hS(w) = ¢) has no solutions although its informative matriz coincide with (5.29) and is

strictly positive.

If the inequality (3.13) holds for all A in some.neighborhood 4, of each inﬁer:
polating point w;, it follows from Lemma 3.9 and the previous discussion that the set
P°(p, P) can be defined as the set of all pairs {p,q} € P(p, P) such that

det(p(N)aiz(\) 4 g(N)azz(N)) # 0. ‘ - (5.30)

A particular case of interest is considered in the next lemma.

Lemma 5.11.  Let the z:ntefpolating point w; be such that
7 _(.In,O)P(@,-)jP(w;)*('I(;‘ ) <0 (1= 1’,..'.,1_V).' - (5.§1j
Then P°(p, P) = P(p, P). . -
Proof: Let {p,q} be in P(p, P) and let {u,v} € P(p, P) be deﬁm;d by (5.25).

Let w € O, be a point in a sufficiently small neighbourhbod of w; such that p,¢, P and

P! are analytic in w, rank(p(w), ¢(w)) = n and

,(1,,,0)'P(Q})JP(L;)*(16L)<0 o (5.32)

(such a point exists in view 6f'(5.31) and the nondegeneracy of {p,q}). Let us suppose

detv(w)=0and let he C 1Xn he a nonzero vector for which

ho(w) = 0. - (5.33)

Since detA(w) # 0 (in view of (5.2), (5.6),(5.20), A and A~! have singularities only at
wi, i =1,..., N and at the singular points of P and P~1), the pair {u,v} is nondegenerate
in w and on account of (5.33), hu(w) # 0. Substituting (5.33) into (5.26) and using (5.19)
we obtain p( )4JP( ) o ‘
. . : w w)* (1 ‘
0 > hu(w I,O—————( )uw‘h"ZO.’
| (w)( .).pw('w)' o ) u@) -

The last contradiction implies detv(w) # 0 which leads to (5.30). In yiew of Lemma, 5.6
{p.a} € P°(p,P). N
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Lemma 5.12. Let (8.13) hold for all A in some neighbourhood-of each inter-
polating point w; and let a pair {p,q} € P(p, P) be strictly positive:

(p(A)q(A))P_(%J(%(*l ( ;’8; ) >0 (Aefy). (5.34)

Then {p,q} € P°(p, P).

Proof: As above we choose a point w € U,, such that p,q, P, P~! are analyti}i in
w, rank(p(w),é(w)) = n and (3.13) holds for A = w. We define a pair {u,v} by (5.25) and
suppose that (5.33) is valid for some nonzero h € C1X". Substituting (5.33) into (5.26)
and using (3.13), (5.34) we obtain -

0 > (hu(w),0)P(w)J P(w)"(hu(w),0)" > hKyq4(w,w)h™ > 0.
The last contradiction forces detv(w) # 0, and so {p,q} € P°(p,P). B -

Corollary 5.13. Let K be strictly positive and let (8.13) hold for all X in some
neighbourhood of each pointw; (i =1,...,N). Then the problem IP(p, P) has a solution.

6 Solution of IP((p, P)): the degehei‘afe case

We now consider the case where K > 0. The problem IP(p,P) is still-_solva-ble and
the solutions will also be described in terms of a linear fractional transformation. Let

[ = rankK and let e;,,...,e; be vectors from the canonical basis of C XN such that
Lin{e;;, j € {1,...,1}} N KerK = {0}, - . (6.1)

where Lin stands for linear span and KerK = { c€ C XN eK =0}.
Let @ be the element of C**V defined by 4

Q=1 i |- o (62)

Then QKQ@* > 0 and, in barticular, the rank of_ QKQ* is I, the rank of K. Thus,
inequality (4.5) is equivalent to the positivity of the function

. . mpor (5@ )Y
K(z’w)=( QKQ QU(w)*M*P(w) ( T ) ) (6.3)

v

together with the condition

(SO L) PAYME(N) Prearse =0, (6.4)
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where Prerk is the orthogonal projection onto KerK.
Theorem 6.1. Let K > 0, | = rankK and éet Q be as in (6.2)'. Let p be a
point in o, where |a(y)| # 0, and let A(A) = P(A)0(A)P(X)~!, where
0(A) = L + pu(MMG(1)*Q(QKQ)'QGNM™JT . (6.5)

(with T, G, M being defined via (5.4), (5.5), (5.14)).
Then the formula (5.26) gives a parametrization of all the solutions of IP(p, P)
when the parameter {p,q} varies in P°(p, P) and 1s of the form

(p(V), q(A) = ( RE)A) PR ) ( v ) PO, (6.6)

where U € C™" and R € CY* are unitary matrices and R is a C(=wx(v=) _yglyed

analytic function in Q1 with contractive values, and

v = rank MI'(p)Pxerk. (6.7)

Proof: The proof is divided into the following three steps.

Step 1. The solutions of inéquality (6.3) are parametrized by (5.25) with A()) =
P(A)O(X)P(A)7! and 0 as in (6.5). ' '

Step 2. A ‘pair {p,q} in P°(p, P) is a parameter leading to a solution if and only -
(p(), (X)) P(A)MT () Pierxc = 0. (63
\ Step 3. A pair {p,q} is a parameter leading to a solution if and only if it is of
the form (6.6).

Proof of Step 1. The matrices A, B defined in (5.12), (5.13) are diagonal. Thus

AQ" = Q'QAQ", BQ =Q'QBQ’ (6.9)
anid, taking into account (5.4), (5.5), |
r(\)Q* = Q"QI‘(/\)Q“,_ QG(A) = QG(NQ™Q. ~ (6.10)
From (5.1) and (6.9) we obtain
(QA™QM)(QKQ)(QAQ™) = (@B Q") QKQ)QBQ) = QM IMQ".

We can therefore apply Lemma 5.2 and the function 8 defined in (6.5) is J-unitary on Qg

and J-expansive in 2. Moreover;

J=0() (W) = Pw(/\)MQ*Q.F(A)IQ*(QKQ‘)‘IQI‘(w)‘Q*QM:
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Using (6.10) this last identity is rewritten as
J =8\ J0(w) ™" = pu(AMT(N)Q (QKQ™) ' QT (w) M". (6.11)

Similary, from (5.7) we obtain

8(A)J0(w)" — J = pu(NDQKQD", . (6.12)
where . : . A
D =MG(p) Q@ (QKQ")'QG(NG ™ (1)Q". (6.13)
Since QK Q* > 0, then (6.3) is equivalent to the positivity of:the kernel:’
(SO, 1) P(Y) {;ﬁ - MF(A)Q"(QKQ‘)‘lQF(w)'M"} P(w) ( Str ) >0,

In view of (6.11) the last inequality can be rewritten as

(500, 1P AT py ( Sty ) >0,

or equivalently

8(N)"'P(N)JP(w)*O(w)~™
Pw(A)

From the proof of Theorem 5.1, all solutions to (6.12) are parametrized by a linear frac-

(S(A), 1) P(X)

S(w)*
I

P(A)"( ’ )20 (6.14)

tional transformation (5.22) with parameter {p, ¢} from P°(p, P).
Proof of Step 2. If S is of the form (5.22), we have

(SN, In) = (p(A)ar2(A) + g(A)az2()) 7} (p(A), ¢(A))A(N). (6.15)
Substituting (6.15) into (6.4) we obtain
‘ (P(A), a(A) AN P(A)MT(A) Prernc = 0. (6.16)
Using (6.5) and the identity |
a(NGA)M*IMT()) = G\ A"K — K BT())

we obtain

AX)P(A)MT(X) .
= PO + pu(MMG(p) Q*(QKQ")T'QG(AN)M*J)MT(}) (6.17)
= P(AMT()) + 2 POAYMG()"Q (QK Q") 'Q(G(\AK — K BT())).

Substituting (6.17) into (6.16) we get

(0, ) PWM 1+ 22N 60 (QKQ )" QKB) (M Prurk =0,  (6.18)
a(X)




234 D. ALPAY and V. BOLOTNIKOV

which can be rewritten as

a(p) . Pu(}) . -1 -
a0 (P(A),Q(A))P(A)MG(n) (1 + W(I - Q (QKQ") QKBF(,\))) Prerk _(60.19)

Since a(p) # 0 and

I - Q(QKQ) QK = Prerk(I — Q*(QKQ") ' QK),

the equation (6.19) is equivalent to the vanishing of

(BN, 4N POV MG()" Prcerk (1+ 2l - @@y IQKBF(A)PK,"K))
Since the matrix . .
1+ 28 (1 - Q(QKQ) QK BI(Y) Prs

is invertible and ) ‘
4 G(p)" = b()T(w), (6.20)
we obtain (6.8). .
Proof of Step 3. We need first to prove a lemma.
Lemma 6.2. Let {p,q} be in P(p, P) and f,g be in C™"", Ao € Qy, detP(Xo) # 0.
Suppose that

ff=gg ' | - (6.21)
and o } ) ‘
600 a0NPO (I ) =0 T (e
Thén, up to equivalence, ' o ‘
(p(Y),q(N) = ( B ‘;) ( v ) POV, (6.23)

where U € C™™, R € C**¥ are unitary matrices, R(}) is a C "™*""") _yqlued analytic
contraction in 1y and v = rank ( i ) = rankf.

Proof: Using Lemma 5.3 we obtain that, up to equivalence,

(PO, 40) = (RO, )P, (624)
where R()) is a C"*"-valued analytic contraction in ;. Substituting (6.22) into (6.24)
weobtain R(Ao)f = —g. In view of (6.21) R(Ao) acts isometrically on the set ‘Ran‘f_ ={he
C" [k = fy for some y'€ C'*7}. Therefore R(A\)f = —g for all A in Q. We note that
the dimension of Ranf is equal to rankf = v and, in view of (6.21), rankf = rank ( ’ )
Therefore R(A) admits a representation ’

RO\ = U ( Rf)*) . ) U S (6.25)



Two- Sided Nevanlinna-Pick Interpolation 235

with unitary matrices U-€ C™", R € C“** and R()) being a C ™ *(*~)_yalued
analytic contraction in ;. Substituting (6.25) into (6.24) we obtain (6.23) which ends
the proof of the lemma. §i

- To finish the proof of Step 3 we note that, in view of (5.1), (5.4),

D(u)* M= IMT(p)

=D(p)"(A"KA - B"KB)['(n)
= ae(] + B(w)"T(w)" B)K (1 + b(w) BT (4)) = D()" B*K BT (1)

= e (B + b() T{w) B K + b(u) K BT (1)),

which implies , , o, 7
Prerx D(p)" M IMT (1) Pieric = 0. (6.26)

Both (6.26) and (6.4) mean that the matrix
( ﬁ ) = MI‘(;I,)PKé,-K ) (6.27)

satisfies the conditions of Lemma 6:2. An application of Lemma 6.2 to a matrix (; ) of
the form (6.27) leads to (6.6). R

4

Corollary 6.3. Let P(A\) = ( 2283 :;;‘8; ), where pix(A) = mi(A) L (7 :

Q — C). Then the parameters {p,q} in (5.21) are of the form

p(A) 0 g(A) O
A) = B( . U, A 4=,( : U,
P(A). ( 0 Po()\)> 1= o)
with unitary U € C™", a fized pair {po, go} E a'ﬁ(p, ) and the parameter {p G} varying
in Pn_,(p, P). ‘

Let, moreover, P()) satisfy the coﬁditionA (5. 1.8). Then a]l thé qo_lutions of IP(p, P)
are parametrized by the linear fractional transformation

S(A) = (a(Vara(A) + a2(X))"a(Man(A )+am(/\))

with the resolvent matriz .A()\) deﬁned as in Theorem 6.1 and parameters a( ) of thc form

o) = ( &(0)‘) ao((])\) ) v

‘where U € C™™ is a unitary matriz, oo is a firzed C***-valued function of the class

OW.,(p, P) and where the parameter & varies in W,_,(p, P).

Note that Lemma 5.14 still holds for i > 0. As a corollary we obtain
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Lemma 6.4. Let the informative matiiz K be nonnegative and let the mterpo-
lating points w; satisfy (5.81). Then the problem IP(p, P) has a solution.

On the other hand,the result of Corollary 5.13 cannot be extended to the relaxed
requirement K > 0 since all pairs {p, ¢} of the form (6.6) are not strictly positive.

Lemma 6.5. Let K be nonnegative and let (8.18) hold for all X in some neigh-
bourhood of each interpolating point w; (i = 1,...,N). Then a pair {p,q} € P(p, P)
leads under the linear fractional transformation (5 22) to a sol'utzon S of IP(p, P) if and

only if {p,q} satisfies (6.8) and
det (500, 0P() MM PO (707 )+ 0r) 20 (@29)

(or equivalently, rank ((p(A),0)P(A)M, q(A)) = n at almost all points A € Q).

Proof: Let {p,q} € P(p, P) satisfies (6.8), (6.28) and let {p,q} be defined by
(5.25). According to remark before Lemma 5.11, it sufficies to prove that det v(\) % 0.
Let A € 24 be a point in a sufficiently small. nelghbourhood Uy, of w1 such that P9, p, p-1

are analytic in qw, : v .
rank((p(w),0)P(w)M,q(w)) = n (6.29)
and B o .

(I, 0)P(w)J P(w)” ( )<o (6.30)

Let us suppose that det v(w) =0 and (5.32) holds for some nonzero vector A € C'*", In
view of (5.20), (5.25), (5.33), (6.12) and (6.30),

0 > (hu(w), 0)P(w)J P(w)* (hu(w),0)"
= h(p(w), q(w))P(w)J P(w)* (p(w), a(w))"h"+ |
+pu(wW)h(p(w), ¢(w)) P(w) DQK Q" D" P(w)* (p(w), g(w))"h"
Since both terms in the right-hand side of the last equality are nonnegative and QK Q* >
0, then h(p(w),g(w))P(w)D = 0. Substituting (6. 13) into the last equality and taking
into account the nondegeneracy of matrices QG(A)Q", QG (,u)Q and QKQ 1 we obtain
h(p ( ) q(w))P(w)MG’(p) Q= 0, which in view of (6. 20) is equivalent to

hlp(e), ) P)MT () Q" =0 (6:31)

Using (6.1) , (6.2) we obtain from (6.8) and (6.31) A(p(w), ¢(w))P(w)MT (1) = 0. Since
['(¢) is nondegenerate, the last equality implies o :

h(p(w), g(w)) P(w)M = 0. : (6.32)
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Substituting (5.20) and (6.5) into (5.25) and taking into account (6.32) we obtain
h(u(w), v(w)) |
= h(p(w), q(&J))P(w){I + pu(/\)MG(n)'Q'(QKQ‘)“QG(w)M‘J}.P"(w.) (6.33)
= h(p(w), ¢(w))- | -

In view of (5.33) hg(w) = 0 which.both with (6.32) contradicts (6.29). .Therefore,
det v(w) # 0 and according to Theorem 6.1 and the remark béfore Lemma 5.11, {p, ¢}
leads under (5.22) to a solution S of the problem IP(p, P).

Let conversely {p, g} be a parameter in (5.22) which leads to a solution of jp(p, P)
and let {u,v} be defined as in (5.25). According to Theorem 6.1 (Step 2) {p, ¢} satisfies
(6:8). In view of (5.28), - o L

det v(A) £ 0. ‘ T (6.34)
Let w € U,,. be an arbitrary point of the analyticity of p,q, P and P~! and let us sup-
pose that h{(p(w),0)P(w)M, g(w)) = 0 for some nonzero vector k € C'**. By (6.33),
hv(w) = 0 which, in view of the arbitrariness of w, contradicts (6.34). This shows that"
{p, q} satisfies (6.28) and ends the proof . W ” ‘ 7

Corollary 6.6. Let K be nonnegative, let (3.13) hold for all X in some neigh-

bourhood of each interpolating point w; and let
rank(l,0)P(A)M =n (6.35)

for almost all A € Q4 (or, in particular, rankM = 2n). Then
(i) P*(p, P) = P(p, P);
(ii) the problem IP(p, P) is solvable.

Proof: (i) follows by Lemma 5.6 from (6.28) which under assumption (6.35) is
equivalént to the nondegeneracy of {p,q}. The second assertion follows from (i) since the
set of pairs {p,q} of the form (6.6) is not empty. f§
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