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Axially Symmetric Flow with Finite Cavities I

P. BROCK

An axially symmetric cavity flow of an ideal fluid is moving around an obstacle. The flow is either in a
cylindrical pipe or an unbounded zegion and the cavity may be finite. Essentially is the assumption $hat
the obstacle is star-like with respect to some point on the axis of symmetry. The existence of such flows
was proved by the author in Part I. In the present Part II the behaviour of the free boundaries near the
end-point on the axis of symmetry (in the case of a finite cavity) and near infinity (in the case of an
infinite cavity) are investigated.

Key words: Non-continuous functional, symmetrisation, axially symmetric flow
AMS subject classification: 35 J 85

1. Introduction

A three-dimensional axially symmetric cavity flow of an incompressible inviscid fluid is xpoving
around an obstacle. In its shadow a cavity occurs which is bounded by a free surface and on
which the modﬂm of the velocity is constant. We consider the two cases that the flow is either
in a cylindrical pipe or in an unbounded region and make the geometrical assumption that the
obstacle is star-like with respect to some point on the axis of symmetry. The existence of such
flows was proved in Part I of this paper [2]. In the constructed solutions the free stream-lines
are also star-like. Moreover it appears that the cavity is finite, i.e. the free stream-lines end on
the axis of symmetry. In this paper we investigate the behaviour of the free stream-lines near
infinity (in the case of an infinite cavity) or near their end-point (in the case of a finite cavity),
respectively.

2. Smooth fit of the free boundary on the axis of symmetry
First we introduce some notations. If X = (z,y) is a point in R?, then let (r,) denote its
polar coordinates. Br(X) denotes the interior of a ball with centre in X and radius R, and we
set B = Bgp(0), where O is the origin (0,0). We take {y = 0} as the axis of symmetry and
introduce a finite and continuous curve N (the obstacle), which is star-like with respect to the
origin and has a representation (a > 0, b > 0)

N: X = Xo(t) = (zo(t),y0(t)) for 0<t<a;

Xo(0) = (-b,0), w(t) >0 if 0<t<a; (1)
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Xo is piecewise of class C'**, 0<a<1, VXo(t+£0)#0 for 0<t<a.
We choose A > max{yo(t) : 0 <t < o} and set A = Xo(a) = (24,y4), H = {y = h} and
S=({e<-b0}n{y=0})UNUAOU({z>0}n{y=0}).

By Q we denote the domain between the curves S and H and by Qo the domain above S (see

Figures-1,2).

Y

. Figure 2 -

We summarize the main results of Part I [2] in the following two theorems.

Theorem 2.1: There are a function u, a number A > 0 and a curve I' C 1, which has a

representation .

T:r=R(p) for all p € (0,94), with ¢4 = arctan :—:, '

R € C™(0,p4), with lmR(y) = d € (0,+o0], )
such that ‘

. 2 : :
0<u(z,y) < Z—z, Lu:=u, + Uyy — % > 0in Q in the distribution sense,
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u=1on g, {u>0}=:GCN,GNA=T,u=00mTU(8GNS),

ue C}G)nC(G), Lu=0ingG, (3)
10u .
ot AonT (v — inner normal). : (4)

In the case d = +oo (infinite cavity) I' has for great z > 0 a representation y = f(z) with
lime 4o f(z) = /h? — } and X > /4. In the case d < +oo (finite cavity) we have A < f.

Theorem 2.2: There are a function u, a number A > 0 and a curve ' C Q,, which has

a representation of the form (2), such that

yv?
05u$7 in Q, ' ' (5)

GC%, 9GCOx=T, u=0 on TU(BGNS),

and the conditions (3) and (4) of the previous theorem are satisfied. Further we have A < 1 if
the cavity is finite and A = 1 if the cavity is infinite .

The next lemma will be useful for us in the following .

Lemma 2.3: Let be Yo € tO,1r) and £ := B,,N{0 < ¢ < ¢}, 7o > 0. Rurther let v be a
solution of the following boundary value problem (C > 0):

v=0on 8L N By, v(z(r¢),y(r¢)) =: g(r,¢) < Csin?¢ on 82N 4B,,,
g€ C(T), ve CHT)NC(T \ {(cos po,sinpg)}), Lv =0in I.

Then there are numbers Cy,a > 0 and a function w € C?(0, o) such that
o2 ¥(ne)) € Curtteulp)sinte inD. (6)
Proof: The idea is to choose C;,a and w such that
o(rp) € Cirt*eu(p)sinp on OF , (1)

and Ly(r***w(p)sin? ) < 0 in T, where L := 8%’,— + ;11(-52-:7 - cot gpa%) denotes the represen-
tation of the operator L in polar coordinates. Then the inequality (6) follows by the maximum

principle. Now letting w(¢p) = exp(-¢tan®(£)) (e,a > 0) we get

Li(r**eu(p)sin’(p) = rw(p)sin’(p). x

(3a+a®—2e+¢? tan® % + 2¢? tan % + (¢? - 2¢) tan? %)
The term on the right-hand side is non-positive in T if we set 3a+a? = ¢ = cos® £ sin=? £2

Lemma 2.4: Let be (u, A, T') be a triplet satisfying the conditions of Theorem 2.1 or 2.2.
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Then there is a number R = R(A) > 0 such that u = 0 in BR N Q or Br N N, respectively .

Proof: First let (u,,T) be a triplet satisfying the conditions: of Theorem 2.1 and X =
(zo,j/o) a point in N {0 < ¢ < pa}. We assume that u(Xo) > 0. Then by [1: Lemma 5.2)
we conclude for any r with » < ¥ and B,(Xo) C 9 that 5uPsB, (Xo)nn ¥ 2 cyoAr, where the
constant c is posxtxve and mdependent of A. There is a point X; = (23,31 ) on BBW/z(Xo) (21 =
F1CO8p1, Y1 = 7 8in gp;) such that u(Xl) > £y3). Now we choose a number €0 > 0 such that
u = 0 on B,, N OA’. Because of (3) we can apply the previous lemma on the function u in

B,, N Q. This yields by the maximum principle
u(e(r,¢),¥(ne) < Cr**esin’y in B, Na, B (8

where the constant C; > 0 does not depend on (r,¢). If we choose C; great enough, the same
inequality (8) is valid in Q\ B,,. Therefore u(X1) < Cirj*%sin?¢; = Cyyir{. Because of
%1 < 3yoand r; < 3rp (:l:0+y0 = r2), we get now cyZA < 2C1y3(3r0)*. Hence there is a number
Cs > 0, independent of A and Xj , such that C3A < ro Choosing: R= (C3A)Y= the assertion
follows . ‘

. The proof is analogue if (4,A,T') is a triplet satisfying the conditions of Theorem 2.2. We
only have to replace the domain Q-by Qo‘,’ gﬁd the inequality u(z,y) < ’,{:— by (5) 0

Now we formulate the main result of the section .

Theorem 2.5: Let (u,A T)bea tnplet satxsfymg tbe condmons of Tbeorem 21 or22
Then 8{u > 0} is of class o ina nexgbbourhood of the end-pomt of tbe free boundary.

Proof: The proof is in three steps. In the first step we show that

liminf B = R(O) _ (9)
vlo '

Assume that (9) is not true . Then there is & non-horigontal straight line K through the end-
point E = (2o,0) of the free boundary such that 4 = 0 on K N QN B,(E) for a small ¢ > 0.
Smce the operator L is homogeneous in z, we can prove as in the previous lemma the existence
of a number R< 0 such that u = 0'in BE(E) n Q. But this is 1mpossxble

In the second step We prove

R(y¢) - R(O
vlo 14 _ .
To this, we consxder functions ua(X).:= ‘i(“—f,*—g)-, a> 0, (aX + E) € {u > 0}. Because of (9)
there is a sequence {Xa}n31 CT, X, = (2n,¥n), Zn < 2o , With X,, — E and —#a_ —, 0,

Bn—20

We set a, := Zo — 2. Since |Vu(X)| < Cy, X € B,(E) N Q for a constant C > 0 and'e > 0
small (eee the proof of [l_: Theorem 5.4]), it follows also |Vu(X)| < Cy, X € Bz n {y > 0}, for
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large n, with the same constant C. Therefore there are a-subsequence {a;,},,zl .and a function
ug € C% (B2 N {y 2 0}) such that us ~— uo, uniformly in Bz N {y > 0}. We want to show’
that ' ‘ '

w(X) = 34" in Binfy20} R ¢

We have 8{u,: >0} > (-1,y./al) — (~1,0) as n — +o0 .  Remember that T is star-like
and cannot oscillate near {y = 0} (see'[l': Theorem 6.1]). Therefore there is'a (small) number
€ > 0 such that for any p with-0 < p < ¢ we’get'ua:" > 0in Bg(——,p) if n is large enough v
Moreover, in view of [1: Lemma 5.2] we conclude that u, > c1Ap? in By4(—3,p)y where the
number ¢; > 0 depends only on p. Therefore it follows ug > c;Ap? in B '/4(—-, p).- Since the
number p > 0 was arbitrary we get uo(—3,y) > 0 for any y € (0,¢). Further we have

8 ) ‘

'8_ru(z(r)¢)l y(r,<p)) 2 0 inQ, - T Tt (12)
therefore 42 > 0 in B, Ny >0}, and fnally

uo>0 mB,n{0<y< }n{z>——} Do e e Tl (1)

It follows that {y on{-3<ez< 0} C {uo > 0}.and

lim ~Vuo(z,4) = (0,3) for any ce"(—g,O)'. s (1)

since the free boundaries '8{uag > 0} n {-3 <z< 0} converge to the segment {y = 0} n{-3<
z < 0}. Because'of (13) we-have Lup = 0in B, N {0 < y < §} n~{z > -3}, Together
with (14) this yields (11). Now for any 2 > zo.we set V(z) = limyo %u.,(z,y). Because of -
(12) we have V'(z)'> 0 if 2 > zo. Therefore the limit limaja, V(2) =:*Vo exists-and we get
lim,)o %f;uo(z!y) = Vyif 2 > 0. In view of (14) it follows Vg = A. Let {Xn}n>1 be a sequence of
free boundary points with X, — E and - > 7>°0. For this sequence we again consider the
above defined functions u,;. There is-a subsequence. {u » }a31 such that u; A — g .uniformly
mBgn{y>0}, 1’} — C>-randuo( -1 C)_O Ontheotherhandwecanshowasbefore
that hm,,lo Euo(z y) = A for any z >, 0 and uo(X ) = zy’ by u.mque contmuatxon, wlnc.h is
impossible. This proves (10).

. In the third step we show that 8{u > 0} is continuously differentiable in a neighbourhood
of E. Again we consider a sequence of free boundary points {Xn}n>1 with X, — E. We define
a sequence of functions {tn}an1 by ) ' -

LI

u,.(X )‘= yi,u(ynx + (zy;.o)); (X + (24,0)) € {u >0} .. . ,* (16)

n
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There is a function wo € C**({y > 0}) satisfying the following properties :

wo(X)2>0in {y2>0}, Lwe=0 in {wp>0}n{y>0},

%g—:’- =A on 3{wo >0} (v — inner normal), (0,1) € 8{wo > 0};

such that for a subsequence {u, }n>1 we get u,, — wp uniformly in compact subsets of {y > 0},
and the free boundary 8{wp > 0} is locally analytic. We consider the speed function ¢(X) :=
3|Vu(X)|. An easy calculation shows that V(yV(¢?)) > 0 in {u > 0}, i.e. ¢ is a subsolution.
We can continue ¢ continuously on 8{u > 0} N {y = 0} \ {E}. Setting ¢ = A in E we have
Hﬁpr.qu g(X) = g(E). Since g is bounded in a neighbourhood of E we conclude as in [3:
Lemma 6.7, p.184] that

g(X) <A (1)

It follows that %IVwo(X )l £ Aae. in {wg > 0} and this implies that 8{wo > 0} is concave
to {wo > 0} (compare with [3: Lemma 11.2, p.327]). Further from u, > 0 we get (wp), > 0.
It follows that 8{wo > 0} = {y = 1} and we(X) = 3(y* - 1) if y > 1. Thus the curves
8{u,}n B%(O, 1) converge to {y = 1}n B%(O, 1) in the Hausdorff metric, i.e. for any € > 0 there

xe{u>o}.X —E

is a number np = ng(e) such that 8{u,} N B%((O,lj) c{1 —e< y<1l+ e} for any n > no.
But this is the flatness condition of [1: Theorem 8.1]. Therefore the tangents on 8{u, > 0} in
(0,1) converge to {y = 1}. This finishes the proof of the theorem &

- Corollary 2.8: 1Vu(X) is uniformly continuous in a small neighbourhood of E .
v

Proof : It follows from the proof of the previous theorem that the function '—;'- is continuous
on 8{u > 0}NB.(E), € > 0 small. Then we can show as in [3: Theorem 11.3] that 3:- is uniformly
continuous in {u > 0} N B.(E). The same is true for the function Y2 in view of (16) 8 ‘

3. Convergence of the free boundaries

In this section we investigate the behaviour of the free boundaries near infinity.

Theorem 3.1: Let (u,\,T') be a triplet satisfying the conditions of Theorem 2.1 ﬁth an
infinite cavity. Then

lim f/(2) = '_ - an

400

where y = f(z) is the representation of T' from Theorem 2.1.

Proof: Because of the above mentioned theorem there is a sequence of positive numbers

{dn}n>1 with d, — 0 such that
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and the free boundary 8{u,, > 0} N {y > 0} is an z-graph. The function v = eoVtg — Aoy,
where eg is the unit vector %Vuoo(o,-l), satisfies

(%0 - Z(uoyea(0,))

1 1 .
;(z\o—;|Vu°°|) >0 inBn{y>0}.

Lv = A‘U—& =
y

v

Since v takes its maximum (zero) at the point (0,1), the strong maximum principle gives v = 0,
that is Vueeo = Agy. Recalling |Vug] < Aoy we get Vug, = Agyeg and therefore, as tg(2,0) =
0, uo(X) = 5,‘1(;/2 ~ ¢?), where c is an unknown constant with 0 <.¢ € 1. Comparing with (19)
we see that 1 > Ag. Thus the function ¢ takes its maximum on the free boundary. Therefore I'g
is concave to the domain {ug > 0}. Ty cannot have an end-point on the axis {y = 0}, otherwise
we could easily derive a contradiction to Theorem 2.5. It follows that I'o = {y = 1}. Finally the
property (18) was derived in [3: Theorem 21.1,p.405] §
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