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Eigenvalue Distribution of Invariant Linear Second ~
Order Elliptic_Differential Qpemtors with Constant Coefficients ~ -

M. BELGER - . .

Let ® be a properly discontinuous group of affme transformatxons acting on an n- dlmenswnal
affine space and P a &- mvarlant lmear elllptlc differential operator' with constant coeffi-
cients. In this paper the &- automorphxc e\genvalue problem to P is solved. For the number
N()\) of the eigenvalues which are less than or equal to the "frequency bound” 22 the asymp-
totic estimation N(X\) = cgA” + ¢, A"~ 1 o(xam” ~2+2/(n+1) ) is given with co and ¢, being inter-
esting geometric invariants. .
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0. Problem S : SV Co : St
Let B be an n-dimensional vector space or later at the same time also an affine space, B* its
dual; ® a properly discontinuous group of.-affine transformations-acting on B and having a
compact fundamental domain [3]. For a ®-invariant positive definite quadratic form P on B*
and for a fixed vector p ¢ ®B* we consider the differential operator

PY] =Ma%- - 2“””&% - 2mig)[4), £eB, . T I 0))

and the assigned polynom

" Plo) = - Plo - 21:»,9‘_-.2'rr.p)l;’_ v e B*. L . (1)
®-invariant means for P[ ] that the following relation is valid: o .
: r
P[poS)=P[dloS forall Se®. - . e . N (5
Now look at fhe -@—autémorph'ic eigéhvalue problem ‘f
- PlY)+ ml_» - 0, ge Lz(@). o S S
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L,(®) is the Hilbert space over € of locally square-integrable ®&-automorphic functions.
spec(P) denotes the eigenvalue spectrum of (2). We will investigate the eigenvalue distri-
bution dis(speccg(P)) over R*, where "dis” is defined by the distribution function

N = “{u € specgs(P): it S >\2} . ’ . - : (3)

Here sometimes X instead of )\2 is taken and called in Weyl's considerations "frequency
bound” [25].To establish a good asymptotic estimation of N(\) we will work out the following
subjects:

1. Solution of the G-automorphic eigenvalue problem (2).

2. Description of N(X) by a certain number of so-called ”principal lattice vectors” in a
convex domain A+[D € B* (see (23)/(23)).

3. Formulation of N(X) as a finite sum of Weyl sums.

4. Asymptotic estimation N()\) = CoA + ¢, AT+ O(A-2+2/(n+1)) ith explicit calcula-
tion of ¢, and c, as geometric invariants. Survey of influence of fixed (fixed pomt—
free) elements of the group ® on the asymptotic expression for N(}).

1. Solution of the @-automorphic eigenvalue problem (2)

1.1 The ofthonormal system of @-automorphic functions in L (®). To mtroduce such a system
we follow the proceedmg of P. Gunther in[7:§1 and § 2]

B d s

The latttce I‘ C B We w111 write the affine transformation S: 8 > B (S € ) of the n- dlmen—
sional affine space B as a Seitzian space group symbol S = (o,f) with ¢ = S(g) =op + { (¢",¢ ¢
R) as transformation formula. The components ¢ and { are said to be fixed point and transia-.
tion part of S, respectively. For R =(p,t) ¢ ® and S ¢ & the composition RoS =(po, or +{) is
defined by (Ro:S)(g)= S(R(g)).. The inverse to S with respect to the identity element E = (e,0)

€®is S =(c""-07*f), where e =:id and 0 ¢ B is the null vector. Now we consider the "point
group” & of &, ' o
2 = {o: (o,f) ¢ & for some f'e’"%} S C(4)

and the "translation group” £ C ® of all translations in 6, '
T = {(e,t) e &} ) (4)

We know about £ and ¥ the following [1,3,5]: & is an invariant subgroup of . The factor
group &/ and £ are isomorphic and ord(@/i) is flmte Therefore we can introduce

r = ord(®/3) = ord Q. ' e y : : ' s (47
% has n generators (e,b,), ... ,(e,b,) with n linear independent translation parts by Wthh are
used to form the bas B and also to form the ¥-invariant n- dlmensxonal lattxce

[:=orbg(o) ={t =¢Xb,:t*eZ} Cc B. . . (8)

The vector a € B is said to be "belonging to o € R” if (g,a) € ®. Together with a then also all
vectors @ +T" and only these are belonging to ¢.'So modulo T exactly one vector a is belonging
to o and will be denoted by a = {. In the coset.decomposition of G relative to T, ‘
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®=S0%+..+5.08%, S, =(0,,f,) )

the elements of one of the same coset S, ©% have the same fixed point part o, but different
cosets have different such parts. If (o,,f,), (05,f,), (6, 00,, f) ¢ & it may be adventageous to
think of the Frobenius congruence

6,fp +§, = fmodT. (N

The dual lattice I'* ¢ 8*: A usually in cristallography here we turn to the dual situation. Let
B™ be the dual space of linear functionals on B, <v,> the value of b € 8% in ¢ ¢ B. Relative
to [ C R, let

= {u = ub%: up e Z} € B™, BP0 =387, (8)

be the dual lattice in 8™ As bas B* we use then {b!, ... ,b"}. Instead of o ¢ & here we need the
adjoint mapping o to o: o is defined by '

o": B* > B* witho™w =voo.

The pricipal classes b € '™ For a fixed lattice functional u ¢ '™ we introduce the equivalence
class

E'“{uel""u—ouforalloef.‘} {ug,...,ug. ‘ . ' O

Here is / = ordE < r = ord® as we can see by help of the decomposition R = SR(u) u (Q\iﬁ(u))
relative to the adjoint isotropy group to u,

R(u) = {o e R: o™u = u}. ) ‘ (10)

So ™ is decomposed completely in a set & of classes E. Among these classes the so-called
principal classes b play a leading part: For R(u) we consider the character. y(u,-) with -

xu, 0) = exp{2niu, P}, (o,f) ¢ ®. : (11)
In (o, {).the vector { is well,established and

@u(c) = eXp{2m<u gD} - o -(12)

isa®- automorphnc function on B. Therefore Y is correctly defined. If
x(u, 6) =1 for all o ¢ R(u) , . (13)

so x(u,-) is said to be principal character of R(u) and u principal vector of T™. Now if ue E is
a principal vector, E contains only principal vectors and is called principal class h. Otherwise E
contdins only non—principal vectors (£ is a non - principal class). Let § be the set of ail prin-
cipal classes h ¢ T'™ ¢ ‘

The orthonormal system of @-automorphic functions: Let { = {u,, ... ,u;} €  be a principal
class and rep(8/Ru,)L = {o,, ... ,0;} a system of representatives of the left coset decompo-
sition of # with respect to R(u,). Then {,, ... ,f; ¢ B shall be vectors belonging to g, ... ,0,
respectively, i.e. S, = (o,,f,) forv=1,..., L ’ )
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Definition: The sum

by = 7}_—;1%‘0 S, ; (14)
is said to be a h-corresponding function on B.

Remark 1: For each b € B* the function ¢, is satisfying the relation

Pp°S = u()pgry forall S =(o,f) E@ : . - (19)

Especially for the translations S = (e, t) € £ and lattice vectors b = u € ['* we see that ¢, is T-
automorphic, even ¢,; ¢ L,(&) (L,-space of £-automorphic functions).

Remark 2: If o runs through £, so ¢"u, runs through b = { u,,...,u;} - but in general not-
simply (/ < r). But if o runs only through rep(8/®R(u,)); , so from u, every vector u,, ¢ b arises
exactly one time by u,, = c"u,.

The b-corresponding functions ¢y, are elements of L,(®). As functions normed to one just
the y, build a complete orthonormal system {{: b € §} in L (®) [7: §2/(2.8)]. »

1.2 The @&-automorphic eigenfunctions and specg of P. To prove that the h-~corresponding
functions ¢y, are the eigenfunctions of P we must investigate the action of Pon Pp© S.

Lemma 1: The G- invariant differential operator P from (1) acts on the functions @y° S
from (14) or (15) according to

Ploy,0 5] = P(2nv)- @ 08 forall S¢®,ve B*. . (16)
Proof: The operator P can be written as
P = PBky, o, - 4niPhy, - 4n2pe, A - o an

Here P"%are the coefficients of the quadratic form % from (1), furthermore P! = PEKy,, PO =
Ph%p, p,, where p =pub? and dp = o/0xH, ¢ =xMb, - explained altogether respectively to
bas®B or basB*. Now we apply Pon @, v = v b": Using (12) and (8) we obtain

OpPo(E) = 0/0x Pexp 2midv, BY, x¥b, ) = pyk)-27i 0/0x (v, x V) = 2mivy,pyE)
IpdxPult) = (2mi)2vy,vipy(E).
Now (17) and after that (1) gives -
Plo,] =( —Ph“(zn;z,,)(z}wk) + 4nPh(énv,,)- 4n2P) g,
= -P(2no - 2np, 2n0 - 27P) @, = P(270)ep,,.

So (16) follows from the G -invariance of P ie. fron'l ) |

If we now take into account the b-corresponding function ¢y, from (14), formula (16) gives
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PlYy] = T}ZiPQnu)cpu?S\, = P(2ru)dg, u eh. (18)

Definition: If u € £, we can write
P(2wE) = P2ru), - : h (19)

(where P(27F) can be understood as a class norm [[El|2 of E).

The justification for (19) comes from the 2-automorphy of P from (1),
P(c™) = P(v) for all o € &, v € B, ' (20)
and of the fact that all u € E ={ u,,...,u,} arise e.g. from u, by means of the equivalence u =

o'u,, ce8.

Remark 3: If the class norms of E,,E, are different, P(2nE,) + P(2nE,), the same is always
right for the classes, E, +E,. But the inverse assertion is not right; if E, #f,, notwithstanding
may be P(2xt,) = P(2xk,). : T

Theorem 1: To each principal class b € § we can assign exa-ctly one eigenvalue y =y of
the & - automorphic eigenvalue problem (2), namely

g = -P2r) ' @
with
me(uy) = card {b € §: P2nh’) = PQnh)} - : - (22)

as multiplicity; thereby the b -corresponding function g, belongs to as the eigenfunction.
The set spec(P) = {uy: b € §} is the complete ® - automorphic eigenvalue spectrum of the
& - invariant differential operator P from (1).

Proof: The correspondence b — §j, from(14), and (18), prove the first part of the theorem.
The completeness of specg(P) follows from the completeness of the orthonormal system {¢5:
b e O} of L,(®). Let § = X cp g (summation over b € $) be an arbitrary &-automorphic ei-
genfunction of P to the eigenv;ﬂue p *pp for all b € §. Then from (2), (18), (19) and (21) for
each b ¢ §) there follows cb(“b - i) = 0. Consequently there would be ¢, = 0 and therefore ¢ =
0 which is a contradiction i )

2. N()) as the number of principal classes  contained in a'certain convex domain X-D ¢ B*
The operator P has the following geometric appearance:

Definition: The domains in B*

D = {veB™: -P(o + 2rp) s (1/2n)?} - (23)
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xD-= {n eB™: -P(o +2np) s ()\/211')2} . ‘ . (23)
p+xD={oeB™ -PQ2nv) s A2} . (237)

in this order are said to be gauge domain, homothetical e}:pansion of D with A >0 as factor,
parallel translated domain by the vector p ¢ 8™ (from (1)).

The G -invariance of P means for these domains

N

Lemma 2: The gauge domain D and so also all its homothetical expansions \-ID are R-
invariant. Therefore for an equivalence class t ¢ & there is valid

eitherE C(p+AD) or En(p+1D)= (D‘. . ‘ (24)

Now if we look at N(}) from (3) and g from (21) we could ask for the geometric locus
containing all h with gy < A% The formulas (21}, (19), (1), (23°) and (24) yield

Proposifioq 1: The number of eigenva]des up S A? is given by

N\ =card{be$: b ;(p+ »D)}. ' ‘ (25)

3. N() as a finite sum of Weyl sums - b

3.1 A proposition of P. Giinther. Let
- B*(o) =ker(c" -id) and I™(0)=T*n B%e). + - : . (26)

“~be the eigenspace to the eigenvalue 1 of o” and the Z--mddule ot; all lattice functionals of
B*(0), respectively. (look at (8)). According to [7: Proposition 2.2], for a function f: B*— C it
is valid

= rw) - Zw(o) e

be& “‘"u’ ueb ceR .
so far as
Wio)= = ylu,0)f(w) . )
uel (o) ) : . .

is absolutely convergent for all ¢ ¢ ®.

3.2 The characteristic function X5 of ::D. Let.x be the characteristic function of ID ‘and x5,
that of X-D. From the definition of x; and the 8-invariance of XD (Lemma 2) you can easily
see o ' v

Lemma 3: Forv ¢ 8" we have

¥\(0) = X(5-0) forallx >0 ' (9
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x{c™) = x\(v) foralloce®, : (29

i.e. X is ® -automorphic on B*.

Now regard ¥, as a partial function on -p + ™ C B* Then x, is a class function depen-
ding only on the equivalence classes - p + E of the lattice - p + ™ for all £ ¢ &:

1 ifEcp+rD | (30)

Xk('.bq» E): {0 le ¢’p+ D

(see also (24)). Now we set going proposition (27)/(28) choosing f(u) in accordance with £(u)
= xal-P+u)=x(-p+bh)foruehe$. Then -

W)= S ywo) a (31)

uel*(c)n(p+x-D)

is a finite and so an absolutely convergenf series. Because of (30) and (25) the left-hand side
of (27) is equal to N(}) so that

N = —}ZW(O). . . (32)

" 3.3 Splitting of N() into isodimensional summands. Le be
n(o) = dimB*(o) Co (33)
and
"Ry ={oeR alo)=m}, m=0,1,..,n - (34)

For o € 8, the Z-module [*(c) from (26) has m linearly independent generators. Now (32) can
be dissected according to ' )

Proposition 2: N(}) is the sum of isodimensional summands:

NQ\) = %égvv(o) : (35)

where W(o) with (0,{) ¢ & are the Weyl sums (31)/(11), or for a specific purpose form.ulated,

Wl(o) = i<u, 0}
0 e P} | 0

-P(2mu)s»2
The special kind of summation in (36) in comparison with that of (31) follows from (237).

Definition: In (35) the.summand with m = n is said to be principal part and that with m =
n - 1 secondary part of N()). » .

Remark 4: All the other summands of N(X)with m s n-2will be proved subordinate and get
into the remainder during the asymptotic estimation of N()) in Subsections 4.2/4.3 (see (49)).
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4. The asymptotic estimation of N(})
4.1 Formulation of the Weyl sum W{o) in coordinates relative to basI'{c). Let be

basT'™(o) = {¢Xo),...,¢™(0)}, basT™*= {6*,...,67},
, (37
o) = cp(o)bh, cp(c)eZ (h=1,..,n;v =1,..,m).

Because of t¥(0) e ['™(o) there is (6" - id)t¥(c) = 0. Therefore c}(c) for each v is a solution of

the system of linear equations (o -8/)c¥(0) = 0 (j = 1,..,n) and naturally o™i = o/b.
Agreement: Latin 1nd1ces run through 1,...,nand Greek indices through 1,...;m

- only with the exception of o ¢ 8. :

~ For u e I'*(0) and for p ¢ B*(0) as the invariant vector from (1) we write

u = ujeMo) = ujc(0)bP = upb?  and P = ple¥o) = p,c(o)bh = pb[;h. ' (38) -
Then we have . | - " . o
- u, > = u)s¥(o) with s¥(o) = {c¥(0),{>. : --(39)
Now looking at (17) we introduce the symmetric m x m-matrix (PV¥(c)) with
PV¥(o) = PPkcp(o)cfi(o), Alo) = det(P¥¥(o)). ) o .. (40)
By-(38) this makes possiblé to write P in form of -
-P(2mu) = Qr)*PM(o)wiw,, wy =u) - p. (41)

Therefore Proposition 2 in coordinates relative to basI"(o) can be formulated as
7

iPrbposition 3: N (s;) as in Proposition 2) is the sum of the Weyl sums

W(o) = e2TiPs %) 27wy V(o). (42)
wy,=-p,, mod(1) ' o
P (o)wyw=(a/27)?

Remark S:Foro=el(e- 1dent|ty in ) we obtain

n(e) =n, 8, = = {e}, %‘(e) B*, T™e) = I"" ~e) = b" .

) , (43)
cple) =38y, u,=u,, p; =p,, P #(e)=P"®, Ale)= det(P™H),

~ 4.2 Landau’s estimation of lattice remainder applied to the Weyl sum W(o). In (42) we have
the 'sum of the unimodular welghts ‘exp{2miwy, s¥(0)} which load the lattice functionals m ¢ [™(c)
within the m = n(c)-dimensional ellipsoid (§ + A:D) n B*(s). The estimation of such a sum
W(o) is a classical problem which was worked out above: all by E: Landau ([14 Chapter ]/(7)
and (10)] and [19]). As we know this leads to the result

¥ 80 R
2™MYR™Y/ATe) [(Z412)

W) =- I 0()\"’_2*7:71) . . - (44)
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8, =1if s¥ (o) eZ and §, = 0 otherwise. ’ (45)
Definition: 3, will be called Landau’s 8- symbol which is assigned to o (see Proposition 4).

4.3 N(\) and the m - dimensional volumes vol,(A'D n B%(a)). Let be o ¢ &, and m = n(o).
Let B*(o) be equipped with a measure y; of the normalization pJ(F(I™(0)) = 1 (J(-) - "fun-
damental domain of ). So we can introduce the m-dimensional volume of D n B*(0),

Vol (D B%o) = [ du0) = [ db/ dv. , (46)
" DAB%e) D nB*(0) /B(r (o) ,
Remark 6: In an affine space B* the affine volume [ dvis a relative invariant of weight
-1. The quotient of two such volumes, so as in (46), is an absolute invariant,

In the case that ® and B™ are Euclidean spaces, and so especially B*(o) is an Euclidean
space with the metric fundamental tensor gV¥(0), g(o) = det(gV*o)), we define as usual

vol (D n B%(0)) = f 7g(0)dy™(s) with vol,(F(I™(c)) = 1. s (47)
DnB™(o)

If W(o) from(44) is belonging to a group element o € ,, with 8, = 1, the factor before A in

(44) is the volume of an m-dimensional ellipsoid, namely of

XD o B(0) = o = v e¥(0): P(alvy vy < (). - T (48)

Therefore W{o) from (44) has the form

Wi(o) =8 o Vol ([D n %*(o)) AP e O()\m_2+m2+1 ) : . . (49)

Here the order of the remainder term in Proposmon 2 (resp. Proposmon 3) allows to carry out
the summation for m = n (yielding then the principal part of N()\)) and only just for m =n -1
_(producing the-secondary part). Now -we ascertain that.m = n(c) = n is true only for 6 = e and
we have D n B*(e) = D (see also Remark 5). Because the null vector t = 0 ¢ B is belonging to

= e we get s¥(e) = {c¥(e),0> = 0 € Z and hence 3, = 1. We lodge all summnads of N()) for m
< n - 2:in (35) (Proposition 2) in O(A""2*27("*)) ‘5 Proposition 2 can be _explained now as -

Theorem 2: The eigenvalue number N()) is satisfying the estima tion : Co
NQ) = L vol, (D)= + %,% "vol,,_ (D n B%(0))5,- A7 1 + O(A""2*2/(n+1)) - (50)
where Landau’s symbol 8 is to be taken from Proposition 4.

Remark 7: With regard to Remark 6 the assertion (SO) of Theorem 2 can be understood

.o

also' as a result of affine spectral geometry . A

4.4 Landau’s § - symbol and the inﬂuence of the fixed elements from ®on N (1) The decom—
position B = B(o) @ V(o) of the vector space BV into the subcpaces
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B(o) =ker(c -id)  and B'(o) =im(s - id) - , - (51)
and the sublattices

[o)=Tn®B(e) = and T[o)=Tn B*(o) L (52)

P

with n(o) = dim B(o) = dim l“(o) makes possnble to formulate the following fixed point proper-
ties.

Lemma 4: The affine transformation (o,{) ¢ & acting on B has a fixed point §, ¢ B lf and
only if { ¢ B*(o).

Proof: From (o, {)t, = o there follows (6 - 1d)g° -f, i.e. -f e B*(0) and so also { € B(a).
Inversely, for f ¢ B*(c) there is also -f € B(c) and so by (51) there is a vector g, € B with -f
=(o - id)g,, that is (o, {)e = o B

Corollary: Assume (o,{) € @ has a fixes point in B. Then (o,{ +t) € & has a fixes point in
B if and only if t € ['(o).

Proof: let be { € B(o0) (Lemma 4), that is { = ok, - §o, £, € B. @) Assume (o, + t), = &,, §,
€ B, so there is true that o(g, +'k,) - (g, + §,) = -t € B*(c) and then t ¢ B*(c). Because (o, ) and
(0,f + t) are in &, by (7) there follows that t ¢ " and then by (52) t € ['*(c). b) Vice versa from t
e (o) there follows t € B*(s), and under the ‘assumption { ¢ B*(c) we obtain -t,-f ¢ B(o), i.e.
-t = of, - £, and ~f = 0F, - s (£5 b5 € B). So there is true that o(g, + §,) + t +{ =(o,f + t)(g, +
E) =t + £, B ’

Proposition 4: Let be (o,{) ¢ @. Then 8, = 1 is true if and only. if there is.a lattice-functio-
ial t, € T wih the property that (o,{ + t,) has a fixed point ¢, € B, i.e. that{ + t, ¢ B(c).

Proof: We have to take into consideration that <o;g> = 0 if v € (o) and § ¢ B*(o) (see
(26) and (51); for understanding use dual bases in B = B(c) ® B*(s) and B* = B*(c) ® B*4(0)).

a) Assume 8, = 1 for a fixed ¢ ¢ &, i.e. V(o) = {¢¥(0),{> € Z for all-v = 1,..., m (see (45),
(39) and (37)). Then for an-arbitrary u = u,¢¥(0) e (o) there is trué that <{u, f) € Z. If we now
decompose { = {,.+ {, into f, ¢ B(c) and {, ¢ B*(c) we obtain {u,f,> = 0 because u ¢ B*(s). Then
we have {u,f> =<u,f,> € Z and therefore f{, € F(o) For eachr ¢ F*(o) there is t = -f+o0el
and then { + t, = {, + r € B(o). -

b) Conversely, let there exists a t, € I with { + t, ¢ B(c); we prove that s"(o) eZ forallv
=1,...,m, i.e. 85 = 1. We write's V(o) = {¢¥(a), > = <e¥(0),{ + t,> - <¢¥(0), t,>. Here {¢¥(0), t,>
€ Z because of t, € T, ¢¥(0) e [™(0) and so ¢V(o) € I'™. Now using the introductory remark of the
proof we find {¢¥(0),{ + t,> = 0 because { + t, ¢ B*(c), "(o) € ['™(0) and so ¢¥(0) € B*(s). Sum-
mariting we get s¥(c) e Z B

4.5 Survey of the influence of fixed (fixed point - free) elements of group @ on the asymptotic
expression for N()). If we ask for the intrinsic reason of the appearance of the pricipal term
coA\"and the secondary term ¢, \»7* in N(X) = oA + ¢, X1 + O(A?~2+2/(n*1)) we can ans-
wer (Proposition 4): - . : S
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s
3

(i) For o € 8, the fixed elements (o, +1t,) ¢ ® produce in (49) resp. (50) the volume
terms vol,(D n B*(0))-A™ whereas fixed point-free elements from & make contributions
only to the remainder term o(m- 2+2/(m+1)) S we have the following knowledge:

(ii) The identity (e,0) € & produces the principal part of N()) (because §, =1, e e £,).

(iii) The fixed elements (o,f +t,) € ®, 6 € &,,_,, produces the summands of the secondary
part of N(}).

Concluding remark: The theory developed above can be applied e.g. for crystallographic
groups, especiglly for the 230 space groups. For short it is recommendable to investigate an n
= 2-dimensional group, e.g. & = A 2;, ,, acting on B = [E? and having P = c(02 + 9,9, + 33) (9;
= c)/c)xi) as the @ -invariant operators for all ¢ > 0. The 10 possible exmples for & in the case
a = 2 demonstrate a considerable improvement if we turn from N(X) ~ coX" to N(X) ~ cA”
+ ¢, A" (see the Dissertation B of the author: Zur asymptotischen Verteilung der Eigenwerte
®- invarianter linearer elliptischer Differentialoperatoren mit konstanten Koeffizienten. Uni-
versitat Leipzig 1989). ;
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