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On Transformations of Distribution Functions on the Unit Interval 

- a Generalization of the GauB-Kuzmin-Lévy Theorem 

P. SCI-IATTE 

Let X be a random variable on [0,1) with the distribution function go and h be a piecewise monotonic 
transformation on [0,1). Further denote the distribution function of h(X) by gj, of h(h(X)) by 92, and 
soon. The distribution functions 90,91,92, .. can also be regarded as the asymptotic distribution func-
tions of sequences (a,), (h(a)), (h(h(a))).. ... The operator Ph defined by = Phg is the so-called 
Frobenius- Perronoperator assigned to the transformation h. We say that h preserves the distribution 
function k if go = k implies 91 = Ic and consequently g, = Ic for all n, i.e., if Ic' is an invariant element 
of the-operator Ph. Then under weak additional suppositions g = k(r) + O(q") for r = 0,1,2 and for 
arbitrary initial distribution functions go, where q < 1 depends on h but not on go. This result general-
izes the Gauss-Kuzmin-Lévy theorem in the metric theory of continued fractions. Particularly, piecewise 
linear transformations preserve the uniform distribution. In this case more precise estimates are possible 
under weaker suppositions. 

Keywords: Piecewise monotonic transformations, Frobenius-Perron operators, invariant measures, 
-	uniform distribution of sequences, metric theory of continued fractions 
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1. Introduction 

Recently, Bosch [1] and Porubsk, alit, and Strauch [14] have studied transformations h that 
preserve the uniform distribution of sequences. On the other hand, Goh and Schmutz [2] have 
discovered that high iterates of certain piecewise monotonic transformations h generate the uni-
form distribution even if the initial distribution is not uniform. In what follows we wish to unify 
both directions of research. We shall show that piecewise monotonic transformations h that pre-
serve the uniform distribution generate also the uniform distribution in the limit if high iterates 
are applied to an arbitrary initial distribution function. The preserving transformation h must 
only satisfy weak additional assumptions. The rate of convergence is estimated to be geometric. 
The best estimates are possible, of course, in the case of piecewise linear transformations. 

All assertions can be extended to the case of piecewise monotonic transformations h which 
preserve a more general distribution functionk. For instance, the transformation h(x) = {1/x} 
preserves the distribution function k(x) = log(1 + x)/ log 2. This transformation is considered in 
the theory of continued fractions, cf., e.g., Khintchine [10], and is the subject of the celebrated 
Gauss-Kuzmin-Lévy theorem which is now contained in our estimates as a special case. 

The transformation h of the unit interval induces a transformation Ph of probability densities 
on the unit interval. This transformation is accomplished by the so-called Frobenius-Perron 
operator assigned to h, cf. the remark succeeding Theorem 1. The convergenceof iterates of the 
Frobenius- Perron operator is studied by, e.g., Lasota and Yorke [12, 13], Hofbauer and Keller 
[3], Jabloñski, Kowalski, and Malczak [6 - 9]. Our results are especially related to those in [6 - 
9] on the geometric convergence of iterates of the Frobenius-Perron operator. However, all the 
above mentioned authors consider only finite partitions of the unit interval [0,1) and their results 

P. Schatte: Bergakademie Freiberg, FB Mathematik, B.-Cotta-Str. 2, D - 09599 Freiberg 

ISSN 0232-2064 / $ 2.50	Heldermann Verlag Berlin



274 p SCHATTE 

are especially not applicable to the Gauss-Kuzmin-Lévy theorem. See for example also Ishitani 
[5], who has considered infinite partitions in another connection. In case of finite partitions our 
suppositions are somewhat different from those in [6 - 9]. 

2. Transformations 

We partition the unit interval [0,1) into a denumerable set of subintervals [x i , y) such that 

[0,1) = LJ[x , y ) .
	 (1) 

Let h2 E C2 [0,1) be given for i = 1,2.....We assume the , hi increasing on [0,1) andsuppose 
h(0) = x, h1 (1 - 0) = j. Then we define the piecewise monotonic transformation h by h(x) = 
h 1 (x) on [xj,yj). 

We do not assume that x+1 = yj or that x = Yj+1• Thus we permit an infinite number of 
limit points of the x i in the unit interval. The case of y = x i for i > N is included. Thus we 
consider also finite partitions of [0,1). 

Furthermore we mention that some or all hi can be decreasing with h(0) = y,, h(1 —0) = x. 
Then the following considerations must be modified in an obvious manner. But for the sake of 
transparence we suppress the explicit inclusion of this generalization. 

Theorem 1 : Let X be a random variable on [0,1) with the continuous distribution function 
go(x) = P(X < x). Then h(X) has the distribution function 

gl (x) =	(go(h1 (x)) - go(xj)).	 (2) 

Furthermore, if go is absolutely continuous, Jg(x)I C a.e. and if> 	h(x) converges a.e. in

[0, 1) to an integrable function, then g is also absolutely continuous and 

g', (x) =	g(h(x))h(x) a. e. in [0, 1).	 (3) 

Proof: By the theàrem of total probability we have 

P(h(X) < ) = p h(x.) < x, x i < X <y)	 ..	 -. 

which proves (2). Now the right-hand side of (3) converges a.e. to an integrable function, say 
g. Then we see by the dominated convergence theorem that 

jSg(j)dt 
=	fg(h(t))h(t)dt 

=	
(9o(h2 (x)) - gO (Xi )) gi(x) 

which proves (3) I 

Remark: By (3)the initial probability density go' is transformed into the probability density 
g. This transformation defines the Frobenius- Perron operator Ph by g=Phg. 

Let (ak)1 be a sequence of real numbers. The sequence (ak) is said to have the asymptotic 
distribution function go if 

K 
lim -- '	lto,r)({ak}) = go(x) 

K—. K L 
k=1
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for x E [0, 1), cf. Kuipers and Niederreiter [11: p.53]. Here 1(0 z) is the indicator function of the 
interval [0,x) and {ak} is the fractional part of ak. Since only the fractional parts of ak are of 
interest, we suppose in the following that 0 < a j. < 1. 

Theorem 2: If the sequence (ak ) 1 has the asymptotic distribution function go which is 
assumed to be absolutely continuous, then the sequence (h(a k )) 1 has the asymptotic distri-
bution function gi given by (2). 

Proof: We choose N so large that EN I (go(yi) - go(x)) > 1 - E. This is possible on 
account of the absolute continuity of go. Then we have 

	

l[,h))(ik) ^	10,5(h(ai)) 

	

^	1fr,,h))(ak) + 1 -
	

1[)(ak). 

Letting K - m we obtain 

>2 (go(h(x)) - go(x i)) :5 liiinf j > 1(0,r)(h(ak))	

N 

< lirn sup >2 1Io,)(h(ak))  >2 (go(h1 (x)) - go(x 1 )) + e 
k=1  

which proves the theorem for e -+ 0 I	 -	- 

Definition: We say that a transformation h preserves the distribution function k if go = k 
is transformed by (2) into gi = k. 

The transformation h preserves the distribution function k if the probability density k' is 
an invariant element of the Frobenius- Perron operator Ph. Particularly, the transformation h 
preserves the uniform distribution iii is an invariant element of Ph. 

Theorem 3: The transformation h preserves the uniform distribution if and only if 

>2>j(x) - x 2 ) = x	 (4) 

for x E [0, 1). Furthermore, if 

>2h(x) = 1 a.e.in [0, 1),	 (5) 

then h preserves the uniform distribution. 

Proof: The condition (4) follows from (2) by definition. Let (5) be satisfied. Then by the 
monotone convergence theorem and by h(0) = xi we have 

x =
	^	00 x	00 

0 I >2h(t)di =	h(t)dt >2(h*(x) - xi). 

	

0	i=1 
Thus (4) is satisfied I 

Theorem 3 is related to Theorem 2.9 in Bosch [1]. Obviously (5) implies that h(x) < 1 on 
[0,1) for i = 1,2,...
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3. Higher iterates 

We define recursively the random variables X, by X, 1 = h(X), X0 = K, the sequences (ak) 
by ak,fl+1 = h(ak ,n), aj, ,o = aj, and the distribution functions g by 

gn1 (x)	(g(h(x)) - g(h 1 (0))).	 (6) 

In order to obtain g directly from go, we introduce the vector j, = ( i i, i 2 , . . . , i,) and put 

h(jn+;x) = h(jn;hj+j(x)), h(j i ;x)= h11 (x).	 (7) 

Corollary 4: We have 

gn(x) =	(go(h(in;x))—go(h(in;0))).	 (8) 
in 

Proof: We apply induction on n. For n = 1 the equality (8) is identical with (2). From 
(6) and (8) we obtain 

gn+i(X) =	(go(h(j,; h(x))) - go(h(in ; 0))) 
i=1 in 

1=1 3n 

=	(go(h(in+i;x))—go(h(in+i;0))) 
.ln+1 

by (7). This is (8) with n replaced by n + 1 I 

Corollary 5: If go is the distribution function of X, then g, is the distribution function 
of X. If go is absolutely continuous and the asymptotic distribution function of the sequence 
(ak) 1 , then g,, is the asymptotic distribution function of the sequence (ak,n)1. 

Corollary 6: If the transformation h preserves the uniform distribution, then it follows 
that E in (h(in; x) - h(j; 0)) = x. 

Proof: Put go(x) = gn (x) = x in (8) I 

Lemma 7: If (5) holds a.e. in [0, 1), then 

1 a.e.in[O,1).	 (9) 
in 

Furthermore, if go is absolutely continuous, gj :^ C a.e., then g, is absolutely continuous and 

g,(x) =	h'(j,,; x)g(h(i; x)) a. e. in [0, 1).	 (10) 
in 

Proof: The equality (9) will be proved by induction on n. Namely, 

h'(jn. i ;x) =	>h'(jn;hi+i(x))h(x) 
jn+1	 'n+1 in



On Transformations of Distribution Functions	277 

on account of (7). Now (10) can be concluded from (8) in the same way as (3) was-concluded 
from (2) in the proof of Theorem 11 

Remark : Corollaries 4-6 and Lemma 7 can be summarized to the assertion that the 
transformation h°'1 = h o ... o h is given by the h(j; x) and satisfies the same suppositions as h. 

Lemma 8: Assume that (5) holds a.e. in [0, 1). Further let 

a) h(s) <d < 1	b) h)(x)I <Kh(x),	 (11) 

for  E [0,1) and i = 1,2.... . If moreover go(x) E C 2 [0,1], i.e. ,if 

a) g(x) - i < Ci	b) g'(x)I  C2 ,	 (12) 

then g,' E C2 [0,1] too, and 

a) g'11(x) < KC, + dC2	b) g(x) < KC1 1(1 - d) + d"C2, n 2.	(13) 
It 

Proof: From (7) it follows that 

h'(j;x)<dn.	 (14) 

Further we show by induction on n that 

11z"(in ; x)I < Kh'(j; x)/(1 - d).	 (15) 

	

Namely, from (7) we conclude that	 - - 

h"(i 1 ; x)I = I"(in; h1,, 1 (x))h 1 (x) + W(j,	(x))h', (x)I 

	

< kh'(jn;	(x))h ,(x)d/(1 -d) + Kh'(j; 
< Kh'(j,+1;x)/(1 - d). 

From (15) we derive 

log h'(j;x) -log h'(j;y)I :^ Ixx  < K/(1 -d), 

h'(j;x)/h'(j; y) < L
	 (16) 

for arbitrary x, y E [0, 1). Now we see that (9) holds uniformly in x. By termwise differentiation 
we get

	

h"(j;x) = 0, g(x) =	h"(j;x)(gj(h(j;x))- 1) +h'2(j;x)gg(h(j;x)) 

	

3n	 in 

also uniformly in [0,1) such that (13) follows I 

4. Asymptotic estimates 

In the following we wish to show the geometric convergence of the gn to the uniform distribution 
or to a more general distribution function k which is preserved under the piecewise monotonic 
transformation h given by the h. 

Theorem 9: Let go E C2 [0, 1] and assume that (5) and (11) and are satisfied. Then there 
exists a real q < 1 such that 

a) g(z) = 1 + O(q")	 b) g,'(x) = Q(qfl)•	(17)



278 P. SCHATTE 

Proof: From (16) we get zj,' = h(j; 1) - h(j; 0) = h)(j; j,' ) !^' Lh'(j; x). By Lemma 7 
we have 

g(x)— 1 =	h'(j;x)(g(h(j;x))— 1) 
2n 

=	(h)(j,; x) - Ain IL) (g((h(j; x)) - 1) 
in

h(j,';1) 

+ L j	(g(h(j,'; x)) - 1) - 
1hU.;o) 

(go (x) - 1)dx)


where the equalities 

1: Ain	

h(j,';,1)	1 
=	

lh(j';O) (g(x) - 
1)dx 

= 
j (g(x) - 1)dx = 0 

in	in 

are used. The first one can be proved by induction on n whereas the second one is a consequence 
of the first one. Since go e C 2 [0, 11, condition (12) is fulfilled. Thus we obtain 

g(x) - i <	(h'(j,;x) - L,,/L)C1 +	 -

1 1:^ (1— 11L)C1 +	 - 

-(1-11L)C1+d"C21L, 

by (14). On the other hand, from Lemma 8 we get g(x) !^ KC1 /(1 - d) + d'C2 . Now we 
choose I so large that d' < min((1 - d)16K, 1/6). Moreover we suppose K > 0 and enlarge C1 
or C2 such that C2 = 3KC1 1(1 - d). Then 

g(x) - i	(1 - 112L)C1 and	g'(x)I -^ 3K(1 - 1/2L)C1 /(1 - d). 

Starting with gk instead of go we arrive at 

- ii :^ (1 - 112L)mC and g k (x)I !^ 3K(1 - 112L)m C/(1 - d) 

for 0	k < 'n, m = 0,1,..., and C = SilPxE[o1]o<k< j ( l g ( x) - i i, g(z)I(1 - d)13K) I 
Note that q = (1 - 1/2L)1/' depends on h but not on go. Only C depends on go. If 

Ih'(x)I M for x E [0, 1], then h(x) ^! 11M, and the supposition (11)/b) will be satisfied in 
many cases because h, E C 2 [0, 1). However, Ih'(x)I < M can only hold for finite partitions of 
the unit interval. The supposition (11)/a) will also be satisfied in many cases since h(z) 
is implied by (5). Thus the condition (5) is the most significant supposition for Theorem 9, it 
ensures that h preserves the uniform distribution. 

We remark that the supposition go, hi E C 2 [0, 1] can be replaced by a Lipschitz condition 
for g and h. 

Now we assume that the transformation h preserves the distribution function k ' = k(x), 
where k E C2 [0, 1] and 

k'(x) > 6 > 0	 (18)
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for x E [0, 1]. Then by (2) 

k(x) = >12 (k(h(x)) - k(x)).	 (19) 

We introduce the transformation h* = k o h o k by h(x) = k(h1(k(x))). In view of (19) 
h fulfils (4), i.e., h preserves the uniform distribution. Since h = k 1 o h o k, we have 
hon = k- 1 o (h* )o o k. The function k transforms the initial distribution function go into 
g = go o k_i . On account of (18), the distribution function g fulfils the suppositions of 
Theorem 9 in the same way as g. The distribution function go is transformed by (h* )on into 
g. For g the estimates (17) hold true. Finally k' transforms into g5 = g o k. 

Corollary 10 : Let the transformation h preserve the distribution function k E C2 [0, 1] with 
(18). Assume that h = k o h o k satisfies the suppositions of Theorem 9. Furthermore let 
go E C 2 [0, 1]. Then 

a) g5 (x) = k(x) + Q(qfl) b) g(z) = k(x) + O(q') c) g(z) = k"(x) + Q(qfl)	(20) 

uniformly for x E [0, 1].
1,	1 Notice that the last estimate in (20) implies both others since jo g(x)dx =	k, (x)dx = 1,


g5 (0) = k(0) = 0. 

Corollary 10 is related to results by Jabloñski, Kowalski, and Malczak [7, 8]. But these 
authors consider only finite partitions of the unit interval. Moreover, in [8] they assume the h 
to be convex, and in [7] they suppose that the hi satisfy certaincomplicated-conditions which 
are quite different from our suppositions. On the other hand, in [7, 8] the initial probability 
density g is required only to be of bounded variation.	 - 

Theorem 11 : Let the transformation h preserve the distribution function k E C 2 [0, 1) 
with (18). Assume that h* = k a h a k satisfies the suppositions (5) and (11). Furthermore, 
let go 6 C 2 [0, 1]. Then (20) holds with q K12 + d. 

Proof: Let g satisfy (12)/b). Then we conclude that 

g' (x) - i = / (g(x) - g'(t))dt	/ g'(x) - go" (t) 	/	- t I C2dt < 
o J	Jo	Jo 

and from (13)/a) that g"(x) < KC2 /2 + dC2 = (K12 + d)C2 . Now (20) can be obtained by 
iterating the given estimates I 

We remark that more precisely g"(x)l :5 C2 q5 and Ig,'(x) - i	C2 q'1 /2 are derived in the

proof of Theorem 11. Further we obtain 

g(x) - xI < min(x, 1— x)C2 q5 12 < x(1 - x)C2q'. 

In all these estimates C2 is an upper bound for the absolute value of the second derivative of 
go = go o k_i . For gn we obtain more precisely the estimates 

a) g5 (x) - k(x)I :5 k(x)(1 - k(x))C2q' 
b) g(x) - k'(x)I	k'(x)C2 q5 /2	 (21) 
c) g(x) - k"(x)I ^ (I k"(x )I/2 + k'2(x))C2q.
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Theorem 11 is an improvement of a result by Jabloñski and Malczak [6, 9] who have essentially 
estimated q by K + d, again only in the case of finite partitions and for g of bounded variation. 

Example 12 We consider the transformation h(s) = {1/s} which plays an important role 
in the theory of continued fractions. It can be given by h i(s) = 1/(s+i), s = 1/i, y = 1/(1+i) 
and leads to the recurrence 

gni(s) =
 (g- 0) - gn 

i=1 	( , 

Since the h1 are decreasing, the sign here is opposite to that in (6). The transformation h 
preserves the distribution function k(s) = log(1 + x)/ log 2, i.e., the transformation h given by 

h! (x) = j (1og(z + t) - Iog(i —1 + t)), t	exIog2, 

preserves the uniform distribution. We have 

h'(x) = —t/(i + t)(i - 1 + t), 
hZ"(x)/h'(s) = log 2 (i(i - 1) - t 2 )/(i + t)(i - 1 + t). 

The supposition (5) is satisfied in the modified formE h'(x) = —1, observing , that the h i are 
decreasing. The supposition (11)/a) holds with d = 1/2, (11)/b) holds with K = log 2. The 
supposition (18) for k holds with 6 = 1/2 log 2. Thus (21) is valid for q !^ (log 2 + 1)/2 
< 0.85 if go E C2 [O, 1]. For go(s) = x we get C2 = sup 011 (k'(s))" < 1. 

Note that the arguments leading to the estimates (21) are very simple and quite elementary. 
The-application of Corollary 10 is possible.but supplies a larger value for q. Moreover, the 

reasoning being the basis of Corollary 10 is more complicated. 

The estimate (21)/a) is an improved version of Kuzmin's celebrated theorem, cf., e.g., Khint-
chine [10: p. 761. Kuzmin has given the remainder 0 (q1). The improved remainder in (21)/a) 
is due to Levy who found it independently of Kdzfninand only a bit later. Many years later the 
constant q was improved by Szüsz [15] to q < 0.4, and again later Wirsing [16] has found that 
q < 0.3037 and that this estimate is not improvable. For a survey on the history of the problem 
cf. also losifescu [4]. 

5. Piecewise lineartransformations 

In the following we consider transformations h for which 

h(x) x + (y - s)x.	 (22) 

We assume = yi for all i, i.e., the x i can accumulate at most in the right end of the unit 
interval. All transformations h defined by (22) preservethe uniform distribution. If h is given 
by (22), then we can relax the suppositions on g. 

Theorem 13: Let go be concave on [0,1) and assume that g(0) and g'(1) exist. Then we 
have the non-uniform estimate 

Igi (s) —51 qs(1 - s) (g(0) - g(1)), where q = max([x - s +iD .	 (23)


Proof: We estimate 

S gj(5) - 
=	

(go(j(x)) - go(x i ) - s (go xi+1) - go(si))).
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For i > N we replace x, by 1. Moreover we choose an integer m 1 and replace x by r/m j and 
z1 by ri /mi for i < N, where r and ri are integers and where the r, are increasing. Then S 
changes over to Sm i where I 9 - Sm, I :^ e. This is possible if we choose first N and then rn1 large 
enough. We set m = m and write 5m 1 Em,= a5b5 , where b go(n/rn) - go((n - 1)/rn) and 
where

- 5 1 - r/mi for rm1 < n rm1 + (r + - a5 — —r/m1	for rmi + (r +'i - r)r < n r+imj. 

We put An = ELI ak and get 

Ar j m i = 0, Am = 0 as well, as 0< A5 < R = r(1 - r/rni)rnaxj(ri+ i - re). 

In Sm i = E a,,b,, we apply summation by parts and obtain 

Sm 
=

A5 (b5 - 

ISmil	R>(bn_bn+i)!^R(bi_bm) 

= R(go(1/m) - go(0) - go(1) + go((rn - 1)/rn)) -+ qx(1 - x)(g(0) - g(1)) 

as rn1 -, oc. This proves our assertion as c -, 0 I 

Corollary 14: Under the suppositions of Theorem 13 we have 

g5(x) - xl ^ q'x(1 - x)(g(0) - g (1)).	 (24) 

Proof: If q is the maximal length of the intervals for h, then q  is the maximal length of 
the intervals for h°5 I 

	

We remark that (24) can be generalized if go is concave for b2	x b2+1 'and convex for 
b21+1 :^ x	b2+2,i = 1,2,.. .,N. Then 

g5(x) x  :5 q5 x(1 - 

where

= 9(b2 + 0) - g(b2i - 0) - g(b21i + 0) + g(b21 +2 - 0). 

In this connection b1 = b+1 is allowed. Corollary 14 generalizes Theorem 3 in Goh and Schmutz 
[2]. We remark further that the assertions of Theorem 13 and Corollary 14 are valid if the 
x i have a finite number of limit points in the unit interval or if the number 'of limit points is 
arbitrary and go is absolutely continuous. 

Again we consider h = k — ' a	a k, where h* is defined by (22), i.e., 

h(x) = k- ' (xi + (y - x 2 )k(x)).	'	 (25) 

Corollary 15, : Let the transformation h be given by (25), let go fulfil the suppositions of 
Theorem 13. Further assume that k is convex and that k'(0),k'(l) > 0. Then 

Ig5(x) - k(x)I !^ qk(x)(1 - k(x))(g(0)/k'(0) - g0(1)/k'(1)).	 (26)
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Proof: By supposition k- 1 is concave and consequently g = go o k 1 is concave, too. 
Furthermore, g'(0) = g(0)1k'(0) and g'(1) = g(1)1k'(1). It follows that g(x) - x ^ 
qx(1 - x)(g(0)/k'(0) - g(1)1k'(1)) which implies (26) I 

Corollary 15 generalizes and improves Theorem 1 in Goh and Schmutz [2]. 

Example 18: We consider the functions h and k of Example 12. But we replace (h)°'1 by 
a piecewise linear function H,, with the same partition of [0,1) as (h)°', i.e., 

H t (x) = f ̂
x x - h(j;0)	for ht (in ;0) < x < h(j,,;1), 

- h (in; 'WAin for h(j,,;1) < x < h(j;0), 

where Ain = Ih(i,,; 1) - h(j,,; O)[. Note that H,, is different from (H,*)'. We have 

h(jn ; x) =	 log (i +	::I 
cf. Khintchine (10: p. 79]. Here p,, and q,, are the numerator and the denominator, respectively, 
of the n-th convergent p,,/q,, = [i 1 , i2 .. . , i,,] formed with the partial quotients i1 , j 2 ,.. . ,in. It 
follows that 

1og2	= log (1Pn+_1 _log (1+	= Ilog(1+ 
\	q,,+q,,—ij	\	q,,j	\	(qn+pn)(qn+qn_i) 

The maximum of Ain is achieved for in = (1,..., 1). In this case we have pn = f,,, q,, = fn+i, 
where fn+2 = 1+ +1,, fi = f2 = 1 is the sequence of Fibonacci numbers. It is well-known that 
I,,	 as n - no. We put H,, = k 1 oH,ok and obtain IH(x)- k(x)I < Cq', 
for q 2/(3 +	< 0.3820. 

In the following last two theorems let ii b& given by(22), but x 1 = yi for all i is not needed, 
i.e., the x i can have an arbitrary number of limit points in the unit interval. 

Theorem 17: If go E C2 [0, 1), then g(x) - i	q  supxefol) g(x)[. 

• Proof: .Wehave	...
	00 

g(x) 1	
- L' g' (x)dx =	(y - x)(g(h(x)) - gj)) 

a.e. and consequently Ig(x) - i < qsup [Ol) g'(x)I. Now the assertion follows by considering 1 
h° instead of h I

k) Theorem 18: If go E C c [0 , 11,k > 2, then Ig ( (x)I < q(k_1)n sup E [o, l ) 1g0(k) (x)[. 

Proof: We differentiate (2) and obtain 

• gk)() =	(h(x))kg(h(x)) and	k)(x)I <qkl sup Ig(x)[	h(z)	(27) 
rE[O,1) 

which implies the assertion I 

Example 19: Let go(x) = x + x(1 - x), where -1	1. Then gg(x) = -23 and 
therefore g'(z) = -2q, q =	1(h(x))2 =	- x)2 < 1 in view of (27). We obtain 

g(x) = -20q which implies g,,(x) = x + /3q'x(1 - x). 

Acknowledgement: The author is very indebted to L. Heinrich for the references to [3-5,12] 
and for the proof of (16) which was formerly an additional supposition in Theorem 9. Further-
more, the author thanks one referee for many useful hints.
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