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Identifiability of the Transmissivity Coefficient

in an Elliptic Boundary Value Problem 

G. VAINIKKO and K. KUNISCH 

Abstract. We deal with a coefficient inverse problem describing the filtration of ground water 
in a region fI C R1 , n > 2. Introducing a weak formulation of the problem, discretization 
and regularization methods can be constructed in a natural way. These methods converge to 
the normal solution of the problem, i.e. to a transmissivity coefficient of a minimal L2(1l)-
norm. Thus a question about L2-identifiability (identifiability among functions of the class 
L2 (11)) of the tra.nsmissivity coefficient arises. Our purpose is to describe subregions of fl 
where the transmissivity coefficient is really L 2-identifiable or even L'-identifiable. Thereby we 
succeed introducing physically realistic conditions on the data of the problem, e.g. piecewise 
smooth surfaces in fI are allowed where the data of the inverse problem may have discontinuities. 
With some natural changes, our results about the L'-identifiability extend known results about 
the identifiability among more smooth functions given by G. R. Richter [4], C. Chicone and 
J. Gerlach [1], and K. Kunisch [3]. 
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1. Inverse problems 

1.1 Boundary value problem formulation. Let Q E R5 (n > 2) be an open region 
with a piecewise smooth boundary ad; we denote by u the outer unit normal to Oil. Let 
r c Oil be a relatively open set having a piecewise smooth boundary on Oil. We shall 
deal with the following inverse problem: 

Find a coefficient a E L2 (il) such that 
- div(a(x)Vu(x)) = 1(x) (x E Il),	(a(x)Vu(x)). i(x) = g(x) (x E )	(1.1) 
where u E W1 '°°(il), f E L2 (iZ), g E L2 (r) are given functions. Physically, u can be 
interpreted as the piezometrical head of the ground water in dl; the function I characterizes 
the sources and sinks in dl and the function g characterizes the inflow and outflow through 
r c Oil. The filtration (transmissivity) coefficient a is, physically, positive and piecewise 
smooth with possible discontinuities of the first kind on some surfaces in dl. 
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We do not exclude the case of r = 0. The boundary condition is omitted in (1.1) in 
this case. 

Conditions (1.1) can be understood in the sense of distributions. We prefer to deal 
with the weak formulation of the problem. 

1.2 Weak formulation. Let us provisionally assume that the functions a and u are 
smooth (e.g. a E H'(f) and u E W2 '00 (Il)). Multiplying the first equation of (1.1) by 
w E H'(Il), integrating by parts and using the second equation of (1.1) we obtain 

JaVu . Vwdx = f fwdx + f gw dS +f(aVu) . vwdS. 

Introduce the subspace 

H 1 (u) = {w E H'(Il) w(x) = 0 for x E an \ r} c H'(il). 

We obtain the following weak formulation of the inverse problem (1.1): 
Given u find a e L2 (il) such that 

	

JaVu.Vwdx = f fwdx+ J9wds for all wE H'(il,f).	(1.2) 

The same formulation can be obtained in case of a piecewise smooth function u. Problem 
(1.2) makes sense for u eW1'(il) and a L2 (il). We assume throughout that u E 

1.3 Operator equation formulation. Let us denote by G the space of gradients of 
functions wEHl0(il,F): 

G = G(il,F) = {Vw: w  H'(il,F)} C (L2(il)). 

Let QG denote the orthoprojector in (L2(Q))n corresponding to G. We observe that 
problem (1.2) is equivalent to the equation 

	

Ta =	 (1.3) 

where the operator T = Tu E £(L2 (fl), F) is defined via the formula 

	

Ta = QG(aVu)	(a E L2 (il))	 (1.4) 

and 0, = bj is a solution to the direct problem 

	

—V&(x) = f 	(x E il),	
(1 5 

	

V(x) . v(x) =g(x) (x ET),	b(x) =0 (xE Oil\r). 

Indeed, 1' satisfies the variational equality 

Jvb . Vwdx = f fwdx + JgwdS	for all w E H 1 (iZ,F),	(1.6)
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thus (1.2) takes the form 

faVu Vwdx = 
f V 

Vwdx	for all W  H'(fZ,I'), 

and this is equivalent to (1.3) since QGV = Vb. 
In case r oil, problem (1.5) is uniquely solvable. In case r = Oil, problem (1.5) 

is solvable if fn f dx + fan g dS = 0; this condition is also necessary for the solvability of 
the inverse problem (1.2) if r = Oil. 

1.4 Ill-posedness of the inverse problem. The operator T E £(L2(fl),r) has a very 
simple adjoint operator T* e £(G, L2(il)): 

T*Vw = Vu . Vw	(VW E C).	 (1.7) 

It is easy to see that the range R(T) C L2 (il) is non-closed in L2 (il) even if IVuI ^: co > 0 
in il (here our case n > 2 essentially differs from the case n = 1). It is also clear that T 
is non-compact. Consequently, T E £(L2 (il), I') has a non-closed range R(T) C C and is 
non-compact, too. Thus (1.3) is an ill-posed problem with a non-compact operator. This 
circumstance essentially influences the construction of discretization and regularization 
schemes for problem (1.1). 

2. Discretization and regularization (a survey) 

2.1 Discretization. A natural way to discretize the inverse problem (1.1) is to apply 
finite element approximations to the weak formulation (1.2) of the problem. Introduce 
finite-dimensional subspaces Sh C H'(il, I') depending on a discretization parameter h> 
0; we assume that Sh is complete in H 1 (Q, ) as h — 0, i.e. for every w E H 1 (n, 1'), there 
exist wh E Sh such that wh - w in H 1 (Q) as h — 0. We introduce the following discrete 
version of problem (1.2): 

Find ah E L2(Q) of minimal V(Q)-norm such that 

J
ah Vu . Vwh dx =Jfwhdx+JwhdS for all wh E Sh .	(2.1) 

Problem (2.1) has never more than one solution. If problem (1.2) is solvable, then problem 
(2.1) is solvable, too, and the solutions satisfy the relation a, = Ph,a where Ph, is the 
orthoprojector in L2 (fl) corresponding to the subspace {ah E L2 (11) : a = Vu . Vvh, 
vh E S,j; a consequence is that a —' ao in L2 (0) as h - 0 where ao E L2 (il) is the 
normal solution (the solution of minimal L2 (fl)-norm) of problem (1.2). Conversely, if 
problem (1.2) is non-solvable in L2 (il), but problem (2.1) is solvable, then II ahIIL2 (0) —) 
as h—p 0. 

Choosing a basis W = Wj,h (j = 1,. .. , 1 l,) of Sh, problem (2.1) can be reformulated 
as follows: 

Find

a = >2 Ci Vu . Vw,	 (2.2) 
j=1
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solving the system of linear equations

Ac = d	 (2.3) 

where c is an 1-vector with components c, d is an 1-vector with components 

d1 
= J fwdx + !9wids

	
(i = 1,... ,i),	(2.4) 

and A = (a,,) is an i x 1-matrix with elements 

aij = I(Vu - V'w)(Vu . Vw 1 ) dx	(i,j = 1,.. . , 1).	 (2.5) 

2.2 Regularization. Consider the case where, instead of exact data denoted here by uo, 
fo, and go we have polluted data u = u, E W100(1), f = fb E L() and g = 96 E L2(I') 
at our disposal. Then numerical difficulties should be expected especially for fine grids, 
and a precedent regularization of problem (2J) is needed. Tikhonov regularization yields 
the following numerical scheme (cf. (2.2) — (2.3)): 

a,h =	- Vw, . (aB+'A)ca = d. 

Here d is an i-vector with components di defined in (2.4), c is an i-vector with components 
c,,,, (j = 1,. . . 

'
1), A = (a t,) and B = (b,) are i x 1-matrices with elements a ij defined 

in (2.5) and b,, = j Vw, . Vw1 dx (i,j = 1,... , 1). A suitable value of regularization 
parameter a > 0 depends on the errror level of the data. Assume that 

—	 :5 6,	 (2.6) 

sup Vu,,(x) — Vuo(x)I :5 77	 (2.7) 
xEC 

where &o and Ob are the solutions to the direct problem (1.5) with right-hand terms 
fo, go and f6 , gb , respectively, and 6, 17 are small positive numbers. Then an a priori choice 
a = a(h,6,q) such that 

a(h,6,) —+0, (62 +i72)/a(h,6,7) —+0 as h, 6,i7 —+0 

guarantees the convergence aa(ho,7)h -p ao in L2 (1l)-norm as h,8, 77 —+ 0 where a 0 is 
the normal solution to problem (1.2) corresponding to exact data uo, fo, go (we assume 
that problem (1.2) with the exact data is solvable in L2 (cl)). The same result holds if 
a = a(h, 6, ij) is chosen, according to the residual principle, so that 

6 + (Ac,c,) 1/2 < (Ace — d, B(Ac(, — d)) 1 "2 </3(6 + (Ac(,,ca)1/2q) 

where (-,.) denotes the scalar product in R' and'/3 ^! 1 is a constant not depending on 
h,6,,1.
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The convergence results concerning the a priori parameterchOice remains valid if (2.7) 
is replaced by the conditions 

	

ao E L°°(cz), sup Iu(x)I S c, II Vu - VuoII(L2 (n))n	11 
zEfl 

where the constant c does not depend on q. 
The goal of this survey is to motivate the concepts of L2 -id entifiability of the trans- 

missivity coefficient which will be studied inthe following sections. We refer to [5, 61 for 
a more detailed exposition of discretization and regularization methods for problem (1.2), 
including iterative regularization, to [7] for the general theory of regularization, to [2-4, 
81 for other methods (without a regularization) to solve an inverse problem of the type 

3. V-identifiability in the case of smooth u-

3.1 Introduction. The discretization and regularization methods considered in Section 2 
converge to the normal solution of problem (1.2). A question about the uniqueness (iden-
tifiability) of the transmissivity coefficient among the functions of the class L2 (ci) acutely 
arises. For sufficiently smooth data, the identifiability, of the transmissivity coefficient 
among smooth functions is sufficiently fully analysed by G. R. Richter [4], C. Chicone and 
J. Gerlach [1], and K. Kunisch [3]. Here, imposing only physically realistic assumptions, 
we concentrate on identifiability within the class of L2 (1l)-functions or more generally 
L 1 (Q)-functions. 

We slightly generalize our inverse problem(cf. (1.2)): having data u E W"°°(cl), 
f E L'(ci), g E L 1 (Q) at our disposal, we look for a function a E L 1 (ci) such that 

f aVu.vwdx = ffwdx+fgwdS	for all wE W"°°(fl,I')	(3.1) 

where W1 (ci,r .) = {w E W1,00 (n) : w(x) = 0 for an \ F}. Let us recall that Oci, the 
boundary of an open bounded region ci C R", is assumed to be piecewise smooth and 
r c an is a relatively open subset of an with a piecewise smooth (relative) boundary on 
Oft	 - 

We say that the transmissivity coefficient a is L'-identifiable from problem (3:1) on a 
subregion ci' ç ci if, for any solutions a 1 ,a2 E L 1 (n) to problem (3.1), a i (x) = a2 (x) for 
a.e. x E ci'. Our goal is to describe subregions 1)' C ci where a is L'-identifiable. It is 
clear that L'-identifiability of a from (3.1) on ci' implies L2 -identifiability of a from (1.2) 
on the same set ci'. 

It is clear also that a is L 1 -identifiable from (3.1) on ci' C ci if and only if any solution 
a e L 1 (ci) to the homogeneous problem 

f aVu Vwdx = 0	for all w  W"(ci,1')	 (3.2) 

vanishes almost everywhere on W. Thus, for L 1 -identifiability, assumptions, on u € 
W100 (ci) are deciding. Instead of I E L 1 (ci),g € L'(I') we could assume that f,g



332 G. VAINIKKO and K. KUNISCH 

define linear continuous functionals on W"'(fl, ). In this Section 3 we consider the case 
where Vu is continuous; in Section 4 we shall treat the case where Vu may have jumps. 

3.2 Flow curves. More precisely, we assume here that 

u E W"°°(il) fl W2o0(ci) for all e > 0 . . (3.3) 

where ci consists of all points x E ci such that the distance from x to a nearest non-
smoothness point of an exceeds e; if an is smooth, then (3.3) means that u E W20o(il). 
Introduce a flow curve x = (t, I') through a point y E ci as the maximal solution (the 
solution on the maximal time interval) to the Cauchy problem 

dx/dt = —Vu(x), x(0) = y. (3.4) 

Physically, the ground water flows along those curves but the speed depends on Vu and 
the transrnissivity coefficient (Darcy's law). 

Due to (3.3), Vu is bounded and locally Lipschitz continuous on ci, with possible 
singularities of Lipschitz coefficient only as x tends to a non-smoothness point of Oil. 
Therefore, problem (3.4) is uniquely solvable and (t, y) is defined on a finite or infinite 
time interval (ç, ti); if t; or	is finite, then (t, y) tends to a point on Oil as t	or 
t I t, respectively. If Vu(y)	0,then Vu((t,y))	0 for all t E (ç,t) and u((t,y))
is strictly decreasing: 

	

du(cp(t,y))/dt = Vu((i,y)) . dço(t,y)/dt	- I Vu((t , y ) ) I 2 < 0 (t e (ç, t)). 

A corollary' is that problem (3.4) allows no periodic solutions. 
Introduce further the following subsets of ci: 

cic={yeci:Vu(y)=0} 

ci = {y E Il :Vu(y) 3k O, t+ +001, il ={yE ci:Vu(y)O, t =—oo} 

Vu(y) 0, t4 <+00, (t, y) transversely (non-tangen- 
cij!	

smoothness point of r c oil as t tially) reaches a 
= yE ci

' 
I  

- 
ly

Vu(y) 0,ç>—oo, (i,y)transversely (non-tangen- 
r = E il	 - 

tially) reaches a smoothness point of I' ç Oil as t 

Since r C an is relatively open, iij! and cij are open subsets of ci. The interior of 11+' 
and ci will be denoted by intci and intil, respectively. 

3.3 Main results and comments. If cic, the set of critical points of u, has a positive 
Lebesgue measure, then the function a E L°°(Q) defined by a(x) = 1 if Vu(x) = 0 and 
a(x) = 0 elsewhere in 11 satisfiesthe homogeneous problem (3.2) but does not vanish a.e. 
on il. Thus, a cannot be L'-identifiable from (3.1) on cic if meas ilc > 0. 

Theorem 1. Under condition (3.3), the transmissivity coefficient a isL 1 -identifiable 
from problem (3.1) on the sets intci, intil and cit , ilj; on intci and intci, L'- 
identifiability holds even if r = 0.	 '	'
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The proof of Theorem 1 is given in Subsection 3.4. 
Figure 1 illustrates a case where + and 1 cover fl except for the isolated critical 

points of u. In this case we can identify a putting F = 0. Figure 2 illustrates a case where 
a boundary condition on a part F of oil is necessary to identify a all over 11. 

+J 
0 fl 0 -

OF '04 0.0 Al 
r 

Fig. 1	 Fig. 2 

A result of C. Chicone and J. Gerlach [1] says the following: if u E C2 (1Z) where fl 
is open and contains 11 (the closure of Il), then a is C 1 -identifiable (identifiable among 
functions a of the class C'(il)) from problem (1.1) with F = 0 on the closure of the set 
mt il Uint il. A result of G.R. Richter [4] can be interpreted as -C-identifiability on 
the closures of il and 0j (the smoothness conditions and a priori assumptions on a are 
not explicitly formulated but a must be differentiable at least in the direction of Vu). 
Theorem 1 extends these results to the case where no a priori smoothness of a is assumed. 

Remark 1. Theorem 1 fails if assumption (3.3) is replaced by u E W"°°(Il) fl W2'P(fl), 
P < oo (see a counter-example in Subsection 5.1). Thus, for L' -identifiability, the con-
ditions of Theorem 1 are rather close to the necessary ones. For the L 2 -identifiability of 
a on mt 11± and ili*? the conditions of Theorem 1 are only sufficient and seem to be far 
from the necessity —examining the examples one can conjecture that here (3.3) may be 
replaced by u E C 1 (il) fl H2 (il). Unfortunately, our proof method does not work in this 
case since the flow curves may be non-uniquely determined from (3.4) if (3.3) fails. 

Remark 2. Under condition u E W2 '°°(11), it is easy to see that meas O11 0, therefore 
the L1-identiflability result of Theorem 1 can be extended from iijt and ilj to their 
closures. On the other hand, for some (rather exotic) functions u E W%°°(fl) and even 
u E C2 (il), the sets O(int cl±) may be of positive measure, and the result of Theorem 1 
about the L'-identifiability of a on mt il and mt ii cannot be extended to the closures 
of those sets (see a counter-example in Subsection 5.2). Here a difference between the 
results about L'-identifiability and C-identifiability appears. - 

Remark 3. If u E W2 '°°(Q) and u(x) = 0 for x E oil\r, then 

il+UilUilUllj 3 il\ilc.	 (3.5)

The proof is outlined in Subsection 3.5.
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3.4 Proof of Theorem 1. We have to show that any solution a E L'(II) to the 
homogeneous problem (3.2) vanishes on sets int f2 F and cit. 

(i) We first prove that a(x) = 0 for a.e. x.E cijt. It. suffices to show that 

Ja(x)dx = 0	(0 <	= o(x°))	 (3.6) 

Where x° E 1lj is arbitrary fixed and U(x°, f) are small neighbourhoods of x° constructed 
as follows. Introduce the set N(x°, ) = {y E ci : u(y) = u(x°), ly - x°J <} and put (see 
Figure 3)

U(x°,€) {x e ci: X'-- (t, Y), yE N(x°,), - < j < } 
V(x°,f)= {x E ci: x =(t, y), y  N(x°,c), —c < t < t}. 

0 

N(XE)	--------..-.

U(x°,)	0 
/

	

L
V(x04	) 
•-.	7 

Fig. 3 ,	.	.	 Fig.4 

Since Vu(x°), 0 and I' is open and due to the transversality condition in the definition 
of cijt, the sets N(x°,.),U(x°,c) andV(x°,c) are well-defined for small c > 0. Further 
introduce the functions .

t c	for x=(i,y), yEN(x°,c), —e<t < +c 
w(x,)=

 
2,	for x = (i ) y), y E N(x9,c), +c< t 
0	elsewhere in ci	.	. 

eö(x)= f b ,5(y) for x = (t,' y), y E N(x°, c), —f <t < 

	

........
	1 0	elsewhere in ci	 . 

where b	N(x°, 4	R is a smooth function such that 0 b (y) :5 1 and 

	

b 1J )	
f1 for y E N(x°, c), ii - x°j < c - 25 

- 1 0 fory E N(x°,c), l y - x0 J > - S . 

and S E (0, c/2) is a parameter. The function fc,5We is continuous and piecewise contin-
uously differentialbie on ci, therefore eqwc E W"°°(ci); the support of ew, lies in the 
closure of V(x°, c) which, for sufficiently small c> 0, intersects Oci on I', therefore 
vanishes on 311 \ I' and belongs to W"(11, ). From (3.2) we obtain 

JaVu . 7 (c ,5 w( ) dx = 0	(0 < f <co).	 (3.7) 
V(x°,f)
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Since x = (t, y) is the solution to the Cauchy problem (3.4), we have 

	

Vu((t,y)) . VwC (cp(t,y)) = —dw(çt'(t,y))/dt = { -	for - <t < +e 

and
Vu((t, y)) Ve,5((i,y)) = —def,6 (p(t, y))/dt = 0, 

thus (3.7) takes the form 

— J a(x)e ,5 (x)dx 0	(0 < c< co). 
U(z°,) 

Taking the limit 8 -. 0 we obtain (3.6). 
(ii) Now we prove that a(x) = 0 for a.e. x E int1+ . Again, it suffices to establish 

equality (3.6) for any fixed x° E mt I+; the construction of U(x°, €) is the same as in part 
(i) of the proof and 

V(x°,) {x E l : x E ,(t, y), y  N(x°,€), — e < t <+oo} 

(see Figure 4). Define the functions 

( +	for x = (t, y), y e N(x°,€), —€ <1 < +€ 

T(X) = 2€	 for x = (t, y), y E N(°,), +€ < i +T 
1 

2€—(t—T) for x=p(t,y),yEN(x°,f),+T<t < +T+2€ 
10	elsewhere in Il 

bC,o(y )	 for x = (t, y), y  N(x°,€), —e < i < + 00 
ef,b(x) 

 
10	elsewhere in Q 

where b,s is the same function as in part (i). This time, sup p(ee,SWe,T) C , thus 
eC ,SW( ,T E wloo (cl , r) again, and (3.2) yields 

	

J aVu V (e ,5w ,T) dx = 0.	 (3.8) 

•	V(z°) 

We have again Vu - Ve ,5 = 0 and, for x = (t, y) E V(x°,e), 

(-1 for -6 <i<+€ 
Vu((t,y)) . VwC T((t,y)) =	0 for +e <t< +T and i > T + 2€ 

I+1 for +T<t<+T+2e, 

thus (3.8) takes the form

f ae(,5.dx + j ae,o dx = 0 

	

U(x°,C)	V(z°,e,T) 

where

V(x°€,T) (x 'V(th°,e):x = 0(t, y), y  N(x,e), T < t <T + 2e}.
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Taking the limit 5 —, 0 we obtain 

- J a d x + J adx=0	(O<<). 
U(z°,c)	 V(x°,,T) 

Now we obtain (3.6) since meas V(x°, , T) — 0 as T - oo. To see the last relation, 
note that, for k = 1,2,... , the sets V(x°, c, k) are disjoint for e < 1/2 and therefore 
E k meas V(x°, c, k) <meas 1 and meas V(x°, , Ic) -	as k — . 

(iii) For ulj and mt c- the proof is similar as for iij! and mt	in parts (i) and (ii),
respectively. The proof of Theorem 1 is completed. 

3.5 Proof of Remark 3. Assume that (3.5) does not hold: for a point x 0 E f1Vc, we 
have x°	U	U	U (j. Since Il\fcis open, there exists a number r >0 such 
that	 .	. .	.. 

	

B(x°, r) C cI\flc,	B(x°, r) fl	= 0,	B(x°, r) U Q 1 = 0.	(3.9) 
The first two relations in (3.9) mean that, for any y E B(x°,r), we have ç > — 00, 

< +0°; let us denote 4 = lim _	(t, y) 6 ôl. We assert that at least one of the 
points 4, ç belongs to F. Indeed, if 4, z; 6	O 1l\F, then, according to the condition of 
Remark 3, u(z;) = u(4) = 0. Due to the mean value theorem, there exists t E 
such that (d/dt)u((, y)) = 0. Using (3.4) we find that y(, y)	is a critical point of 

=	u(ç(,y) ) = Vu((,y)) .	(, y ) = —IVu((i,y))I2. 

But this is impossible since a critical pointcan be attained by (t, y) only asymptotically 
as i -, ±00. Thus, for any y 6 B(z°, r), ç or 4 belongs to F. Due to the last equality 
(3.9), F is non-smooth at 4 or (t, y) reaches 4 tangentially. Both types of points 
Z ±1 E I' can 'constitute on F only manifolds of lower, dimensions than n '- 1 as y varies 
in ft Hence some of the flow curves W =(i,y),y E B(x,r), reach common points on 
IF C oci in a finite time. This contradicts the assumption u 6 W200(ci) and proves the 
remark. 

3.6 The case of the Dirichlet problem. We briefly turn to the inverse problem of 
type (1.1) but with homogeneous Dirichlet boundary condition: 

Find a 6 L'(ci) such that 

	

—div(a(x)Vu(x))= 1(x) (x 6 Cl)	and	U(X) = 0 (x 6 ÔC1).	(3.10) 

The weak formulation of this problem is given in the following way: 
Find a 6 L'(Cl) such that 

	

f avu Vwdx = Jfwdx	for all w E 
W0100

' (Q),	(3.11) 

where W00(Cl) = {w 6 W100(uI) : w(x) = 0 for x E ô1l}. Thus problem (3.11) can be 
viewed as problem (3.1) with F = 0 and Theorem 1 can be applied: under condition (3.3),
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a is L'-identifiable from (3.11) on mt 11 and mt 11. Thereby, the boundary condition 
u(x) = 0 for x E Oil implies the equality 

U fl	ii\Ilc.	 (3.12) 

	

Indeed, the inclusion 11 + U l C 11\1C is trivial and the inclusion Il\Ilc C	U 11 
means that, for any y E Q with Vu(y) 36 0, we have = —oo or = +00. If ç and 

both are finite, then u(z;) = u(z) = 0 for	=	(t, y) e Oh. Repeating an
argument from the proof of Remark 3, we obtain a contradiction. 

4. L'-identifiability in the case of piecewise smooth u 

4.1 Transversality condition for Vu. Now consider the case where u remains continw 
ous on fl but Vu may have discontinuities on piecewise smooth surfaces M, (i = 1,... , in) 
in ft Physically, M1 are the surfaces between different types of soil. Denote M = U1MI. 
We assume that

u E W"°°(Il) n W2'°°(fl,M) for all e > 0	 (4.1) 
where fl, ,M consists of all points x E il\M such that the distance from x to a nearest 
non-smoothness point of Oil and .M, (i = 1,... ,m) as well to a nearest intersection point 
of a pair of surfaces Oil, M1 (i = 1,. . . ,m) exceeds e. Further, we introduce the following 
consistency condition: 

There is a strictly positive piecewise-smooth function att,	
- (4.2)

with possible jumps on M, such that div(attVu) E 
where the derivatives are understood in the sense of distributions. Usually, the "physical" 
solution of the inverse problem (1.1) meets this requirement. 

Lemma 1. Let x0 E M1 be in the smooth part of M, and let u1 (x°) denote a unit normal 
to Mi at this point. Then, under conditions (4.1) and (4.2), 

urn	att(x)Vu(x) . v,(x°) =	lim	att(x)Vu(x) . v,(x°).	(4.3) 
(z—z°).v(z°)>O	 (x—x°).v,(z )<O 

x—zo	-	 -	z—xo 

Proof. Let B = B(x°, e) be an open ball in R" centered 
at 

x° and of radius e such that 
M1 flB is in the smooth part of M1 and B does not intersect Oil and other M,j 0 i. For 
any w E V(B), i.e. w E C°°(B) with support in B, we have, according to the definition 
of distribution derivatives, 

J div(attVu)w dx = - J attVu . Vw dx. 

On the other hand, since div(attVu) E L 1 (11), we can devide the integral over B into 
the subsets B and B on different sides of M1 , and integrating by parts we obtain 

J div(a tVu)w dx = J div(attVu)w dx +J div(attVu)w dx 

=—fatestVu . Vw dx	J (a t - a t )Vu . v,(x)w dStes



338 G. VAINIKKO and K. KUNISCH 

where	and	are the limit values of atest on Mi from different sides. Thus, test

f (a+ t - a t )Vu . u(x)w dS = 0	for all w E V(B), 
M,flB 

and (4.3) follows. 
Note that Lemma 1 holds without the positiveness assumption of att . The positive-

ness of att is needed when the flow curves are ionsidered. 

4.2 Flow curves. The following assertion is a direct corollary from (4.1) - (4.3): 
If a flow curve x = (t, x), in a finite time moment, transversely reaches a smoothness 
point of M,, then this flow curve passes M1 transversely to the other side of M1 and contin-
ues there. We can define sets cl+, ,jt, 11j as in Subsection 3.2 adding a requirement 
about the transversal cuttings of M, e.g., 

Vu(y) 56 0, t = +00 and, for 0 <t < no, (t, y) cuts M not 

= y E Q more than finite times whereby every cutting is transversal 

and takes place at a smoothness point- of an M,, 1 < i <m 

Vu(y) 76 0, ç > -no, (t, y) transversely reaches a smooth-

ness point of r C i9Q as t ç and,for ç<t <0, cuts M 
r=	yEll	 -	 -.	--

	

-	not more than finite times whereby every cutting is transver-
sal and takes place at a smoothness point of an M1, 1 <i <m 

4.3 Extension of the main results. The proof of the following assertion is analogous 
to the proof of Theorem 1. 

Theorem 2. Under conditions (4.1) and (4.2), the transmissivity coefficient a is L'-
identifiable from problem (3.1) on the sets mt ci, mt ll- and llj, llj specified in Subsec- 
tion 4.2; on intll and ll the L 1 -identifiability holds even if I' = 0. 

In Subsection 5.3 we present an example which clarifies the role of the consistency 
condition (4.2). 

5. Counter-examples to L'-identifiability 
5.1 Counter-example in case u E W100(ll) fl W2 'P (ll), p < cc. Let 

0={x=(x1,x2)ER":-1<x1<1,0<x2<1), u(x)=Ix l I a (1<a<2). 

Then u E C'() fl W2"(ll) (p < 1/(2 - a)), ul = {x E fl : x 1 0 01 - all flow 
curves reach the critical line x 1 = 0 in a finite time and stop here. Putting r = 0 or 
r = {x E Ôll : x2 0 or x2 = 1), a hypothetical extension of Theorem 1 to the case 
u € W"°°(fl)flW2P (fl) says that a is L'-identifiable from (3.1) on 11+. But this assertion
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is false: a = i x iI1 sign x 1 is a solution to the homogeneous problem (3.2) belonging to 
q < 1/(a - 1), and non-vanishing in any point of ci. Indeed, 

JaVu Vw dx = a 1(awlOx i ) dx = 0	for all w E W 1 '°(0, r), 
1 

while a function w E W"°°(1l,1') vanishes for xi = —1 and x i = +1. 
This counter-example can be modified so that a homogeneous Neumann condition 

aVu . ii = 0 is given on F = 8. The idea is to construct a function u = (arctan(x2/xi)) 
on an annulus S1 = (x E R2 : 1 <l x i <2). 

5.2 Non—V-identifiability on the closure of int1l. Let Il be the rectangle as 
in Subsection 5.1. To construct a function u E C2(), we consider a countable set 
.{ zk} 1 C (0, 1) which is dense in [0, 11. For given e > 0, we recursively construct closed 
intervals

Il = [z 1 - € 1 , z1 + fi ll	< rnin{e/4,zj , 1 - z} 

and, for	2,3.... 

- k, Zak + k] ,	k < min {e/21, z,, 1 - Zik, dist(z lk , u:I)} 

where z,k is the first term in the sequence {zk} which is not contained in the set 
The full set	is dense in the interval [0, 1] since it contains all z. On the other 
hand, its Lebésgue measure on [0, 11 is small: meas(U 1 Ik) <	= . Now
define

U(X) = xUk(x2)	(x= (X I, X2) E) 
where Uk E C2 [0, 1] are functions such that 11ukI1C3[0,1] 1/k2 and suppu = 'k 'Whereby 
uk( z ) > 0 for z E jntlk and u(z) 0 0 for z E mt Ik except the center of the interval. 1t 
is clear that u e C2 (1l). The set of critical points of u is given by the line x 1 = 0 and the 
set {x E 11 : x2 VU 1 mt Ik}. The set 11 consists of the rectangles (k = 1,2,...) 

{x E 11: —1 <xi <0, Zak - k < x2< Zik + €.} 

and
{xE11: 0<x 1 <1, Zj k Ek <x2 <Zk+k}; 

inside of k-th pair of those rectangles, u(x) = x?uk(x2) and flow curves can be examined 
independently. According to Theorem 1, a is L 1 -identifiable from (3.1) on 1l which is 
open in this example. But a is ntL 1 -identifiable on the closure of 11+ which here coincides 
with 0, the closure of Cl. Indeed, the homogeneous problem (3.2) has non-trivial solutions, 
e.g. .a function a E L°°(Il) defined by a(x) = 1 if Vu(x).= 0 and a(x) = 0 if Vu(x) 0. 
Note that the Lebesgue measure of 011+ as well of SI C exceeds 2(1 — 

5.3 Non—V-identifiability in case of failing consistency condition. Consider the 
square Cl = {x = (X I, X2) E R" : — 1 <xi ,x2 < +1} which is devided into four triangles 

,114 by two diagonal straight lines M1 and M2 (see Figure 5).
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Fig. 5 

Define the function u E C(Z) putting 

u(x) equals x 1, —x2, —x l, x2 on u 1, ... ,1l4, respectively. 

It is clear that u E Wl0() fl W2'°°(l\M), thus assumption (4.1) is fulfilled. 'On the 
other hand, the consistency condition (4.2) fails in this example since the limit values of 
Vu(x) . vi from different sides of M, are of different sign (cf. (4.3)). , The flow curves reach 
M5 in a finite time and cannot be prolonged. 

Consider problem (3.1) with r = Ôíì. It is interesting that there is no subregion 
1!' C fi where a is L 1 -identifiable from the values of u. Indeed, the homogeneous problem 
(3.2) has a rather large set of solutions - one can check that any function c E L(O, 1) 
generates a solution a e L'(I!) to (3.2) via 

a(x) equals - a(x2),a(—xi); —cx(—x2),ci(x l ) on 91,-A,respectively. 

This example is a modification of an example of K. Ito -and K. Kunisch [2] where u satisfies 
homogeneous Dirichlet condition. In our modification, u satisfies homogeneous Neumann 
condition Vu . v 0 on 81!. 
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