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Order Elliptic Differential Operators with Constant Coefficients 

M. BELGER

1-

 Let €3 be a properly discontinuous group of affine transformations acting onan n-dimensional 
affine space and P a €3-invariant linear elliptic differential operator with constant coeffi-
cients. In this paper the €3-autornorphic eigenvalue problem to P is solved. For the number 
N(X) of the eigenvalues which are less than or equal to the "frequency bound" A 2 the asymp-
totic estimation N(X) = c0xi . c1xi	• O(Xn_2*2'(i*i)) is given with co and c1 being inter-
esting geometric invariants.	 .	•.	.	. 
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0. Problem	 .	 . 

Let Q3 be an n-dimensional vector space or later at the same timelalso an affine space,.* its 
dual; 0 a properly discontinuous group of affine transformations acting on S and having a 
compact fundamental domain [3]. For a 3-invariant positive definite quadratic form 50 on 
and for a fixed vector 4 E 3we consider the differential operator - 

P[4] = c(. - 271i4)1 -- - 27ti)[4],	e S, .-	 :.	 (1) ar 

and the assigned polynom 

PW	90(V - 2TCO, 07 27t) DE*	 (1) 

0-invariant means for P[ ] that the following relation is valid: 

0	= P[4] O S. for all S,€ J.  

Now look at the ®-automorphic eigenvalue problem ... 

+ ji4i =0,	E L2(€3)	 -, .. 
7.	 (2) 
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L 2(3) is the Hubert space over C of locally square-integrable -automorphic functions. 
spec®(P) denotes the eigenvalue spectrum of (2). We will investigate the eigenvalue distri-
bution dis(spec(P)) over R, where "dis" is , defined by the distribution function 

N(A) =	€ spec,(P): 	x21.	 (3) 

Here sometimes X instead of )2 is taken and called in Weyl's considerations "frequency 
bound" [25].To establish a good asymptotic estimation of N(X) we will work out the following 
subjects: 

1. Solution of the 3-automorphic eigenvalue problem (2). 
2. Description of N(X) by a certain number of so-called "principal lattice vectors" in a 

convex domain X- ID C 93* (see (23)1(23')). 
3. Formulation of N(X) as a finite sum of Weyl sums. 
4. Asymptotic estimation N(X) = c0 X2 + c1 X' 1 + Q(X12f2'(n1)) with explicit calcula-

tion of c0 and c1 as geometric invariants. Survey of influence of fixed (fixed point - 
free) elements of the group ® on the asymptotic expression for N(A). 

1. Solution of the -automorphic eigenvalue problem (2) 

1.1 The oithonormal system of -automorphic functions in L2() To introduce such a system 
we follow the proceeding of P. GUnther in [7: § I and § 21.	 - 

The lattice r c 93: We will write the affine transformation S: (B --> 1B  (SE (3) of the n-dimen-
sional affine space 23 as a Seitzian space group symbol S = (o, f) with ' = S() = at + f € 
23) as transformation formula. The components e and f are said to be fixed point and transla-
tion part of S, respectively. For R (p, r) € 0 and S € 0 the composition R OS =(po, or +) is 
defined by (R o S)(r) = S(R())..The inverse to S with respect to the identity element E = (e, o) 
E J is S j (o" -o), where e = id and o E 23 is the null vector. Now we consider the "point 
group" of ®, 

= {: (o,1) E 0 for some f €23)	 (4)


and the "translation group" Z C 0 of all translatiàns in 0, 

= {(e,t) € ;}.	 (4') 

We know about 2 and Z the following [1,3,5]: T is an invariant subgroup of 3. The factor 
group ®It and 2 are isomorphic and ord(I) is finite. Therefore we can introduce 

r	ord((Y/) = ord2. 

has n generators (e, b1).... . (e, b) with n linear independent translation parts bk which are 
used to form the bas (B and also to form the 2-invariant n-dimensional lattice 

r :z orb(ø) = {t = t'bk: te Z} C 23.	 (5) 

The vector a € 93 is said to be "belonging to o € 2" if (o, a) € 0. Together with a then also all 
vectors a + r and only these are belonging to o. So modulor exactly one vector a is belonging 
to o and will be denoted by a = f . In the cosetdecomposition of € relative to X,
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= S1 0	+ ... + Sr 0 , S ,, = (°,,L)

	
(6) 

the elements of one of the same coset s ., o X have the same fixed point part o., but different 

cosets have different such parts. If (2,f2), (o 002 f) E € it may be adventageous to 

think of the Frobenius congruence 

1I2 +	mod F.	 (7) 

The dual lattice 1' C : A usually in cristallography here we turn to the dual situation. Let 

23 be the dual space of linear functionals on (S, <o, > the value of 0 E r in C e 93. Relative 

to r  93, let 

F = {U = ukb:ukEZ} C93, <b h bk> = 8,	 (8) 

be the dual lattice in W. As bas Q3, we use then (V,	V). Instead of o E 2 here we need the!

adjoint mapping o) to 0: ci is defined by 

0T 93 -* 93 with oi = 

The -pricipal classes b C r: For a fixed lattice functional u E	we introduce the equivalence !

class

:{u) F,: U, =(3ru for all o €2}={u1,...,ti}.	 (9) 

Here is 1 = ordI ^ r = ord2 as we can see by help of the decomposition 2 =	u (2\R(u))!

relative to the adjoint isotropy group to u, 

(u) =	€ 2: O T U = u).	 (10) 

So r is decomposed completely in a set St of classes 1. Among these classes the so-called 

principal classes b play a leading part: For (u) we consider the character. X(U, ) with 

x(u, o) = exp{27ti<u,f>}, (0j) E (9.
	 (11) 

In ((5, ().the vector f is well te 	and 

= exp{2ti<u,>}	 (12) 

is a t-automorphic function on S. Therefore x is correctly defined. If 

x(u, o) =1 for all o €
	

(13) 

so x(u,) is said to be principal character of (u) and u principal vector of r*. Nov? if u € t is 
a principal vector, r contains only principal vectors and is called principal class b. Otherwise r 
contains only non—principal vectors R is a non-principal class). Let be the set of all prin-

cipal classes b C f, 

The orthonormal system of-automorph1c functions: Let f = { u 1 . ... . u 1} e be a principal 

class and rep(2/l(u l))L = {o, ... , o} a system of representatives of the left coset decompo-

sition of 2 with respect to (u 1 ). Then ..... . ,j €93 shall be vectors belonging too1 . ... .a1, 

respective ly, i.e. S = (aS.,, (,) for v = 1,..., 1.
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Definition: The sum

(14) 

is said to be a b-corresponding function on Q3. 

Remark 1: For each t	3 the function p0 is satisfying the relation 

p0 oS = p0(1)p, for all S = ( o,1) E 0.	 (15) 

Especially for the translations S = (e, t) E X and lattice vectors 13 = u	we see that p is 
automorphic, even cp s L2() (L2 -space of -automorphic functions). 

Remark 2: If o runs through V, so runs through Ii = { u 1 ,.., u1 1 - but in general not 
simply ( 1 :5 r). But if c runs only through rep(3/R(u I ))L , so , from U 1 every vector L4 E h arises 
exactly one time by u. = 

The h-corresponding functions tP4 are elements of L2(3). As functions normed to one just 
the 4, build a complete orthonormal system {: h	} in L2(3) [7: §21(2.8)]. 

1.2 The •-automorphic eigenfünctions and spec 4p of P. To prove that the h-corresponding 
functions	are the elgenfunctions of Pwe must investigate the action of Pon p0 ° S. 

- Lemma 1: The 0- invariant differential operator P from (1) acts on the functions cp O S 
from (14) or (15) according to 

P[p0 o S] = P(27t,) . 90 oS for all SE , V €
	

(16) 

Proof: The operator Pcan be written as 

p = phk	- 4TtiP lIah - 4rc 2P°.	 (17) 

Here PIk are the coefficients of the quadratic form from (1'), furthermore ph= phkpk po = 
phk ,h pk where 4 =phb' and àh = a/c)xII, - explained altogether respectively to 
bas93 or bas93. Now we apply Pon p0, = vb'-: Using (12) and (8) we obtain 

àhpD(t) = à/c)x "(exp	x	= p0()2iti a/ax h(v.x V) = 2i vhpD() 

oh akpD() = (27ti)2vhvkpD(). 

Now (17) and after that (1') gives 

P[p0] = ( phk(2 hx2 k) + 4Ph(2vh) 42po) p0 

= -(21rt,-27t4), 27rD-27t4)cp0 = P(2,to)90. 

So (16) follows from the 3-invariance of F, i.e. from (ii I 

If we now take into account the h-corresponding function	!rom (14), formula (16) gives
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P[41h] =	 = P (2ltu)4b, U E Ii.	 (18) 

Definition: If u € f, we can write 

P(2itt) = P(27tu),	 (19) 

(where P(2tr) can be understood as a class norm JJfJJ2 of ). 

The justification for (19) comes from the 2-automorphy of P from (1'), 

= P(,) for all 0 € S, 0 E	 (20) 

and of the fact that all u € f = { 14 1 ,..., U1) arise e.g. from u1 by means of the equivalence U = 

OTU 0 € 

Remark 3: If the class norms of f, f, are different, P(27tt1 ) * P(27tt2 ), the same is always 
right for the classes, t . * . But the inverse assertion is not right; if t, * r,, notwithstanding 
may be P(27t 1 ) = P(2it2). 

Theorem 1: To each principal class h € S) we can assign exactly one eigenvalue t = of 
the 3-automorphic eigen Value problem (2), namely

(21) = -P(2it4) 

m®( ib) = card fFi' E 9 Q: P(2th') = P(2itb)}

with

(22) 

as multiplicity; thereby the h-corresponding function 4 belongs to RE, as the eigenfunction. 
The set spec,(P) = € S} is the complete 3-automorphic eigenvalue spectrum of the 
3i-invariant differential operator P from (1). 

Proof: The correspondence h - 4b from(14), and (18), prove the first part of the theorem. 
The completeness of spec(P) follows from the completeness of the orthonormal system {4)h: 

€ £.y} of L2((3). Let 4) = (summation over 1 € $) be an arbitrary 3-automorphic ei-
genfunction of P to the eigenvalue 1i *V [,for all b € ). Then from (2), (18), (19) and (21) for 
each ti € S) there follows cW114- it) = 0. Consequently there would be ch = 0 and therefore 4) = 
0 which is a contradiction I 

2. N(A) as the number of principal classes b contained in a- certain convex domain AID C cr 

The operator P has the following geometric appearance. 

Definition: The domains in 3 

ID = {o € 3: -P(o + 2ir) -1 (1/27t) 2}	 (23)
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AD = 10 6 23* -P( + 2ir4)) :5 (X/27t)2}	 (23') 

4) + X'ID =	23* -P(27tD) :5 x 2}	 (23) 

in this order are said to be gauge domain, homothetical expansion of ID with A '>'O as factor, 
parallel translated domain by the vector 4)6 23* (from (1)). 

The 0-invariance of P means for these domains 

Lemma 2: The gauge domain ID and so also all its homothetical expansions A1D are 
invariant. Therefore for an equivalence class F E S there is valid 

either Fc(4)+A'ID) orPn(4+A . ID) Ø.	 (24) 

Now if we look at N(X) from (3) and Vf, from (21) we could ask for the geometric locus 
containing all lj with V b ^ X. The formulas (21), (19), (1'), (23') and (24) yield 

Proposition 1: The number of eigen values V j, :s A2 is given by 

N(A) = card{h € ): h C (4) + A' ID)}.	 (25) 

3.N(X)asafnite sum ofWeylsums 

3.1 A proposition of P. GUnther. Let 

= ker(OT - id) and r() = r*n 23*)c)	 (26) 

-• be the eigenpaae to the eigenvalue 1 of 0T and the Z-module of all lattice functionals of 
23o), respectively. (look at (8)). According to [7: Proposition 2.21, for a function f: 23*_> C it 
is valid 

57 . d	f(u) = -W(o).	 (27)

bc

 card[) 

so far as	 S 

W(o)	:	(u,(5)f(u)	 .	 (28)
ucr (o) 

is absolutely convergent for all 0 6 2. 

3.2 The characteristic function x,.. of XI). Let. be the characteristic function of ID and X 
that of AID. From the definition of	and the 2-invariance of A'D (Lemma 2) you can easily 
see	 -• 

Lemma 3: For DE23 * wehave	 S	 S 

foraliA>0	 5	

(29)
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= X(D) for all 0 e 2,	 (29') 

i.e. x,. is 2 -automorphic on 

Now regard Xx as a partial function on -1 + r c 3. Then X x is a class function depen-
ding only on the equivalence classes - + E of the lattice - + r* for all t E 

11 ifC4+AID 
+	

= to if t	+ X . D	
(30) 

(see also (24)). Now we set going proposition (27)1(28) choosing f(u) in accordance with f(u) 
+ u) = Xx(- ' + h) for u £ b E Sp. Then 

W(o)	 x(u,o)	 (31) 
ucr (o)r(4,XD) 

is a finite and so an absolutely convergent series. Because of (30) and (25) the left-hand side 
of (27) is equal to N(A) so that 

N(X) = 3-w(o).	 (32) 

33 Splitting Of N(A) into isodimensional summands. Le be 

dim*(o)	 (33) 

and

2m {o E 2: n(o) = rn}, rn = 0,1,..., n. (34) 

For 0 E 2m the Z-module r(o) from (26) has rn linearly independent generators. Now (32) can 
be dissected according to 

Proposition 2: N( A) is the sum of isodirnensional summands: 

N(X) =	 (35) 

where W(o) with (o, ) £ 0 are the Weyl sums (31)/(11), or for a specific purpose formulated, 

W(o) =

	

	 exp{2ti<u,f>}.	 (36) 
uomo ro) 
-P( 27tL4)& X2 

The special kind of summation in (36) in comparison with that of (31) follows from (23'S). 

Definition: In (35) the summand with in = n is said to be principal part and that with in = 
n - 1 secondary part of NW.	 - 

Remark 4: All the other summands of N(A)with in n -2 will be proved subordinate and get 
into the remainder during the asymptotic estimation of N(A) in Subsections 4.2/4.3 (see (49)).



292 M. BELGER 

4. The asymptotic estimation of N(A) 

4.1 Formulation of the Weyl sum W(d) in coordinates relative to bas r*(d) . Let be 

basr(c)	{c1(c).....Cm(d)}, basr	{b1.....
(37) 

C"(C) = c'(c)b 1 , cj(c)E Z (h = 1,...,n; v = 

Because of t"(0) € r*(o) there is (0T - id)t"(o) = 0. Therefore c(o) for each v is a solution of 
the system of linear equations (of - 8f)c(o)	0 (j = I.... . n) and naturally o Tb i = oJb.'. 

Latin indices run through I......n and Greek indices through 1,..., m 
- only with the exception of o € 2. 

For u € r*(o) and for 4) € 3(o) as the invariant vector from (1') we write 

U = UL Cv(o) =	cj(o)b' = uhb	and	4 = pc"(o) = pc(o)b' = Ph.	(38)


Then we. have 

	

= us'(o) with SV(0) =	 . 09)


Now looking at (17) we introduce the symmetric rn x rn-matrix (P'(0)) with 

pVL((3) = phkCv(ø)J(0)	()	det(PY1L(c)).	..	 .	. . . (40)


By(38) this makes possible to write P in form of 

-P(2itu) = (27r)2P'(o)ww, w = u - p.	 (41)


Therefore Proposition 2 in coordinates relative to basF*(o) can be formulated as 

Proposition 3: N(X) (so as in Proposition 2) is the sum of the Weyl sums 

w(o) = e2 '°	 e27W\	 (42) 

	

w -pmod(1)	. 

Remark 5: For 0 = e (e - identity in 2) we obtain 

n(e) = n, 2 = {e}, 3(e) = W, r(e) = r*, e(e) =
(43) 

c(e) = 8, u, = u, p = p, P4L(e) = P"'-, t(e) = det(P'). 

4.2 Landau's estimation of lattice remainder applied to the Weyl sum W(ø). In (42) we have 
the sum of the unimodularweigltsexp{2itiw.s'(cj)}Which load the lattice functional  m€ 
within the rn = n(o)-dimensional ellipsoid (4) + XLD) r 3*(o) The estimation of such a sum 
W(o) is a classical problem which was worked out above all by E: Landau ([14: Chapter 1/(7) 
and (10)] and [191). As we know this leads to the result	 . 

W(o) = + 0 (Xm-2+-1-)	 .	 . (44)
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So = I if s"(o) € Z and 8, = 0 otherwise.	 (45)


Definition: 6 will be called Landaus 6-symbol which is assigned to o (see PropositiOn 4). 

4.3 N(A) and the m -dimensional volumes VOlm .D n	Let be 0 E LZ .. and m = n(0). 
Let 3(o) be equipped with a measure	of the normalization i((r(o))) = 1 (() - "fun-0 

damental domain of"). So we can introduce the rn-dimensional volume of D n 

Volm(D n 1r(o))	J' d(o) =	f do/ 	do.	 (46) 
CD n	 o)	Dr,3 (o)	(r (o)) 

Remark 6: In an affine space ir the affine volume fc, do is a relative invariant of weight 
-1. The quotient of two such volumes, so as in (46), is an absolute invariant. 

In the case that 13 and 3 are Euclidean spaces, and so especially r(o) is an Euclidean 
space with the metric fundamental tensorg"-'(o), g(o) = det(g"t(o)), we define as usual 

VOlm(D n 3'(o)) =	f 1jdc1*(o) with volm((r(0))) = 1.	 (47)

D n ¶3(o) 

If W(o) from(44) is belonging to a group element 0 E S with 8 = 1, the factor before A in 
(44) is the volume of an rn-dimensional ellipsoid, namely of 

AFD ,	() {, = vc(o): pVI.L(0)v'v :5(X)2}	 (48)


Therefore W(o) from (44) has the form 

W(o) = 6 ,, •VOl m( ID n ls*(o))xrn + O(Am_2nivr).	 (49) 

Here the order of the remainder term in Proposition 2 (resp. Proposition 3) allows to carry out 
the summation for m = n (yielding then the principal part of N(A)) and only just for m =n -1 
(producing the-secondary part). Now-we ascertain that .m = n(o) , n is true only for o = e and 
we have ED n 3*(e) = ED (see also Remark 5). Because the null vector t = 0 € 13 is belonging to 
Ore we get s"(e) = <c"(e),o> = 0€ Z and hence 6 = 1. We lodge all summnads of N(A) for m 
:5 n -2 in (35) (Proposition 2) in O(XnT2+2'(74)). So Proposition 2 can be explained now as 

Theorem 2: The eigen value numberN(X) is satisfying the estimation 

N(X) .vol(D)X' +	vol1(D n B(o))80A'1+	 .I(n 	(50) 
n-I	 - 

where Landau's symbol 8 is to be taken from Proposition 4.	-	 - 

Remark 7: With regard to Remark 6 the assertion (50) of Theorem 2 can be understood 
also as a result of affine.spectralgeometry.  

4.4 Landau's 8- symbol and the Influence of the fixed elements from 0 on N(A). The decom-
position IS = ISM	'(o) of the vector space S into the subcpaces
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3(o) = ker(0 - id)	and	'(o) im(o - id)	 (Si)


and the sublattices 

r() = r n 3(0)	and	r1() = r	 (52) 

with n(o) = dim 3() = dim r(o) makes possible to formulate the following fixed point proper-
ties.

Lemma 4: The affine transformation (a, f) E €3 acting on ¶3 has a fixed point to e Q3 if and 
only if 1€ i() 

Proof: From (o,f) 0 = 0 there follows ( - id) r, -f, i.e. -í e 3(o) and so also (€ 3'(0). 
Inversely, for f € 3'(0) there is also - €	(o) and so by (51) there is a vector to € 3 with -


- id) 0 , that is (o, f), = COB 

Corollary: Assume (o, () E €3 has a fixes point in IS. Then (c, + t) € €3 has a fixes point in 
23 if and only if t€ r1(). 

Proof: let be f € 23(o) (Lemma 4), that is = oro -	23. a) Assume (o,f + t )t1 = C1, 

€ 23, so there is true that o( +) -(, + ) = - t € 93(o) and then t € 23(0). Because (o, f) and 
(o, f + t) are in €3, by (7) there follows that t € r and then by (52) t € F1 (o). b) Vice versa from t 
€ r1 (0) there follows t € 23(o), and under the assumption f € 23 1 ( 0 ) we obtain -t,-f € 93 1 (o), i.e. 
-t =or, - 2 and =o - € W. So there is true that 0(2 + 3 ) + t + f =(o,f + t)( 2 + 

3)23I 

Proposition 4: Let be ( , f) € €3. Then 8 = I is true if and only if there is-,a lattice-functio-
ñal t0 €r wih the property that (,( + t0 ) has a fixed point to € 23, i.e. that f + to € 

Proof: We have to take into consideration that <o;> = 0 if t) € 23(o) and r € 231(e) (see 
(26) and (51); for understanding use dual bases in 23 = 93(0) 931(e) and 23 = 93(o) * 1r1()). 

a) Assume 8, = I for a fixed o € S, i.e. 5v(0) = < cv(o),I> € Z for all -v = 1,..., m (see (45), 
(39) and (37)). Then for an arbitrary u = u.c'(o) € r(o) there is true that <u,f> € Z. If we now 
decompose f =	12 into f € 23(o) and 12 € 93'(o) we obtain <U, f> = 0 because ii € 23(o). Then 
we have <u, f> <u,11 > € Z and therefore f € r(). For each r € Fl(o) there is to	-f + o € F

and then 1 + t0 = (2 + r € 23(o). 

b) Conversely, let there exists a to € F with I + t0 € 23'(o); we prove that s(o) € Z for all v 
= 1,..., m, i.e. 8 = 1. We writes"(o) = < cv (o),f> = <c'(o),f+ to> - < Cv(0), t0>. Here <CV(0), to> 
€ Z because of to € F, c"(o) € r(o) and so c'(o) € r. Now using the introductory remark of the 
proof we find <C'(0), f + to> = 0 because 1 + to € 23(o), c"(o) € r*(o) and so c"(o) € 13*(o). Sum-
mariting we get s'(o) € Z I 

4.5 Survey of the influence of fixed (fixed point - free) elements of group 0 on the asymptotic 
expression for N(A). If we ask for the intrinsic reason of the appearance of the pricipal term 
c.),' and the secondary term c, X" in N(X) c0X + c1X + 0(),1-2*210) we can ans-
wer (Proposition 4):
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(i) For 0 E S3 m the fixed elements (o,f + t0 ) £ €3 produce in (49) resp. (50) the volume 
terms volmOD n (0)).Am whereas fixed point-free elements from €3 make contributions 
only -to the remainder term 0(1m_2*2'(m1)) So we have the following knowledge: 

(ii) The identity (e,o) e €3 produces the principal part of N(X) (because Se = 1, e £ 

(iii) The fixed elements (o,f + t0 ) E €3, 0 £	produces the summands of the secondary 
part of N(X). 

Concluding remark: The theory developed above can be applied e.g. for crystallographic 
groups, especially for the 230 space groups. For short it is recommendable to investigate an n 
= 2-dimensional group, e.g. €3 = 1 im acting on	= 1E2 and having P = c(c) +	+ 22) ( 

=	as the €3-invariant operators for all c> 0. The 10 possible exmples for €3 in the case 

n = 2 demonstrate a considerable improvement if we turn from N(X) co x" to N(X) 
+ c1 X'' (see the Dissertation B of the author: Zur asymptotischen Verteilung der Eigenwerte 
€3- invarianter linearer elliptischer Differentialoperatoren mit konstanten Koeffizienten. Uni-
versität Leipzig 1989). 
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