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On the Weyl Matrix Balls
Associated with Nondegenerate Matrix ValuedCaratheodoryFunctwns»
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The paper is aimed at a study of the limit behaviour of the normalized semi-radii of the Weyl matrix
balls associated with a nondegenerate matrix-valued Carathéodory function. It i:qms out that the ranks
of the limits of these normalized semi-radii are constant within the unit disc. Thfs_ enables us a new
classification of mgtrix-valued Carathéodory functions. ’
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0. Introduction,

Inspired by SCHUR'’s and'R. NEVANLINNA'’s famous papers [20] and [18], ARTE-
MENKO [2] and GERONIMUS [13] completely solved the interpolation problems named
now after Carathéodory and Schur. Additionally, given a fixed point z of the open unit
disc, they observed that the set of the values at zg of all solutions of the interpolation
problem under consideration fills a closed disc, the center and the radii of which can be
explicitly expressed by the given data. In connection with boundary value problems the
study of certain families of nested discs originates in WEYL’s "Habilitationsschrift” [22]
in which there are treated singular differential equations of second order. In the context
of discrete interpolation problems, Weyl’s method of nested 'discs-was first apphed by
HELLINGER [14]. :

In their approach to ma.tnx versions of cla.ssxcal mterpolatlon problems V-P. Potapov
and his pupils worked out a natural matricial generalization of Weyl’s method (see, e.g.,
KOVALISHINA and .POTAPOV [17], KOVALISHINA [16], DUBOVOJ [5]). Hereby,
discs are replaced by so-called matrix balls which had been treated in detail before by
SMULJAN [21]. Note, that particular aspects of the matricial generalization of Weyl’s
method were also touched in the context of Nevanlinna-Pick interpolation by  DEL-
SARTE/ GENIN/KAMP [4] The study of matrix and opera.tor balls in connection w1th
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completion and interpolation problems started with the fundamental paper {1] of ADAM-
JAN, AROV and KREIN on the matricial Nehari problem.

Answering to a problem posed by M.G. Krein in 1969, ORLOV [19] proved a pow-
erful theorem which provides a-matricial generalization of the known.Weyl limit point -
limit circle alternative. Orlov’s theorem has become the basis of investigating the limit be-
haviour of sequences of nested matrix balls which are connected with matrix interpolation
problems. ’

Studying the matricial versions of the interpolation problems of Carathéodory, Nevan-
linna-Pick and Hamburger, KOVALISHINA [16] considered the associated families of
nested matrix balls. In particular, outgoing from the limit behaviour of the right semi-
radii, she introduced a classification of matrix-valued Carathéodory functions. In the
framework of the matricial Schur problem, DUBOVOJ [5], {7] refined the method of
Kovalishina by introducing so-called normalized left semi-radii. This led him to a more
complete classification for matrix-valued Schur functions. However, there was a gap in
Dubovoj’s proof caused by an incorrect application of Orlov’s theorem. This gap was
closed in [9] (see also [7, Sections 3.11 and 5.6]).

Dubovoj’s results suggest to look for a corresponding classification of matrix-valued
Carathéodory functions which is based on a certain normalization of the left semi-radii in
question. Our main aim in this paper is to realize these ideas. It will turn out that it is
necessary to extend the known results on Weyl matrix balls associated with a given matrix-
valued Carathéodory function. In particular, we have to verify explicit interrelations
between the Weyl matrix balls associated with a pair (9, ] of matrix-valued Carathéodory
functions where ((2) := Q*(z) for all z € ID. - '

1. Preliminaries

Let us begin with some notations and preliminaries. Throughout' this paper; let-m,
p and q be positive integers. We will use INy and C to denote the set of all nonnegative
integers and the set of all complex numbers, whereas ID, T and Co stand for the open
unit disc, the unit circle, and the extended complex plane: '

]D:={z€(E:|z.|< 1}7 }l":=-{z€®:|z]= 1},0_7[0:=CU{<;0}.

The symbol 0,, designates the null matrix which belongs to the set C?*9 of all p x ¢
matrices with complex entries.. The identity matrix that belongs to CP*? will be denoted
by I,. In cases where the size of the null matrix. (respectively, the identity matrix) is
clear, we will omit the indexes. If A and B are p x p Hermitian matrices, the Lowner
semi-ordering A 2 B means that A — B is nonnegative Hermitian. If A — B is positive
Hermitian, then we will write A.> B to indicate this fact. If A € CP*? then the-Hermitian
matrices :

Redi= (A+A4%) and «ImA&:%(A—A‘)
. ST

are called the real part of A and the imaginary part of A, respectively. If A € CP*? satisfies
Re A 20, then it is readily checked that det (I + A) # 0. ¥

Let K,px, be the set of all p x ¢ contractive matrices, i.e. the set of all A € CP*? which
satisfy AA*S . f{ M ¢ CP*?, Ae CP*? and B ¢ C?*9, then the set

R(M;A,B):= {X€C™ : X=M+AKB, K € Kpxq}
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is called the (closed) matriz ball with center M, left semi-radius A and right semi-radius
B. In his nice paper [21], SMULJAN verified a whole collection of important properties
of matrix and operator balls. In particular, he showed that the left semi-radius and the
right semi-radius of any matrix ball can be chosen nonnegative Hermitian (see also (7,
Corollary 1.5.3]).

A function f : ID — CP*? is called p x ¢ Schur functzon if f is both holomorphic and
contractive in ID. We will use S,x4(ID) to denote the set of all'p x ¢ Schur functions.

Lemma 1: Let f € Spxm(ID).
(a) There are at most m numbers o € T such that det (a I + f) has a zero in ID.

(b) If o € T is such that det [aI+ f(z0)] = 0 for some zg € ID, then det(al + f)
identically vanishes in ID.

" (c) If @ € T is such that det [aI+ f(z0)] # 0 for some 2z € ID, then det(al + f)
nowhere vanishes in ID.

Proof: Apply Lemma 2.1.6 in [7]

A function Q : D — C™*™ is called m x m Carathéodory function if ) is holomorphic
in ID and has nonnegative Hermitian real part Re Q(z) for all z € ID. We will write C,,(ID)
for the set of all m xm Carathéodory functions. There are several interesting interrelations
between matricial Schur functions and matricial Carathéodory functions. For example,
the following useful result holds true. For a proof we refer to |7, Proposmons 2.1.2,2.13
and part (f) of Lemma 1.3.12].

Proposﬂ:lon 1: The following statements hold true:

(a) Let Q belong to Cn(ID). Then det (I + Q) does not vanish in ID. The function
f= -2+ Q)" belongs to Spxm(ID) and fulfills

I+f=2(I+Q)". ' ‘(1)
In particular, det (I + f) has no zeros in ID. Moreover,
Q=I-NHI+NT =T+ )HT-) : (2

and :
rank [Re (z)] = rank [/ — f*(2)f(2)] = rank [I — f*(0)£(0)]

for all z € ID.

(b) Let f € Smxm(ID), and let n € T be such that det [n] + f(20)] # 0 for some zo € ID.
Then Q := (nI — f)(nI + f)~! belongs to C,(ID). Further,

f=nI-Q)UI+Q)" = 17(I+Q)“(I—Qj.

For further interrelations between the function classes of Schur and Carathéodory we
refer to DELSARTE/GENIN/KAMP (3] and [7, Section 2.1].
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2. On the Weyl Matrix Balls Associated with a Non-
degenerate Matrix-valued Schur Function

- At the beginning of this section we will summarize some facts on matricial Schur
sequences.

Let 7 be a nonnegative integer or 7 = co. A sequence (A)f_, of complex Ppx ¢ matrices
is called p x ¢ Schur sequence (respectively, nondegenerate p X q Schur sequence) if for
every integer n with 0<ns 7, the block Toeplitz matrix S, := S, < Ao, 41,..., A, > is
contractive (resp. strictly contra.ctlve) where

Ao 0 0 ... 0
A1 Ao .0 ... 0

S, < Ao, A1, ,An >i= A2 A Ay ... 0 . (3)
A-n. An—] An_2 .. Ao

If (Ax)52, is a given sequence of complex p X ¢ matrices, then the power series

(o]
f(2) :=Z Apz*, zeD, (4)

N k=0
defines a p x ¢ Schur function f if and only if (Ax) ® s a p x q Schur sequence (see, e.g.,
[7, Theorem 3.1.1]). A p x q Schur function f is said to be nondegenerate if the sequence
(Ar)R of its Taylor coefficients (in its Taylor series representation around the origin) is

a nondegenerate p X ¢ Schur sequence. _

" Now we assume that n is a nonnegative integer and that (Ag)}f_, is a sequence of
complex p x g matrices. We will use the symbol S,x, [Ao, A1, ..., As] to denote the set
of all f € Spxy(ID) for which (Ag)7_,.is exactly the sequerice of the first n + 1 Taylor
coefficients in the Taylor series representation of f around the origin. It is a well-known

fact that the set Spx, [Ao, A1, ..., An] is nonempty if and only if (Ax)F_, is a p X'q Schur
sequence (see, e.g., [7, Theorem 3.5.2)). If (Ax)}_,'is a nondegenerate px ¢ Schur sequence,
then Spxq [Ao, A1, -.., A,] can be parametrized by various linear fractional transformations

(see, e.g., [7, Theorems 3.9.1, 3.10.1 and 5.4.3]). Moreover, in this case one can describe
the set

{£(2) : £ € Spxq [0, Ar, .., An)} (5)
for all z € ID. To formulate this result we need some preparations.
In the following, we will work with the matrix

‘/nm = (5_1 n—-k I )J k=0 ? : : (6)

1, o=k o
6,-kz={0 ~,; E - - M

is the Kronecker symbol. Obviously, V5, = V., and V2. = 1.

- where

S

Remark 1: Let' 7 € INy or 7 = 0o, and let (A¢)[_, be a sequence of p x ¢ complex
matrices. If n is an integer with 0 Sps 7, then the matrices S, := S, < Ao, 4;,..., A, >
and Sp. := Sp < AG, Aj, ..., A} > (see (3 )) fulfill the identities

Sam = VagSeVaps I = Sun Sts = Vg (I = S%.50) Vi
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and

I=5%. Snn = Vip(I = 5452) Vp -

Thus, (Ax)f=g is a p X ¢ Schur sequence (respectively, nondegenerate p x ¢ Schur sequence)
if and only if (A})f_; is a ¢ X p Schur sequence (respectively, nondegenerate ¢ x p Schur
sequence). '

Suppose that (Ax)}_, is a nondegenerate p x ¢ Schur sequence Let r, : € — €99,

: € — CP*? and t, : € — CP*? be defined by
o)

ra(2)i= L+ (1= | 2 [*) enq (2) S% (Tmsp = 5a52) ™" Snéhe(2),  (8)
sa(2) = = (1= | 2 ") ewp (2) (Tnt1yp = $nS2) T Sneng(z) . (9)

and : : VP :
' ta(2) = =L+ (1= | 2 |*) enp (2) (Int1)p — SuS7) enp (2) . (10)
where . - : .
gnm(z) = (I,;,, 2ln, 221, ..., z"Im) o ’ , . . (11)
One can verify that r,(2)-Z I and s,(2) [ra(2)] ™" [sa(2)]" = ) hold true for all z € ID:

(see [7, part (c) of Theorem 5.5.1]). The functions M, ID — (D”x" Ly :ID— CP*? and,
R. : ID — €99 given by ,
L Ma(2) = —saz) (ral2)) 7 ’ (12)
La(2) = sn(2) (ra(2))7" sn(z) s tal2) - - (13) :
and :
Rn(z) := (T»(Z)) ‘ (14) '
are called the Weyl-Schur center function, the canonical left Weyl-Schur semi-radius func-

tion and the canonical right Weyl-Schur semi-radius function, respectively, associated with
the nondegenerate p x ¢ Schur sequence (Ag)}.o-

Lemma 2 (see [7, Lemma 5.6.2]): Let n € INo, and let (Ax)P_, be a nondegenerate
p X q Schur sequence. Then (A})R_, is a nondegenerate ¢ X p Schur sequence, and the
canonical left Weyl semi-radius function L, associated with (Ax)}_, and the canonical
right Weyl semi-radius functzon R assoczated with (A})R_, are Imked by the formula

L, (z) =|z |2(n+1) Ran(Z), z€ ID . . . (15)
In particular, £,(0) = Opxq ' :

" In view of formula (15) and the' following theorem, the functlon L# D.— CP*P
defined by L#(z) = R,.(3), where Ron. is given in Lemma 2, is said to be the canonical
normalized left Weyl-Schur semi-radius function associated with (Ak)k—o

Lemma 3: Letn € Np, and let (Ar)F_, be a nondegenerate pxq Schur sei]uence. Then
the Weyl-Schur center function M., the canonical normalized left Weyl-Schur semi-radius’
function L# and the canonical right Weyl-Schur semi-radius function R,, are continious
in ID. Moreover, for each z € D,

et

Ma(z) M (2) < I, | (16)

0<Ltz) ST, ' (17)
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0 < Ralz) =1, (18)

and

det £#(z) = det Ra(2) . : (19)

Proof: By definition, M,, £# and R, are continuous. The inequalities (18) were
verified in part (b) of Proposition 5.5.1 in [7], whereas (17) follows from (18) and the
definition of £¥. Furthermore, (16) is a consequence of part (b) of Proposition 5.6.3 in -
[7] and (17). Finally, the equality (19) is clear from Lemma 5.6.3 in [7]

In the following theorem, we will give an explicit expression for the so-called Weyl
matrix ball associated with a nondegenerate p x ¢ Schur sequence.

Theorem 1: Let n € Ny, and let (Ax)i—,; be @ nondegenerate p x g Schur se-
quence. Further, let M,,, L# and R, be the Weyl-Schur center function, the canonical
normalized left Weyl-Schur semi-radius function and the canonical right Weyl-Schur semi-
radius function respectively, associated with (Ak)p—g- For each z € ID, the set given in

(5) coincides with the matriz ball & (M (2); | 2 " A/ LE(2), VRa(z) ) In partzcular

M, (0) = Ao.

Proof: For z € ID\{0}, Theorem 1 is proved in 7, part (f) of Theorem 5.5.1]. To verify
the assertion in the case z = 0, it remams to check that M,(0) = Ao, i.e. —s5,(0) =
Aorn(0). We have I+ S3(I—8.87)7" Sa = (I-878,)7" and Aoeny(0) = €np(0) S
Hence, ' ] :

Aorn(0) = Aoeng(0) {I+S; (I - Snsg)‘f_sn] eng(0)
enp(0) 5a (I = S35)™" €2,(0)
enp(0) (I = 5.57) 7" Sneng(0) = ~5,(0) M

Theorem 1 is in principle a consequence of general results on the image of the set of
all contractive p x ¢ matrices under a linear fractional transformation generated by a jp,-
contractive matrix (see DELSARTE/GENIN/KAMP [4, Appendix], DYM [8, Theorem
3.6] or [7, Theorem 1.6.3]). Observe that the authors [7, Theorem 3.9.2], [12, Part III,
Theorem 16] also described the parameters of the Weyl matrix ball occurring in Theorem
1 with the aid of other quantities. Furthermore, note that the matrices £#(0) and R,(0)
occur as left and right semi-radii in the matrix ball description of the solution set of the
. so-called coefficient problem associated with the p x q Schur sequence (Ak)i=o (see e.g.,
[7, Section 3.5] and [12, Part IV, Corollary 11]).

The next theorem which is taken from [7, Theorem 5.6.1] describes the limit behaviour
of the sequences (M(2))2o, (L#(2))2, and (Ra(z))2, associated w1th the sequence of
Taylor coefficients of a gwen nondegenerate pxq Schur function.

Theorem 2: Let f be a nondegenerate p x q Schur function, and let

f(2)=iAk;", zeD, (20)

k=0
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be the Taylor series representation of f. Forn € Ny, let M., L# and R, be the Weyl-
Schur center function, the canonical normalized left Weyl-Schur semi-radius function and

the canonical right Weyl-Schur semi-radius function, respectwely, assoczated with (Ax)}p—o-
Then:

(¢) For each z € ID, lim M,(z) = f(z).

(b) For each z € D, the sequences (L¥(2))2, and (R (2))22, are monotonously nonin-
creasing and convergent. The correspondmg limits £#(z) and R(z) are nonnegative
Hermitian and satisfy det L#(z) = det R(z) for all z € D.

(c) The functions rank £L# and rank R are constant in ID. If 6% and § are the corre-
sponding values of these ranks, then 6% = p if and only if § = q.

Theorem 2 leads us to the following notions.

Definition 1: Let f be a nondegenerate p X g Schur function. The functions £# :
ID — C”*® and R : D — C€*9 given in Theorem 2 are called the canonical normalized
left Weyl-Schur limit semi-radius function and the canonical right Weyl-Schur limit semi-
radius function, respectively, associated with f..

Furthermore, part (c) of Theorem 2 suggests the followmg cla.ssxﬁcatlon of nondegen-
erate p X ¢ S¢hur functions.

Definition 2: Let f be a nondegenerate p x ¢ Schur function, and let £# and R
be the canonical normalized left Weyl-Schur limit semi-radius function and the canonical
right Weyl-Schur limit semi-radius function, respectively, associated with f. Then f is
said to have the Schur type [6#,6] if rank £L#(0) = 6* and rank R(0) = é.

Observe that, in view of Theorem 2, the classification of matrix-valued Schur functions
given in Deﬁmtlon 2 can also be descrlbed by rank L#(zl) and rank 'R,(zz) where zl and
zy are arbitrary points which belong to ID

Remark 2: Using a method developed by KOVALISHINA and POTAPOV [17],
DUBOVOJ 3], [7, Theorem 5.6.3] showed that, for every choice of j € {0,1,...,p — 1}
and k € {0,1,...,¢—1}, there is a nondegenerate p x ¢ Schur function of Schur type [j, k],
whereas part (c) of Theorem 2 yields that all the Schur types {j,q], j € {0,1,...,p — 1},
and [p, k], k € {0,1,...,g—1}, are impossible. The trivial example of the constant function
defined on ID with value 0,4, yields £#(z) = I, and R(z) = I, for all z € ID and all
n € INg. Thus, we see that there exists a nondegenerate p x ¢ Schur function of Schur
type (p, q).

Lemma 4: Let n € INg, and let (Ax)}_y be a nondegenerate p x q Schur sequence.
Let My, L# and R, be the Weyl-Schur center function, -the canonical normalized left
Weyl- Schur semi-radius function and the canonical right Weyl-Schur semi-radius func-
tion, respectively, associated with (Ak)k —o- Then the Weyl-Schur center function M, .,
the canonical normalized left Weyl-Schur semi-radius function Cn . and the canonical right
‘Weyl-Schur semi-radius function R, . associated with (the nondegenerate ¢ X p Schur se-
quence) (A})i=o admit the representations

Man(2) = M3(3)  CE.(2) = Ra(z) and Run(s) = £2(5)  (21)
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forallzeD.

Proof: The last identity in (21) is clear by definition. In view of Ay = (A;)", k €
{0,1,...,n}, then the second one follows. It remains to check the first equation in (21).
From Remark 1 we see

(I =SS, )- = ,.q(I S'S) Vg
and .
(I-s; Sn.) -l = Vap (I = S», S')_
Furthermore, we have
z e,,p(l/z) = eﬂ,p( )Vnp

for all z € €C\{0}. Using Lemma 5.6.1 and part (e) of Theorem 5.5.1 in [7] and the
identity S, (I — S:Sn)™! = (J — Sn S2)"1 5y, we get

Min@ = (10= 17 Phen(3) (1 = 500 527 S €3]]

w12 T4 (1= |2 Pean(@)(I = S Sna) ™ e0y(2)] )

= [P T4 (1= |2 P) | 2 ™ emp(1/2)T — ss:.)-‘e;,(l/z)]“
x [ 1—|z|)|z|2"enp(1/z>s (I = S3550)Herg(1/2)]

_ [ e,,,,(1/z)(1 5,82 :;,,(1/7)] )

Z 2 - ) — — v )
[% cns(1/2) 3 (= 5,5)71e5,(1/2)| = Mo(2)
for all z € ID\{0}. Hence, the first identity in (21) is proved for each z € ID\{0}. In view
of Lemma 3, the matrix-valued functions M,, and M, i are continuous in ID. Hence, the
first equation in (21) holds true for z =0 as well i

Lemma:5: Let f be a nondegenerate p x q Schur function, let L¥ and R be the
canonical normalized left and the canonical right Weyl-Schur limit semi-radius functions,
respectwely, associated with f. Then f:ID — C7% given by

fe)= f'z), zeD, @

is a nondegenerate q % p Schur functzon If L# and R?# are the canonical normalized left
and the canonical right Weyl-Schur limit semi-radius functions, respectwely, associated

with f, then
L¥(2) = ’R(E) and R.(2) = L*(3)

for all z € D. If f has the Schur type (6#,6), then f has the Schur type (6, 6%).

Proof: If (20) is the Taylor series representation of f, then f(z) = 332, A; 2*, z € D,
is the Taylor series representation of f. The Taylor series characterization of matricial
Schur functions and Remark 1 show that f is a nondegenerate g x p Schur function. Hence,
Lemma 4 yields the assertion Wl
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3. Interrelations between the Weyl Matrix Balls Con-
nected with Nondegenerate Carathéodory Sequences
and Their Cayley-associated Schur Sequences

Now we will turn our attention to a more detailed study of matrix-valued Carathéodory
functions. First we recall the notion of matricial Carathéodory sequences. ]

Let 7 be a nonnegative integer or 7 = oco. A sequence (I'x)]_, of complex m x m
matrices is called m xm Carathéodory sequence (resp. nondegenerate m x m Carathéodory
sequence) if for every integer n with 0 a2 7, the block Toeplitz matrix

Tn:= Re[S, < To,Ty,...,Ts >] - (23)

(see (3)) is nonnegative Hermitian (resp. positive Hermitian). If (Te)2, is a given
sequence of complex m X m matrices, then the power series

z) = if‘kzk, zeD, ' (24)

k=0

defines an m x m Carathéodory function if and only if (I'x)2, is'an m x m Carathéodory
sequence (see, e.g., [7, Theorem 2.2.1 and 2.2.2]). An m x m Carathéodory function Q is
said to be nondegenerate if the sequence (I'x)$2, of its Taylor coefficients (in the Taylor
series representation of Q around the origin) is a nondegenerate m x m-Carathéodory
sequence. :

Now we assume that n is a nonnegative integer and that (I'x)7_, is a sequence of com-
plex m x m matrices. We will use the notation Cp[To, Ty, ..., '] to denote the set of all
1 € Cn(ID) for which (T'x)7_, is exactly the sequence of the first n + 1 Taylor coefficients
in the Taylor series representation of £ around the origin. The set CnlTo, T, ..., Ty] is
nonempty if and only if (')}, is an m x m Carathéodory sequence (see, e.g., [11, Part I,
Section 4]). If (I's)i_, is a nondegenerate Carathéodory sequence, then Cp[To, T, ..., Ly)
can be described by various linear fractional transformations (see, e:g., [11, Part V, The-

orem 28]). Similarly as in the case of a nondegenerate matrix-valued Schur function, the
set :

{Qz) : Q€ Cn[To, T, ..., Tul} (25)

will turn out to be a matrix ball for all z € ID. In order to give explicit expressions for
the parameters of this matrix ball, we need some preparations. ' )

Suppose that (T'x)o is 2 nondegenerate m x m Carathéodory sequence. Then the
matrices I_‘o, 6, 1= Sp < I, I',...,T > and T}, := Re®&, are nonsingular. Set

zn = ([a, a1, 1),y = (01,15, ., T,

L= ReTy ’ , n=0
"7 L Relo—32z.T 2z, , n>0
- ReI‘o' , n=20 .
"7\ Relo=3yiTiiyn , n>0 7

and '
Tni= (6.1) T, .
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Lemma 28 in [11, Part V] s_hows that I, = 0. Furthermore, we deﬁne the matrix polyno—
mials 7, (s, 75 and ¢, by )
M(2) = ean(2) T en(0) 1 Ga(2) 1= €nm(0) T Eam(2) (26)
72(2) = enm(2) T2 €nn(0) 5 - Co(2) i= €5n(0) T €nm(2) (27)

z € €, where e : € — C™* ™ and ¢+ € — CH+D™X™ are given by (11) and

1

enm(2) = (2L T Iy ooy Zl, In)", 2 €C. (28)

If zg, 21, ..., 2, are complex p X ¢ matrices, and if the p X ¢ matrix polynomial X is
given by ‘ .
X(z):= Z:ckzk,_ z€C,
. k=0 .

then the reciprocal matrix polynomial X of X with respect to the unit circle T and the
formal degree n'is defined by

X(z):= E zh_2f, z€C.
k=0

In this sense, let 7, (respectively, 77~",C~,,,C~’) be the reciprocal matrix polynomial of %,
(respectwely, N5y Cny Ch) with respect to T and the forma,l degree n.
- One-can check that

P(z) = G2 b Ga(2)— | 2 P (7n(2))” raia(2): (29)
and - S ~ s o . ‘
Q) = M ()= | 2 Gl (=) (30)

are positive Hermitian for all z € ID (see [11, Part V, Theorem 29]). The functions
M, : D — (E"'x'" £# . D - C™*™ and Ry, : ID —» C™*™ given by

Mo(z) = [1a(=) (15)" ramile)+ | 2 [P G5 b () | 1RGN
(@) = [PE)T and  m()= Q)

are called the Weyl-Carathéodory center function, the canonical normalized left Weyl-
Carathéodory semi-radius function and the canonical right Weyl-Carathéodory semi-radius
function, respectively, associated with the nondegenerate m x m Carathéodory sequénce

(ka:o-

Lemma 6: Let n € INy, and let (T'x)}., be a nondegenerate m x m Carathéodory
sequence. Then the Weyl-Carathéodory center function M, the canonical normalized left
Weyl-Carathéodory semi-radius function £# and the canonical right Weyl-Carathéodory
semi-radius function R, associated with (I'y)?_, are continuous. Moreover, for each z €
D, det £#(z) = det ®,(2),

Reom,(z) 2 0, e#(z) > 0, and  Ma(z) > 0. (31)



On the Weyl Matrix Balls 249

Proof: From their definition, the continuity of M, £# and R®, is clear. Corollary 7 in
(11, Part IV] yields the determinant identity. Theorem 1.6.3 in [7], part (d) of Proposition
12 in (11, Part V] and the proof of Theorem 29 in [11, Part V] show that both £#(z)and
R, (2) are positive Hermitian for all z € ID. The combination of Theorems 28 and 29 in
(11, Part V] provides finally the first inequality in (31) @

The following theorem, which is taken from [11, Part V, Theorem 29], gives now the
announced explicit matrix ball description of the set given in (25).

Theorem 3: Let n € Ny, and let (Tk)i=o be a nondegenerate m x m Carathéodory
sequence. Further, let M,, £# and R, be the Weyl-Carathéodory center function, the
canonical normalized left Weyl-Carathéodory semi-radius function and the canonical right
Weyl-Carathéodory semi-radius function associated with (I'y)?_,. For each z € ID, the set
given in (25) coincides with the matriz ball

& (im,,(z); |z |"*! \/22#(z2), ,/zmn(z)) . | (32)

In particular, M, (0) = Ty.

Note that the function £, : ID — C™*™ defined by £,(z) :=| z [*™*+1) ¢#(2), z € D,
is called the canonical left Weyl-Carathéodory semi-radius function associated with the
nondegenerate m x m Carathéodory sequence (x)7_,, whereas the matrix ball given in
(32) is called the Weyl matriz ball associated with (')}, at the point z € ID. Observe.
that KOVALISHINA [16, Formulas (52) and (53)] and the authors [11, Part IV, Theorem
27] expressed the parameters of the Weyl matrix ball (32) in other terms. Furthermore,
note that the matrices £#(0) and ®,(0) occur as left and right radius of the matrix ball
which describes the solution set of the so-called coefficient problem associated with the
m x m Carathéodory sequence (I's)p_, (see, e.g., [7, Section 3.4] and [11, Part V]).

Remark 3: Let 7 € INg or 7 = o0, and let (I'4);_, be a sequence of m x m complex
matrices. If » is an integer with 0 = n = 7, and if V,,, is given by (6) and (7), then
G i=Sn <TG, T1,..., T > and T, . :== Re &, . satisfy

Snn = Vam 67 Vam (33)

and

Tpr = Vam T Vim - (34)

Thus, (Tk)j=o is an m x m Carathéodory sequence (respectively, a nondegenerate
m x m Carathéodory sequence) if and only if (I';)i_, is an m x m Carathéodory se-
quence (respectively, a nondegenerate m x m Carathéodory sequence).

Lemma 7: Let n € INg, and let (['x)7_, be a nondegenerate m x m Carathéodory
sequence. Let M, £# and M, be the Weyl-Carathéodory center function, the canonical
normalized left and the canonical right Weyl-Carathéodory Semi-radius functions, respec-
tively, associated with (T'x)i_y. Then the Weyl-Carathéodory center function M, ., the
canonical normalized left and the canonical right Weyl-Carathéodory semi-radius func-
tions £¥_ and R,., respectively, associated with (the nondegenerate m x m Carathéodory

n,=
sequence) (T} )i, admit the representations

Mne(2) = M(Z), £h.(2) = Ra(2) and  Ruo(2) = €£(2)



250 B.FRITZSCHE and B. KIRSTEIN

for all z € ID.

~ Proof: Let lp. := ReT and r. := Re[. Ifn € IN, then let 2,. := ([, I _,,...,T7),
Ynx 1= (Plar%"-arn)‘a ln.* = ReFB - %zﬂ,*Tn_—ll,tz:,u Tas = R'eP(; - %y;,:Tn_—llyn,*-
Furthermore, let T,. := (6;1)" 7.6, and let the matrix polynomials 7., (s, 7, , and
».» be defined by '

enm(z) Tn_,al- e;m(o) I Cﬂy.*(z) :

Mw(2) 1= enm(2) Tol €5m(0) 5 Cna(2) 1= €4 (0) Tr nm(2) -
Obviously, zn. = y5 Vacim and yn. = Vaoim zi. In view of (34) and Rel'y = ReT,
thenl, . =r,. and 7. = [, .. Using the identities (34) and e,n(2) = €,,.(Z)Vam, 2 € C,
we obtain 0, .(2) = ((2), (ns(2) = 775(Z) for all z € €. From (33) and (34) it follows
T = VamTn Vam, and hence n;, ,(2) = [(1(Z))*, (.(2) = [, (2)]" for all z € C. Thus, we
have

nn.*(z) : E;m(O) Tn_,: 57""-(2) s

t.() = [mErnE-1:F 6o [6E)]] =ne,
e (2) = [GELGE 2] @] ()] = f(3),

and, in view of Theorem 29 in [11, Part V],

D (2) = (GO 5 G (D) 12  [] (15" 7 () [ = o0 (3)
for all z E ]D 1

Let T € INO or T = co. Further, let (Bi)]_q be a sequence of m x m complex matrices
with det (I + By) # 0. By virtue of part (d) of Lemma 1.1.21 in [7], there is a unique
sequence (Ck)%_, such that

Sy < Co,Chy s Cn > = (I = S < Bo, By, e, Ba >) (I + Sn < Bo, By, .., By >)™"

for all integers n with 0 = n £ 7. This sequence (Ck)j=o is called the Cayley transform
Of (Bk)2=0‘

Proposition 2: Let 7 € Ng or 7 = co. Then:

(a) Let (Tk)j—o be an m x m Carathéodory sequence. Then det (I + [g) # 0 and the
© Cayley transform (Ag)j—o of (Tk)j=o is an m x m Schur sequence. If (Tx)i_, is
nondegenerate, then (Ay);_, is nondegenerate as well. ’

(b) Let (Ax)i—o be an m x m Schur sequence. If det ((I + Ao) # 0, then the Cayley
transform (T'x)i_o of (Ak)j—o is an m X m Carathéodory sequence. If (Ax)[_, is
- " nondegenerate, then det (I + Aq) # 0 and (['x)[_, is nondegenerate as well. :

Proof:' Use part (b) of Lemma 1.1.13 and Lemma 1.3.12 in [7] B

Lemma 8: Let 7 € INg or 7 = 0o. Let (Bx)i_o be a sequence of m X m complex
matrices with det (I + By) # 0, and let (Cx)i_p be the Cayley transform of (Bx)i_o: Then:
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(a) det (I + Co) #0.
(b) (Bk)i=o 15 the Cayley transform of (Ci)i_o-
(c) (Cy)izo is the Cayley transform of (B})i_o-

Proof: The application of parts (c) and (f) of Lemma 1.3.12 in [7] provides parts (a)

and (b) of the assertion. It remains to check part (c). Let n be an integer with 0 = n < 7.,

If Vi is given by (6) and (7), then

S, < Cg,C1,...,C >
= Vim (Sn < Co,Ci,-.,Crn >)" Vi _ ,
= Vam (I +(Sa < Bo, Bi, -, Ba >)"1™" [I = (Sn < Bo, B, ...; Bp >)"] Vaamn
= [T+ Vam (Sn < Boy By, oy By >) V] ™ [ = Viam (Sn < Bo, B1, ..oy Bn >)* Viam)
= (I+S.<B;,B},..B.>)" (I-S.<B},B;,...B. >)
= (I-S5.<Bj,B;,...B.>) I+S.<B;,B;,...,B.>)"

The proof is complete

From Proposition 1 we know that the Cayley transform of a matricial Carathéodory
function is a matricial Schur function. Now we can see that the property of bemg nonde—
generate will be preserved.

Lemma 9: The following statements hold trie:

(a) Let Q be a nondegenerate m x m Carathéodory function. Then the Cayley transform
=T =)+ Q)" of Qis a nondegenerate m x m Schur function.

(b) Let f be a nondegenerate m x m Schur function. Then det (I + f) does not vanish
in ID and the Cayley transform f := (I — f)(I + f)~! is a nondegenerate m x m’
Carathéodory function.

Proof: In view of the above mentioned characterization of matrix-valued Schur and
Carathéodory functions, the application of Proposition 2 yields the assertion il

The next considerations are aimed at an explicit description of the interrelations be-
tween the parameters of the Weyl matrix balls associated with a nondegenerate m x m
Carathéodory sequénce (I'x)i_, and with that nondegenerate m x m Schur sequence which
is the Cayley transform of (I'x)2_,. In particular, we will need some facts from J-theory.

Let J be a ¢ x q signature matrix, i.e., J belongs to €?*? and satisfies J* = J 'and
J?=1. A gxqmatrix A is said to be J-contractive (respectively, J-unitary) if A*J A 2y
(respectively, A*JA = J). A ¢ x q matrix-valued function B which is meromorphic in
the extended complex plane Cp := CU {oo} is called J-elementary factor if the following
three conditions are satisfied:

(i) B has exactly one pole zg € Co.

(ii) For each z € iD\{go}, the matrix B(z) is J-contractive.
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(iii) For each 2z € T\{20}, the matrix B(z) is J-unitary.

In the following, we will mainly consider the 2m x 2m signature matrix
Jmm = diag (In, — 1) . (35)

The next result will turn out to play a key role for introducing a Dubovoj-like classification
in the Carathéodory class C,,(ID).

Proposition 3: Letn € Ny, and let (I'x)7_, be a nondegenerate m x m Carathéodory
sequence. Assume that M,, £¥ and R, are the Weyl-Carathéodory center function, the
canonical normalized left and the canonical right Weyl-Carathéodory semi-radius func-
tions, respectively, associated with (I'c)i_o. Let (Ax)i-, be the Cayley transform of (L )7_,-
Further, let M, L¥ and R, be the Weyl-Schur center function, the canonical normalized
left and the canonical right Weyl-Schur semi-radius functions, respectively, associated with
(the nondegenerate m x m Schur sequence) (Ax)i_o. For each z € ID, then

(=) = ([ = Ma(DRal2)]™ [+ Ma@)] + | 2[4 £(2))

% (1 + Moo [Ralo) ™ U+ Mal)] = 2 9 £20) ™, (36

eh(e) = (U + Ma@l" [C2@)] 7 1+ Ma()] - |2 PrORu(2)) T, (37)
and . - '

Ma(2) = ([ + Ml (Ra()] U+ Malo)]" = | 2 100 £8(2)) ™. (38)

Proof: Proposition 2 show_é that (Ag)?_, is a nondegenerate Schur sequen.ce. Using
(3) we set S, 1= Sp < Ao, Ay,...An > and Hy, i= (Sn, I)*(I — $,.82)72 (54, I). In view of
Theorem 4.4.1 in [7], the function B, : Co\{0} — C*™*?™ defined by

B.(z) :=

{ I= 1225 - diag (eam(1), enm(1)) - Hy - diag (€5, (1/2), €am(1/2)) , z € C\{0},
I+ Jomm - diag (€nm(1), €nm(1)) - H, - diag (e3,,(0),ex..(0)) , 2= 00

where e, : € — C™X(*+Um g given by (11), is a full-rank j,,,-elementary factor with
pole of order n + 1 at z = 0 which satisfies B,(0) = I. Part (a) of Theorem 5.5.1 in 17
yields det B(z) # 0 for all z € C\{0}. From Proposition 9 in [10] we know then that
BY := €n41 By, where 6,41 : € — C is defined by €,41(2) := 2"*!, is a full-rank j,,,-
elementary factor with pole of order n 4+ 1 at z = co which satisfies BZ(1) = I. Using
Theorem 5.5.1 in (7}, Proposition 5.5.1 in [7] and (13), we obtain

[B2(2)] ™" jmm ((B(2)]7")" = r;Tzlm ( —Afn(z) (1) )

o (s —IZI"""?")E#(Z))(;A,{n(z) ?). | »
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holds true for all z € ID\{0}. If E is a strictly contractive m x m matrix, then the so-called
Halmos extension

H(E) = VI-EE=' EJVI-EE
' E*VI—-EE*' JI-EE'

of E is obviously j,,-unitary. Furthermore, if v and w are unitary m x m matrices, then
diag (v, w) is clearly jmm-unitary. The matrix

0 I
Unm 3= (—Im 0 )

satisfies U}, immUmm = UmmimmUmnm = —Jjmm. The product of j,m-unitary matrices is
Jmm-unitary as well. Thus, if E,, E», ..., E, are strictly contractive m x m matrices, and
_if v and w are unitary m x m matrices, then the product

Unm - HE) - H(E?) - ... - H(E,) - Upm - diag (v,w)

iS jmm-unitary. Every jmm-unitary matrix is nonsingular and its inverse matrix i Jmm-
unitary as well (see, e.g., [7, Part (c) of Lemma 1.3.15]). Hence, we see from Corollary 20
in [6], Proposition 20 in [12, Part IV] and part (a) of Proposition 12 in [11, Part V] that
there is' @ jmm-unitary matrix X, such that the function E, : € — C*™**™ defined by

—2z/Tn I‘El 7721(2) y 2y/Tn () )

1
(= E(V’? (05 )+ VI Gala)

admits the representation
E.(z) = 2" X, B,(2)Cn,
for all z € C\{0}, where

1 (-1, I,
Part (c) of Proposition 12 in [11, Part V] shows det E, (z) # 0 for a.ll z € C\{0}. Set
= E;! jmm(E 1)+, Using CZ = I we get

O |_|1<_> Con [Ba(2)]™" i ([Bu(2)] ") Cm

Con [B2(2)] ™" jmm ((BE(2)] ™) Com - (40)

for all z € C\{0}. On the other hand, pa.rt~ (d) of Proposition 12 in [11, Part V] provides

el (@R 2GE@VE
[En@)™ = 5 (n;(z) (T5")" ,-zc;<z>r;‘\/7:)

and, consequently,

. 1 Wll;n(z) ) Wl?;ﬂ.(z)
an(z) - 2| z |2("+1) ( W2l;n(z) ) .'W22;n(z)
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for all = € C\{0}, where the functions Wiy, : € — C™™, Wy, : € — C™*™,
Wiz : € = C™*™ and Wiy, : € — C™*™ are given by

Wita(z) = ma(2)mmi(z)= |2 G (G(2)

Wain(2) = =1, () ([3")" rami(2) = |2 [P & () T3 (G (2)
Wign (2) = W5, (2) .

*
b

and
Warn (2) = 1, (2) (13")" m T3t (0, (2))" = |2 P (o) Ta ke (57)" (&)
For all z € ID, we get obviously

Wi (2) = (R (2))7 and  Waia(2) = ~0a(2) (B (2) 7" . (41)
By virtue of Theorem 1.6.3 in [7], for all z € C\ {0}, the matrix

Y, (z) = E—T{(njl—) [Wzl;n (Z) [Wll;n (Z)]_l Wl2;n (Z) - W22;n (z)]

is positive Hermitian, and its inverse matrix coincides with the m x m block in the right
upper corner of (=W, (2))™" = —E% (2) jmm En (2). Hence,

Yale) = 2(G () G2 = 12 P [ ()] rarin ()™ = 222 (2)
for all z € ID\{0}. From Lemma 1.1.7 in [7] then we obtain

2) = [ (—on) 1) |
< (3 e s ) oy ) (42)
for each z € ID\{0}. Compating (39), (40) and (42) it follows
(_II'D ( A2 3)
< (T e ) (e 1) (7 7)
= (o 1) (™ o ploagn ) (o 1)

for all 2 € ID\{0}. This implies ‘
( [+ Ma(2)] [Ru(2)]™ [+ Ma(2)]" = | 2 ) L2 (2)

I = Ma(2)] R [ + Ma(2)] - | 2 P04 £E(z)
s [+ Mo [Ra(2)] ™ I = Ma(2)]" = | 2 PO+ L(2) )
U= Ma@IRET T = Ma(2)] — | 2 P LE(2)
( Pu(, — () G B )

“Ma(2) [Ba(2)] T, Ma(2) [Ra(2)]7 [Ma(2)]” — 4 | 2 P04 g(2)
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and therefore (38) and (36) for each z € ID\{0}. From Remark 3 we know that (I';)i_o isa
nondegenerate m x m Carathéodory sequence. Lemma 8 shows that (A;)%_, is the Cayley
transform of (I';)?_,- Thus, we see from Proposition 2 that (A;)i_, is a nondegenerate
m x m Schur sequence. Using Lemma 7, Lemma 4, and the notations given there, we

then obtain from (38) that
£3(z) = R.(3) 1
(1 + Mo (2 R ()7 1+ Moo (20 = | 2 P £2,(2))

(U4 M) [E1E] ™ 1+ Ma2)] = | 2 4 Ra())

holds true for all z € ID\{0}. Finally, from Lemmas 3 and 6 we see that identities (36),
(37) and (38) are satisfied for z = 0 as well B

We want to draw the attention of the reader to the interesting fact that the equa-
tion (37) shows that (with exception of the point z = 0) the canonical normalized left
Weyl-Carathéodory semi-radius function £# depends explicitly as well on the canonical
normalized left Weyl-Schur semi-radius function £# as on the canonical right Weyl-Schur
semi-radius function R,. The formula (38) can be interpreted similarly.

4. lelt Behaviour of the Weyl Matrix Balls Associ-
ated with a Nondegenerate Matrix-valued Carathéo-
dory Function

Our approach to the study of the limit behaviour of the parameters of the Weyl matrix
balls associated with a given nondegenerate matrix-valued Carathéodory function € is
based on the use of the Cayley transform f := (I — Q)(I + Q)~! of Q. This enables us to
use DUBOVOJ’s results [5], [7, Section 5.6] on the limit behaviour of the parameters of the
Weyl matrix balls associated with a given nondegenerate matrix-valued Schur function.

Parts of the following theorem go back to KOVALISHINA [16]. It is the analogue to
Theorem 2 which handles the case of matrix-valued Schur functions. ’

Theorem 4: Let Q be a nondegenerate m X m Carathéodory function, and let

)=Zrkzka zeD, . (43)
k=0 .

be the Taylor series repre:sentation of Q. Forn € Ny, let M, £#, £, and R, be the
Weyl-Carathéodory center function, the canonical normalized left, the canonical left and

the canonical right Weyl—C’aratheodory semi-radius functzons, respectively, associated with
(Pk)k =0* Then

(a) For each z € ID, liMp oo Mn (2) = Q(2).

(b) For each z € ID, the sequences (£#(2))%%, and (R,(2))2, are monotonously nonin-
creasing. and convergent. The corresponding limits £#(z) and ®(z) are nonnegative
Hermitian for all z € ID. Moreover, lim,o £, ( ) = 0 for each z € D.
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Proof: According to Lemma 9, f := (I — Q)(/ + 2)~! is a nondegenerate m x m
Schur function for which det(Z + f) does not vanish in ID. Let (20) be the Taylor series
representation of f. In the following, we will use the notations given in Proposition 3 and
the corresponding proof. Let n € INg. From Theorem 4.4.3 in [7] we see that there is a
full-rank j,,m-elementary factor b, with pole of order one at z = 0 such that b,(1) = I and
Bny1 = buB,. Hence, part (a) of Theorem 5.5.1 in [7] and Lemma 1.3.15 in [7) provide

[Buss (17 G ((Bass (2)]7) = [Ba ()™ o (B (™)
= B (o (™ s (b (D) = i) (Ba ()" 2 0

for all z € ID\{0}. In view of (40), we obtain then
2|27 qp, 40 (2) =2 | 22 a0, (2) 2 0
for all z € ID\{0}. Using the first identity in (41) and Lemma 6 we get

(Rt (2)]7" = Wiiint1 (2) 2 Wit (2) = [ (2)] " > 0
and, consequently, .
R (2) 2 Rogr (2) > 0 (44)

for all z € ID\{0}. We know from Lemma 6 that ®,;; and %, are continuous. Thus, (44)
also holds true for z = 0. For evety choice of z in ID, we obtain then from Lemma 7 that

£ () 2 2t (2) > 0

is satisfied. Hence, for each z € ID, the sequences (£#(2))2, and (%,(z))2, are monoto-
nously nonincreasing and converge to some m X m nonnegative Hermitian matrices £#(z)
and %(z), respectively. Now lét z € ID. Then we can conclude

lim £,(z) = lim |z " 2#(2) = Opxm . (45)

Theorem 3 yields that the matrix Q(z) belongs to

(v o]

£(z):= ﬂ ,Q,,(z)

n=0

where .
£ (2):= 18 (Smn (2) ;4] z | ,/227#(2)? \/29%"(2)) , n€lNg ,

and that R.11(z) C £a(2) for all n € INg. A theorem due to SMULJAN [21] (see also
[7, Theorem 1.5.3]) shows then that the sequence (Mn(2))32, converges to some com-
plex m x m matrix M(z) and, in view of (45), that £(z) coincides with the matrix ball

t

A(M(2); Omxm, R(2)) = {9M(2)}. This implies finally Q(z) = m(z) A
Theorem 4 leads us to the following notions.

Definition 3: Let Q be a nondegenerate m x,‘m Carathéodory function. Then the
functions £# : ID — €™*™ and % : ID — C™ ™ given in part (b) of Theorem 4 are called
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the canonical normalized left and the canonical right Weyl-Carathéodory limit semi-radius
functions, respectively, associated with (.

Lemma 10: Let Q be a nondegenerate m x m Carathéodory function. Let £# and % be
the canonical normalized left and the canonical right Weyl-Carathéodory limit semi-radius
functions, respectively, associated with Q. Then Q : ID — C™*™ given by

O(z):= X (2), z€D, | (46)

is a nondegenerate m x m Carathéodory function. If £# and R, are the canonical normal-
ized left and the canonical right Weyl-Carathéodory limit semi-radius functions, respec-
tively, associated with (), then

t#(2) = ®(Z) and R(2) = £*(2)
for all z € D.

Proof: The function Q has the Taylor series representation {1 (z) = Yoo i 2%,
z € ID. According to Remark 3, §) is nondegenerate. Thus, the application of Lemma 7
completes the proof N

Now we are able to formulate the first main result of this paper.

Theorem 5: Suppose that Q) is a nondegenerate m xm Carathéodory function. Let c#
and R be the canonical normalized left and the canonical right Weyl-Carathéodory limit
semi-radius functions, associated with Q). Further, let L# and R be the canonical nor-
malized left and the canonical right Weyl-Schur limit semi-radius functions, respectively,
associated with (the nondegenerate m x m Schur function) f := (I — Q)(I + Q). Then:

(a) For each z € ID,

052 (2) = U+ (N7 £* () (T+ f(2)7) S ReQ(z)  (a7)
and ’ ' '
0= m(z) = (I + ()7 R(2) I + f(2)] " = ReQ(2). (48)
(b) For each z € D, . :

det £# (z) = det ®(2), (49)
rank £# (z) = rank £ (z) = rank £ (0) , (50)

and . .
rank R (2) = rankR(z) = rank R (0) . (51)

In particular, rank £# (0) = m if and only if rank R (0) =

Proof: By virtue of Lemma 9, f is a nondegenerate m x m Schur function, and
det (I + f) nowhere vanishes in ID. Let (43) and.(18) be the Taylor series representations
of ? and f. From part (d) of Lemma 1.1.21 in 7] we know that, for each n € INo, (Ax)}_,
is the Cayley transform of (I't)i_,. In the following, we will use the notations given above.
Assume that n € INg and 2z € ID. From Lemma 3 we see that (14) and (16) hold true. In
view of Proposition 3 we obtain then .

[+ Ma ()7 ([0 ()7 + |2 P £3(2) (1 + Ma(2)]7) = [Ra(2)] 7 21
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and hence - ' ‘ .
Ra(2) = [+ Mo (2)]" Ha(2) [I+ Ma(2)] (52)
where -1
Hu(2) = ([ ()7 + | 2 P04 LE (2)
Lemmas 3 and 6 show that H,(z) is positive Hermitian. Obviously,
Ha(2) = 0 (2) [T+ | 2 P £F ()9 (2)]

Theorem 2 and part (b) provide

lim [I+ |z 20 £# (2)®, (2)] = T+ (hm | 2 |2<"+1>) C* ()m(e) = I

N4 00

and therefore limp—.co Hy(2) = R®(2). Thus, part (a) of Theorem 2 and (52) imply
={I+NTLEI+NTT - (33)

Lemma 5 yields that f given by (22) is a nondegenerate m x m Schur function, whereas
Lemma 10 shows that {2 defined by (46) is a nondegenerate m x m Carathéodory function.
Lemma 2.1.11 in (7] provides f = (I — Q) (I+)~!. From Lemmas 10 and 5, and identity
(53) we then get

@)=t = (1+i@ @ (Lefe)
L+ £ @™ R() U+ f(2)] (54)

for all z € ID. From Proposition'5.6:3 in [7] we know that

LHE) S T-Mu()M;(z) and  Ra(s) £ 1= M () Ma(z)

hold for all » € INy and all z € ID. In view of part (a) of Theorem 2, letting n — co we
get ..
L¥(z) S T-f(2)f(2) and  R(2) £ I1-f"(2)f(2)

for all z € ID. Applying Theorem 4, (53), (54) and parts (f), (g) of Lemma 1.3.12 in [7]
we obtain then '

0= 2#(z) £ [T+ ()7 = f(2) (2] (I + f(2)7)" = ReQ(2)

and
0% () = (U4 ) U= 1) @] T+ A = Re(s)

for all z € ID. Usmg the equalities in (47) and (48), we get from parts (b) and (c) of
Theorem 2 that (49), (50) and (51) are satisfied for all z € ID. The formula (49) yields
then that rank £#(0) = m if and only if rank ®(0) = m il

Theorem 5 should be compared with Proposition 3. In contrast to a ﬁmte stage n,
the Weyl-Carathéodory limit semi-radius function £# (respectively ) only depends frorn
the corresponding Weyl-Schur limit semi-radius function £# (respectively R) and not on
both of them.
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KOVALISHINA [16] recognized that rank $% is a constant function in ID. However, her
proof contained a gap connected with an incorrect application of Orlov’s Theorem.

Part (b) of Theorem 5 suggests the following classification of nondegenerate m x m
Carathéodory functions.

Definition 4: Let  be a nondegenerate m x m Carathéodory function, and let
£ and ® be the canonical normalized left and the canonical right Weyl-Carathéodory
limit semi-radius functions, respectively, associated with Q. Then Q is called to be of
Carathéodory-type [B#,p) 1f rank £#(0) = f# and rank ®(0) =

Observe that, in view of Theorem 5, the classification of matrix-valued Carathéodory
functions given in Definition 4 can also be described by rank £#(z,) and rank ®(z,) where
zy and 2, are arbitrary points which belong to ID.

Remark 4: Suppose that 2 is a nondegenerate m x m Carathéodory function which
has the Carathéodory-type [3#,8]. Then Lemma 10 shows that ! given by (46) is a
nondegenerate m x m Carathéodory function of Carathéodory-type [3, 5#].

- Lemma 11: Let Q be a nondegenerate m x m Carathéodory function, and let f =
(I —Q)I +Q) . IfQ has the Carathéodory-type (B¥#, ], then the nondegenerate m x m
Schur function f has the Schur type [6#, f].

" Proof: Apply Theorem 5l
Now we are going to state our second main result.

Theorem 6: For every choice of j and k in {0,1,...,m — 1}, there ezists a nondegen-
erate m x m Carathéodory function Q) of Carathéodory-type (3, k|. Furthermore, there is a
nondegenerate m x m Carathéodory function of type [m,m]. If k € {0,1,...,m — 1}, then
there is no nondegenerate m x m Carathéodory function which has the Carathéodory-type
[m, k] or [k,m].

Proof:-Let f:= (I — Q)(I + Q)~'. Then we see from Lemma 1.3.12in [7] that Q =
(I-f)(I+ f)? holds true. Combining Remark 2 and Theorem 5 we obtam immediately
the assertion B ) .

Note that the proof of the corresponding result in the case of matrix-valued Schur
functions (see [7, Theorem 5.6.1]) is essentially based on a nice construction going back
to KOVALISHINA and POTAPOV [17].

The following result is taken from [11, Part V, Lemma 26 a.nd Remark 30].

Proposition 4: IfQ is a nondegenerate m x m Carathéodory functzon then det Q
nowhere vanishes in ID, and Q7! is a nondegenerate m x m Carathéodory function as
well. ’

Theorem 7: Let Q2 be a nondegenerate m x m Carathéodory function of Carathéodory-
type [B#,B8]. Then Q™' is a nondegenerate m x m Carathéodory functwn of the same
Carathéodory-type 5%, B).

Proof: Use the formulas (12). and (13) stated in- Lemma 27 in [13, Part V] and the
equations £¥(0) =1, and R,(0)=r,,n € Ny, which were proved in [13, Part V, p. 295]
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By virtue of the matricial version of the F.Riesz-Herglotz Theorem (see, e.g., [7, The-
orem 2.2.2]), every matrix-valued Carathéodory'function is connected to a unique non-
negative Hermitian Borel measure F on the unit circle T. According to a famous theorem
due to KOLMOGOROV [15], every such measure F' can be conceived as nonstochastic

- spectral measure of an appropriately chosen multivariate stationary sequence. Having
this in mind it can be shown that the semi-radii of the Weyl matrix balls associated with
a given nondegenerate Carathéodory sequence admit a clear interpretation in the context
of prediction theory for multivariate stationary sequences. We will discuss this in detail
somewhere else.
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