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The Smoothness of the Solution
to a Two-Dimensional Integral Equation with Logarithmic Kernel

U. KANGRO

We observe a two-dimensional weakly singular integral equation with
logarithmic kernel. The behavior of the higher order derivatives of the
solution to the equation is examined in case of bounded domain of
integration with plecewise smooth boundary. Exact descriptions for the
- leading terms of the derivatives and estimations for the remainders are
“given. '
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1. Introduction. As a rule, the derivatives of a solution to a weakly
singular integral equation have singularities near the boundﬁry?bf the
integration domain. Dpscriptioxis of the singularities or at least esti-
mations of those are needed when effective approximate methods are
constructed to solve the equation. The case of one-dimensional integral
equations is analyzed in [1,4,5,7]. In [3,6] the behavior of the derivatives
of the solution is examined in the case of multidimensional equations.
In general, these estimations are non-improvable for the classes of
kernels considered in [3.6]; typically, the singularities may occur along
the whole boundary. In [2] a more special equation with logarithmically

singular kernel is examined:

u(x)= [ alx.9) Inlx-ylu(y)dy + f(x), xen W
d ' .

where QcR? is an open bounded set with a .plecewise Lyapunov boun-
dary and f and a are sufficiently smooth functions. It is shown that a
solution to (1) and its first derivatives are continuous on the closure 0}
and the second derivatives may have logarithmical or bounded slngulari-'
ties only at corner points of the boundary 90. Explicit formulas for the
singular parts of the second derivatives are given.

In the present paper we continue the examination of a solution to (1).

We describe the leading singular parts of its derivatives of an arbitrary
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order depending on the smoothness properties of a, f and 0. In general,
(! may have an "inner boundary” (a part of boundary where Q lies on both
sides of d0N). To treat this situation formally, we use the "inner” com-
pletion 0* of 0 instead of the usual Euclidean closure 1. A function
ueC(0*) is piecewise continuous on 3 and may have jumps on the inner
boundary. More complete definitions are given in Section 2.

2. Definitions and assumptions. Let T be a piecewise smooth closed
t (y)
1

tz(y))' yeI'. Then

directed curve with the unit tangent vector t(y)=(
o u"(y))_(—tz(y)
"’(y)'(mz(y) g
we move along the curve I' in the positive direction, then the interior

) is the unit interior normal to T at the point y (if

is on the left). Let ¢=¢(y) be the angle between the abcissa axis and
the vector t(y). Denote by P the matrix of rotation by -n/2 and P (y) —
the matrix of rotation by ¢(y). Then )
(0 l_) _ ( 0, (¥) o, (y))
P -(_1 o/* P¢(y) Tleay) w0/ yerl.

For a smooth curve T denote

H™WT) = {fec'"(r) |dm’(”) - )| < Miy-y Y. o<ust

Let Q be an open bounded set. Introduce the inner distance dn(x ,x2)
between the points x!,xZe( as the infimimum of the _lenghts of the
polygonal paths in Q which connect the points x! and x2. If x! and x?
belong to different connectivity components, then let do(x‘,x2)=co.
Denote the completion of Q with respect to d,-metrics by 0*. Let T be
the d,-boundary of 0%, that is I'=Q*\Q. Then T is the boundary of 0
with poSslbly "multiple points”, which are different in d-metrics.

Assume that separation points y',... ,y” divide ' into smooth parts
I,, ... .T, so that wE[H""'“(I‘ Y¥. j=1,....n. Assume that there exists a

3>0 such that the normal © is m, times (mlsm) continuously dlfferent,l-
able in TN S(yJ, 5), where S(y.S)— {x:1x-y|l<8}. If o is discontinuous at y/,
then put m=-1. In the following we refer to these conditions as
Te G(n,m,u,{ml}jL"). Note that G(0,0,u,#) is the set of Lyapunov curves.

Denote m_= wmin m, and, for k=0,*1,... ,
° J=1,....,n J

Ry (07 =Ry (0% y Fmy )

' rec(y’), if mp k
tnix-yZt1, if m=k
Ix-pl|my -k if m<k

- * ) n 3
=1reC(O®\{y',...,y"}) |r(x)|sC(1+Z

J=
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where r € C(y/) means that there exists a >0 such that r is continuous
in 0*NsS(y/,5). Then Rk(O’)=C(Q') for k<m,. For example, if O is a
rectangle, then m =-1, j=1,2,3,4 and Rk(Q')=C(ﬁ), k <-2; R_,(0%) consists
of functions which may have logarithmic singularities at the corners
of 0, and Rk(()'), k20 includes functions with possible singularities up
to the order Ix-y/|”%"! at the corners.

Denote

argj(x)=s§(x)Arg(x‘-y{ *i(xz-y.f,))

where e{EC‘”(Rz) is such that es(x) t for xe S(y/, 2) and sl(x) 0 for
xe¢ S(¥/,5); 5 is chosen so that the point y/ and » can be connected by
a continuous line lying outside of QNS(y/,8). Outside of the line let the
function Arg be continuous. '

For a derivative D* we define an order of differentiations by

D“ D°‘ , 1=1,... .k,
x axl'x

where «2=(0,0), iy oennip€{1,2} and ak=q.

3. The main result and examples. Now we can describe fully the smooth-

ness of the solution to (1).

Theorem: Let QCR? be an open bounded set with dg-boundary
FeG(n.mudml? ). Assume that feC™'*(0%), aeC™'*(0*xQ%) and
equation (1) has a solution in L(Q). Then the solution ueC™o*2(*%)
nc™ 3 a*\{y' ,....»") and , for la|=k=2,3,... .m+2,

D%u(x) = En alx.y!) uyH[ b, (y% (5‘2; )k—m’ “Inlx-y4
J=1 1
e | 2)
-bm(yl)(a—a;’) ik 3"81(4")] + "k_‘(x).

where r, _ R, _, (0*) and

by (r) b,ly )) pa d

B (’)'(b () baa(yh m;ﬂ[“’ NP y;P 7.

Corollary: If the functions a, f and the d,-boundary of O are
infinitely smooth, then the solution ueC®(0*).

Remark 1: Similar result is also valid for a two-dimensional
integral operator with logarithmic kernel. Let a and 1 be as in the

theorem and let u be such that DBuele_s(ﬂ'). 0<|g|sm+1. Then the
singularities of the function l{a(x.y) In|x-ylu(y)dy are described by the
right-hand side of (2).
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‘Remark 2: We may weaken the assumptions for f. Namely, if
Dafexlal 4(Q") for 0<iBlsm+2, then (2) holds. If for every 0<|Blsm+2 the
derivative Dafeklm 3(0 ), then the slngularlues of the derlvatlves of
a solution to the equation (i) are sums of chose described in (2) and
those of the corresponding derivatives of f. ’

Example 1: Let O be the .unit square, 0=(0,1)x(0,1). Write out
some singularities of the derivatives of the solution at the point y'=(0,0)
(at the other corners they are similar). Since

1 x,+1
- y=_y-*_01 1)_ (01)2
B,(M=P [0 B0 ][ . ‘(—1 o) (1)( 0/ \i o/
and arg,(x)=arctan % ., X€Q), we get

62
au(x)

X,

- a(x,y") u(y') arctan—i—’- +v(x),
! 1

% u(u) - - 1 1 _ 1

9%,0x, a(x,y)u(y') Inix-y'l + v,(x),
u(x) . 1 1 X 2
3% a(x,y") u(y’) __z_x,’ rars B vo(x)

and so on. Here v and v, are continuous in a nelghbourhood of » and v,

has no more than logarlthmlc singularity at ‘the polnt »

Example 2: Let the boundary of (0 be such that y2=|yl|3. in a
neighbourhood.of the point y'=(0,0). Then,

w(y)= W( 3y sgnyl) L. .

The function o is continuously differentiable but its second derivative
is discontinuous at the point y'. Therefore m ;=1 and the 'solution to the
corresponding integral equation has continuous derivatives up to order
3 in the neighbourhood of y!. Since

) Pq,(y)]|y’;’} P2 (y")

(3 Sy )8 ) (S 4)

x
and arg‘(x)=arccotx—;, xe), we get

B (y

d%u(x _ 1 1 X,
dx_d%"ig .12 a(x, y') u(y') arccot —x:- + v(x), .

1

M)_ = Q‘_"(L‘). =12 a(x,y‘) u(yn) hﬂX‘)"I + v,(x)',‘

4 4
Ix, Xy

du(x) _ ; wW_Xp
33 =12 a(x.}")u(y)z;f?: +v,(x),
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where v, v, and v, are similar to the previous example.

Example 3: Let y! be a ﬁuspidal point of . Then o,(y}) =-w,(yt)
and - ) .

w0, () P,(y) oot Lo o

eyt (0 0)

Therefore the leading terms of the singularities will disappear and the
second derivatives of the solution have no singularities at y!. The third
derivatives have no more than logarithmic singularity and the derivatives
of order k (k>3) may have singularities up to power k-3 at the point .

4. The lemmas. In this section we present some auxiliary results we

need for proving the theorem.

Lemma 1 (see [1]): Let T, a part of the d,- boundary of 01, be a
Lyapunov curve with beginning and end points y' and y?, respectively.
Let the function gEC(Q'XI‘ ) be such that g(x,- )EH°"‘(I‘ ). Then

fg(x,y)l ;’1‘2 ds, Z( l)lg(x.y’)[u,(yl)argl(x%( 1)' 0, ‘(y])lnlx—y]|]+v(x)

leere VeC(O*).

Denote for x,yER2 XZy

[ (x,=x, )/ x-5?
""‘""(( Xy-yy)/1x -yI’)

Note that

o loel
-aix-zq(x,y) = Pa%, q(x,y) and DX q(x,y)= P ’(alx') qlx,y),
and, for yeT, .
& g(x.y) = 2 qlxy) = 0,0 gy - 0, (NS q(x.y)
-crsy . ot T 2379y, . 1773y, .
~(0:05% alx) -0, P % Ax) = - Py 5% alxy).

Therefore, for (x,y)eR2xT,

-t

32 a(x.9) = -Py(0) 5% alx.y) and DE q(x.y) = PR T atx.n.
: . Y . .

Define also the operator 9 by
$ﬂx,y)=%y[f(k.y)l’¢(y)]. xeQ, yeT,

where f may be a scalar or a 2x2 matrix function.
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Lemma 2: Let () be an open bounded set with d., - boundary
I"EG(n,m.u-{ml I2,) and 0<ksm, p>-m_ . Assume that ge ck* Y a*x0*) and
DPveR, _, ,(0%), 0<iBlsk. Then

fg(x,y) viy) DZ Ix;:yllz 0, (nds,
r yimoe
rk_p(x), if psit,
l l§‘g(x.y’ )v(y)[b“(y’)(ai) T inlx-ph-

m;<k
J -b,z(}")(a—a- )k m,- arg](x)]q-rk_z(x), if p22,

where |a|=k, 1,i,=1,2, r/€ R,(()’) and

B0 =P e [ Rt 11 ) BTN,

Yq(x,y).
Examine the integral over some T y with beginning and end points 3 and y2
respectively. Fix a point x°€(). Let §,, I=1,2 be such that r, NS(y!8) consists
of only one curve for every §<§, and let ¢, mln{sl, lx°-y’|/2 [yt —y2|/2}

Denote l‘l' = Iﬂ.S(y,e,), 1-1,2, and I‘l I‘l\(l"]UI‘;). Then we can divide

Proof: Instead of D:((xl-y,)/ix-ylz) we may consider (3/9x,

the integral over T, into integrals over r I‘f and F] Let the end points
of FI' be y' and y'. First let us consider the case when k>p+m,. Then
we may integrate the integral over I‘j‘ by parts p+m+1 times:

f é(x,Y) V(,V)(al )kq(x.y)w; (y)ds,
r 1 0

J

£ k-1-1 =31
-> <9'[g(x,y) (e, (N]P, (y( ) atx| 7 (3)

1=0 Y=Y

prm, 1 2 fpom
: rf 9 [etxnvine, )& ) a(x.9)ds,.
J .
Since

o ykpmmyo1 | c c c 1
l(a ‘) q(x ,}')I < |xo_y|k‘P-m‘s elk‘P'm‘slxo_yllk'P'm" yel}

and the derivative of order (p+m,+1) of the function v has at most loga-
° rithmic singularity at the point y', we may estimate the absolute value

of the last integral as follows:

ol [+
J

Examine the integral over FJ integrating it k times by parts:
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?f‘ g(x. vy (ﬁ)“ a(x.)0, (N)ds,

y=y*

k-1 ) o \\k-I-1 .
= - IE D[ g(x.y) v(y)w,o(y)]l:p (y)(g; ) q(x'y)‘y.y,
=0 - ! -

+ [D*[ slx. ) vy w,o(y)]q(x.y) ds,.
J

From Lemma 1 we get that the last integral can be estimated at the point

x° as follows:

2
c). | D[ e v(») m,o(y)]l (1+]1m1x0-71]).
I=] - .

In 'a neighbourhood of y' we get the upper bound

1+|Inly-y'|), k=m +p+1
C(l+|lnlxo-:)‘"‘||) ( | |) ! £ o ‘Ck'p'm :
' Gt ompe et | ey :
Adding the integrals over r, f:‘, and I)z, the addends at §' with

1=04,...,p+m, will reduce. If p+m, <k, then the remaining addends where
I=p+m+1,... .k are estimable by

e [aelmos)). 1mepn |, c
BT o1 k-p-m,
0=/l o mye Ix°-rl '

Now let us consider the singularity at the poiht ». We got the
addends which include y! when calculating the integral over I")l (see (3)).
Since y! is the beginning point of I‘l and also the end point of some l} .
addends similar to these we have got arise but with the opposite signs.
As the function v is at least p+m, times and the functions © and P, are
at least m, times continuously differentiable at the point yl (if they are
smoother, then there exists y/, which is different from y' in d,-metrics,
but the same in R?-metrics, where the functions » and P, are exactly m,
times continuously differentiable), the addends where /=0,...,min{m , m +p}
will reduce. If p>0, then the addend where /=m,+1 is the following:

e ) Lo () R IR () ™
y

-t
Y=y+
x| 7,
y=y-
Multiplying it by P*2 and taking the i-th component of the vector, we
get the leading term appearing in the assertion of the Lemma. Remaining
d

’ .
terms include as singularities only (S;) q(x,y), 1=0,...,k-m-2 and there-
1

k-m -2 .
fore are estimable by c/I1x% Y ™% Since previous estimations in-
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clude C/lxo—yllk-p-m‘. in case p=1 we must count the leading term into
the remainder, too.

We have proved Lemma 2 in the neighbourhood of y' when k>p+m,.
If ksp+m,, then the proof is similar, only we do not need to cut off
the neighbourhood of y' but can integrate by parts k times over the
whole curve. If k <m_, then all singularities will reduce and the remainder
is continuous in the neighbourhood of y!; if k>m,, then we get the
leading term and the remainder analogously to the previous case. In the
neighbourhoods of the other singular points the proof is similarB

Lemma 3 ([3]): Let NCR?® be an open bounded set with piecewise
smooth d_-boundary T. Assume that Keck((0x0)\{x=y}) and there

exists v<2 such that
1+|{Inlx-yl| , v+lal=0,

IDS Ky(x.9)| s c{,

. lal + 1Bl < k,
1+lx-y|"V"*, v+ial=0,

where ’ )
= (9 .9 Yo , o \B2
Ka(x,y) (c)x, +6y, ) (c)x2 +<)y2 ) K(x,y).

Then for ueCk((}*) the function JK('X,}')‘I'J(}')dy is k times continuously
differentiable in ) and V
D:!K(x,y) u(y)dy = > :(g‘)ixa_a(x,y)bau(y) dy

ffa

k-1 1 ’l*' ° ) ) o
3 S P Kt gl Dot (N ds,, w00, el =k

I=0 psod

Fix a point x°€(). Denote

5p=1/2’=nr.l.rt'n|x°—yll, p=0.1,... and 0p= OﬂS(x°,8p).
m,Sm°+p ’ .
Let
1,1 1 »
A =(ds et v s +11n3 1 +1).
P \3P P 8-t P )
Note that
1 Ap#j ’ l<pv
Ap?——s C Ap"‘]*l‘ 1=p,
! A1+] ’ l>p

and, for p=0.,1,...,

Rmo*p(()')={rEC(Q*\{y‘,...,y"}: reCly) if my>k, H(x%s CAP},

where C is independent of x%€Q).
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Lemma 4: Assume that k(x,y)=g(x,y)ln|x—y|+g,(x.y)|i;—:%z. _where

2.8,€CPNQ%0"). Let veC(0" be such that DPveR, 5 ,(0%) for each
|Bl<p. Then

DaI[k(x:}') v(y)dy eRP*mo(Q*)’ lal=p+1.

Proof: Let the point x° and 3,,...,8, be fixed as above Then

f K(x.y) Vy)dy = f Kx ) viy)dy + f kKx )V dy + ...
a\q, ann,
+ f k(x,y) v(y) dy + [ k(x.y) vy)dy.
p-N\Op Qp

Differentlate the lntegrals at xEQ and after that estimate them at the
point x,. We can differentiate the first integral under the integral sign:

D™ [ k(x°y) v(y)dyl < C f |D K(x%.y)| dy
O\O

dlnm [¢]

scj'l;_ZmTlgcf 2nrr—gi—'§sCAp.
o Q\Q

As VECf‘(Q"‘_‘), k=1,2,... ,p, we can differentlate the integrals over 0, 1\01:

k times by Lemma 3. We obtain that

p* [ kxy) ¥y dyl
Op 1\ ,

k T
o S5 T kansten Doy

Bsek 0, _\oy

EUSUE) [ o v, 010

=0 @sal a0y, _\0y)

EstimaAte‘the lntegrals in the first sum:

| ) D:-akkak_a(x".y) DPwiy) dyl

Oy 1\ O .
1+1Iln8,1), k=p )

d ( k'
TV W e ETTVIRS B Ve 2

Op N0y L .

We can differentiate the integral over Op p+1 times by Lemma 3. Thus

p“([ Kxpvindy => (g) Jka_a(x.y)Dﬂr(y) dy
B P v

: ZZ( ) f " ko1_g(x.y) D“v(y)m,hl(y) ds,, .-

loasa
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Note that all double integrals are continuous on Q'ﬂS(xo,sp).

Now let us add all the boundary integrals arisen within the proof:

2 P s 0P, 0,

1=0 BSG‘

Observe the integral over c)ﬂ . We may present it in the form

~i+1

> f hk(x.y)D" inix-yi DBV(y)w ., Pds,

k [+ eﬂl
where hkec”"*“(o*x()’), vk =k and IBls/, hence DPv ecC!*1-18l(0*). For
ks1+1-|B] we may integrate by parts k-1 times to obtain

9 k-1 8
) {) lhk(x,y) (3%) axnDPine, (Nds,

T

k-2 ' k.- y=
=2 > D[y PPrine, 1RO ) et

kl=° _yoeY, —)'*

* [ ¥ [hxp) PPripIe,  (Mlatxy)ds,

eq, “1
where Y, is the set of angular points of aQ1, (the set of intersection
points of I' and the circle with center x° and radius- 8,).- Consider
the last integral On 9d0Q,N00) we may use Lemma 1. On the remaining
part of (), we may estimate the components of q(x°y) by 1/3,. As

( 9 ) DBy €R 1Bl k, _1(0 ), the absolute value of the integral is estim-

6sy ‘ ) _ .

able at the point x° by i
EA . (1ins, 1+ L 2n3,) | <ca < CcA
1Bl+k, -1 sk K -1 IBl+k-2\1119; 5, moy 1+ k-1 P

For k >1+2-|B}, integrating by parts we must take into account the
singularities which the derlvatives of order k-1 of DPy may have at the
points y’EO where m <k+m o~[Bl-1. In that case we have to cut out small
neighbourhoods of these points I‘ =rns(y’ e) where ¢ < Ix°-y1/2 is
chosen so that the circle s(y’! ey ) would not contain other slngular points
of the boundary except the ones which are the same in R2-metrics.
Outside the neighbourhoods \Qe. may integrate by parts k-1 times. In
addition to the addends similar to those we have got in case k<1-2-|gl,
we then obtain

" - v - .
kz_: oz);tﬂ)*'[hk(x,y) Dﬁv(y)w,hfy)]}’qp(y)(al&)“ K, 2q(x,y)|y=y°, (4)
1 y'e S

where Y is the set of the end points of the neighbourhoods and the
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sign +(-) is chosen when the point y° is one of the beginning (end)
points of the domain of integration.

Now let us consider the integral over f"j. In the neighbourhood of
y! the function DPv(y) is ml-mo-IBI times continuously differentiable.

Therefore we can integrate by parts mj—mo—IBI times. Adding the result

to the addends of sum (4) where y°EF we get

S S eoMheartie, (lRME) T e

ky=my-mg-18l y% ¥nf, y=s

+! ,ermo—lsl[hk(x.y)va(y)m‘lﬂ(y)](aa k 1-(my-mg > Ial)(x »ds,,

oy

Since the distance from the point x° to the part of the boundary 1'3 is

at least &, _ . /2 , the last expression is estimable at the point x° as
o

follows:
1
C Z A]3|+k -1 Sk ky-1 *Am] mg-1 I-lmj—mo 1)) fds
k,=mj-mgq-I8l my-mg "'I"’"O Ly’
< CAk"Bl"l < CAP.

Since all boundary integrals are also continuous in 'O'HS(x°,8p), the

lemma is proved @

5. The proof of the theorem. Let the assumptions of the theorem be
fulfilled. At first we prove that then ue C™o*2(()*). Differentiating both
sides of the equation (1) with respect to x, and denoting

K(x,y) = mlnlx-yl + a0 X

x-yl?
we obtain
du(x) _ 3 flx)
3x, (J;K(x,y)u(y)dy+ ax, (5)

Further we use mathematical induction. We know that wueCY0*). We
must show that if ueCk(0*) and ksm +1, then ueCk*1(()*). The function
K satisfies the assuniptlons of Lemma 3 for v=1. If uEC".(O'), then we
may differentiate formula (5) by Lemma 3. Therefore, for la|=k, xe0,

p=ouln -7 2 [Ku-plxr) DPuly) dy
Bsa

ox,
. 6)
k- : :
a—-cd*1 B o c)f!x)
+ ,[D K, 1_g(x,y) D u(y)m,lﬂ(y) ds, +D %,
1=0 Bsa
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In the first sum all addends are continuous on 0N*as weakly singular
integrais. In the second sum the integrand'is the fol'lowln'g'
. ‘ 1+1
a-a —adt1 a(x,y) -
E ( . )[D“ «lt Al __9__ D Yin|x-yl Dau(y)m . )
ysa-al*l . 1

1+1
a-ot
+Dx

'Yaa,_s(x,y)u* l’;‘ r oﬁu(y)w, (y)]

a-ol*l

Since aGC"”z(ﬂ’) the function D Y sa wl-p/0x, s at least [yl+t

times_ continuously differentiable. According to the inductlon assumption
DPueck 1Bl (" c clYI*1()*). Then by Lemma 2, where k=lyl-1 and p may
be arbitrarily large, the integral from the first sum is continuous on Q°
Analogously in the second sum the coefficient of D X(x;y,;)/|x-y|* belongs
to C!YI*1((*) and therefore by Lemma 2 the integral from the second sum
is also continuous on 0O* Consequently ue Ck*1(Q¥). '
Since y(ecm*’*‘z(ﬂ") we can differentiate formula (6) by Lemma 3
once more. We gef the formula similar to (6) where k=m_+2. The first
sum is continuous on O% again. If we write out the integrand in the
second sum, we shall get that all the addends except the one where /=0
and Yfa-a' are continuous. on 0* From:Lemma -2 where- k=lyl=m +1-we
obtain the fact that the exception has a logarithmic singularity at those

points yl where m;=m,:

: fa(x.y)D:'“‘% wo, () ds,
r -

Za(x.y)u(y)[b,,(y)lnlx—y’l+b,2(y)arg}(x)]+r a4, _1EC(Q)

}’ M

m’l

By = prd Ay .,,ou = [0, WP (y)][’ St (y).

As w,P = I+Po P, (therefore we may substitnte P‘ ‘for @y P,) and -
b= b}, : 1,j=1,2, where B'(y/)) = Pl-lB(yI) we have- got t.he assertlon of the
theorem for k=m, +3. . : Co - ‘

Now: let us use mathematical 'induction again. Suppose that the
theorem is valid for some k= m+3+p (p2 0,:m';+p'*4's m+2). Show that then
the theorem is true for derlvatives of . order k+i. Examine formula (6)
where k=m_+2. Denote k(x,y)=zK a(x.y) viy) = DBu(y) These functions
satisfy the conditions of Lemma 4 and therefore the derivative of order
p*l from theé first sum in formula (6) belongs” to R, (0%)=R,_4(0%).
In boundary integrals we can differentiate under the integral sign:
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—xl*1 . . .
DvJ'D: @ Kul_s(x,y)Dau(y)mllﬂ(y) dsx
r .
(\Ma al’l) f[ +1_ aa 1_ B(X )')
- ‘ Dv*a ol -y ’,

Y -
3x, D lnlx yl

ysv+ra-al*l

+D:"u-°‘hl- Xy )'1

Ya,1_g(x.y) D; ]Dau(y)(.)l (y)dsy, lvl=p+1.
Examine the coefficient at D*lnlx—yi The factor which includes the
derlvatlves of the function a is at least Ivl+1 times contlnuously diffe-
rentiable Since according to the induction hypothesis DR "uekm “inl- 3(() )
if Inlsp+2 by Lemma 2 where k-lyl 1 and p=2-|gl, we get that for
IB=0 the integral belongs to Ry _,(0")cR,, (0")=R, ;(0%) and for
181>0 to R |, 1a-a(Q")CR, (0% = R,_ (Q%.

Estimating the addend which includes DY(x,-y,)/lx-yI we. use
Lemma 2, where k=|y| and p=2-|B|. Similarly to the previous part of
proof we get the result that for |8|>0 corresponding integrals belong to
Rk_a(()'). If |181=0, then the integral belongs to RlYl_‘(Q‘). If lYl<p+m_+2,
then»RlY'_l(O‘)CRk_s(Q‘). If lyl=p+m_ +2, then y=v+a-a' and the addend
is the following:

—x— Xi—
Jalx,y) Dy I;_;;, u(y)o, () ds,.
r

After using Lemma 2 we obtain the fact that the integral is equal to
the expression

Z'_' ae A b, (E Y Inlx- )
m;;k-l ' »
- b,z()'])(‘%‘“)‘r-mr2 argl(x)] +r_5(x),
where rk_seRk_a(l)’) and

(veady+1-1 d™Y*! oy 1
B(yh)z POV ‘;—smlw[w;(y) P, (y)]r;=y1_ P ().
y

We have got the assertion of the theorem for |a|=k+18
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