Zeitschrift fur Analysis
und ihre Anwendungen
Vol. 12(1993), 327 -

Identifiability of the Transmissivity Coefficient
in an Elliptic Boundary Value Problem

G. VAINIKKO and K.KUNISCH

Abstract. We deal with a coefficient inverse problem describing the filtration of ground water
in a region @ C R™, n > 2. Introducing a weak formulation of the problem, discretization
and rtegularization methods can be constructed in a natural way. These methods converge to
the normal solution of the problem, i.e. to a transmissivity coefficient of a minimal L%(Q)-
norm. Thus a question about LZ-identifiability (identifiability among functions of the class
L?*(Q)) of the transmissivity coefficient arises. OQur purpose is to describe subregions of Q
where the transmissivity coefficient is really L?-identifiable or even L!-identifiable. Thereby we
succeed introducing physically realistic conditions on the data of the problem, e.g. piecewise
smooth surfaces in § are allowed where the data of the inverse problem may have discontinuities.
With some natural changes, our results about the L-identifiability extend known results about
the identifiability among more smooth functions given by G. R. Richter [4], C. Chlcone and
J. Gerlach [1)], and K. Kunisch [3).

Keywords: Inverse problems, ground water filtration problems, identifiability
AMS subject classification: Primary 35R30, secondary 35J20, 65M30 - '

1. Inverse problems

1.1 Boundary value problem formulation. Let @ € R™ (n > 2) be an open region
with a piecewise smooth boundary 9€); we denote by v the outer unit normal to 952. Let
I' C 95} be a relatively open set having a piecewise smooth boundary on 39 We shall
deal with the following inverse problem:

Find a coefficient a € L?() such that

—div(a(z)Vu(z)) = f(z) (z€9), (a(z)Vu(z)) -v(z) =g(z) (z€T) . (1.1)
where u € W1(Q), f € L*(Q), g € L%*(T) are given functions. Physically, u can_be
interpreted as the piezometrical head of the ground water in (; the function f characterizes
the sources and sinks in € and the function g characterizes the inflow and outflow through
I' ¢ 99Q. The filtration (transmissivity) coefficient a is, physically, positive and piecewise
smooth with possible discontinuities of the first kind on some surfaces in .
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We do not exclude the case of I' = . The boundary condition is omitted in (1.1) in

this case.

Conditions (1.1) can be understood in the sense of dxstnbutlons We prefer to deal

with the weak formulation of the problem.

1.2 Weak formulatlon Let us provisionally assume that the functions a and u are
smooth (e.g. a € H'(Q) and u € W2°°(Q)) Multiplying the first equation of (1.1) by

w € H'(Q), integrating by parts and using the second equation of (1.1) we obtain

/aVu dex-/fwdz-}-/gwdS—i— /(aVu) vwdS.

0 r aO\T
Introduce the subspace
HY(9,T) = {we H(Q) : w(z) = 0 for z € I\ T} C HY(Q).

We obtain the fdllowing weak formulation of the inverse problem (1.1):
Given u find a € L%(Q) such that

' /aVu-de:t:/fwd:c-}-/gwdS' for all w € H(Q,T).
Q T

(12)

The same formulatlon can be obtained in case of a piecewise smooth function u. Problem
(1:2) makes sense for u € Wte(Q) and @ E "L?(2). We assume throughout that u €

Wl oo(Q)

1

1.3 Operator equation formulation. Let us denote by G the space of gradients of

functions w € HV®(Q, I‘) L «
G=GQ,)={Vw:we H‘(Q I} c (LZ(Q))"

Let Qg denote the orthoprojector in (L%(2))* corresponding to G. We observe that

problem (1. 2) is equivalent to the equation
Ta= Vz/)
where the aperator T'=Tu€ [,(LQ(Q), T') is defined via the formuia
v Ta=Qg(aVu) (a€ L2('Q))
and ¥ = 1y, is a solution to the direct problem |

V@) =) e,
Vi(z) -v(z) = g(z) (z €T), P(z) =0 ,(I € 9N\ I‘)'.

Indeed, 1 satisfies the variational equality

/V¢-dez=/fwdz+/‘gw‘d5 for all we HY(Q,T),
Q T

(1.3)

(1.6)
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thus (1.2) takes the form

/avu.dez=/v¢-dez for all w € H'(Q,T),
0 0

and this is equivalent to (1.3) since QgVy = V.

In case T' # 99, problem (1.5) is uniquely solvable. In case I' = 8, problem (1.5)
is solvable if Jg, f dz + [5q 9dS = 0; this condition is also necessary for the solvability of
the inverse problem (1.2) if I' = 99,

1.4 Ill-posedness of the inverse problem. The operator T € L(L*(€2),T) has a very
simple adjoint operator T* € L(G, L}()) :

T*Vw=Vu-Vw (VweQG). ‘ (L.7)

It is easy to see that the range R(T*) C L?() is non-closed in L%(£2) even if [Vu| > ¢o > 0
in 0 (here our case n > 2 essentially differs from the case n = 1). It is also clear that T*
is non-compact. Consequently, T € £(L?(£2),T) has a non-closed range R(T) C G and is
non-compact, too. Thus (1.3) is an ill-posed problem with a non-compact operator. This
circumstance essentially influences the construction of discretization and regularization
schemes for problem (1.1).

2. Discretization and regularization (a survey)-

2.1 Discretization. A natural way to discretize the inverse problem (1.1) is to apply
finite element approximations to the weak formulation (1.2) of the problem. Introduce
finite-dimensional subspaces Sy C H!(,T) depending on a discretization parameter h >
0; we assume that Sy is complete in H}(Q,T) as b — 0, i.e. for every w € HY(Q,T), there
exist wy € S such that wy, — w in H(Q) as h — 0. We introduce the following discrete
version of problem (1.2):

Find a) € L*() of minimal L%(Q)-norm such that

/ahVu- Vw,dz = /fw;, dz +'/gw;, dS for all wy € Sy. (2.1)
a r :

Problem (2.1) has never more than one solution. If problem (1.2) is solvable, then problem
(2.1) is solvable, too, and the solutions satisfy the relation ap = P 4a where Py, is the
orthoprojector in L?(€2) corresponding to the subspace {a; € L*(Q) : ay = Vu -V,
vi € Si}; a consequence is that ay — ag in L%() as h — 0 where ag € L%(Q) is the
normal solution (the solution of minimal L?(2)-norm) of problem (1.2). Conversely, if
problem (1.2) is non-solvable in L?(£2), but problem (2.1) is solvable, then ||ax|| z2(q) — oo
as h — 0. . .

Choosing a basis wj = wjs (j = 1,...,1 = l3) of Sy, problem (2.1) can be reformulated
as follows:

Find
!

ap = Zc,'Vu - Vw; i , (2.2)
Jj=1
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solving the system of linear equations
Ac=d (2.3)

where c is an l-vector with components ¢;, d is an I-vector with components

' d,'=/fw.-dz+/yw.'d5 (=1,...,1), (2.4)
Y r .
and A = (a;;) is an I x l-matrix with elements
aij = /(Vu -Vw;}(Vu-Vw))dz (5,5 =1,...,10). ' (2.5)
Q

2.2 Regularization. Consider the case where, instead of exact data denoted here by ug,
fo, and go we have polluted data u = u; € WH®(Q), f = f5 € L*(Q) and g = g5 € L)
at our disposal. Then numerical difficulties should be expected especially for fine grids,
and a precedent regularization of problem (2:1) is needed. Tikhonov regularization yields
the following numerical scheme (cf. (2.2) - (2.3)): o

)
Ao b = ZCJ"aVu . V'U)J, . (aB +‘A)ca =d.
= '
Here d is an l-vector with components d; defined in (2.4), ¢4 is an l-vector with components
¢Ga(j=1,...;1), A= (aij) and B = (b.,) are | x l-matrices with elements a;; defined

in (2.5) and b,, Jo Vw; - Vw; dz (3,5 = 1,...,1). A suitable value of regulanzatlon
parameter a > 0 depends on the errror level of the data. Assume that

Vs — Vibollza oy < 6, ' (2.6)
sup |Vuy(z) — Vug(z)| < 9 (2.7)
z€N . u

where 19 and 5 are the solutions to the direct problem (1.5) with right-hand terms

fo,90 and fs, gs, respectively, and 6,7 are small positive numbers. Then an a priori choice
a = a(h,é,n) such that

a(h,8,7) = 0, (62+n%)/a(k,b,7) 0 as h,b,5— 0

guarantees the convergence aq(psy) s — 4o in L*(Q)-norm as h,6,7 — 0. where a is
the normal solution to problem (1.2) corresponding to exact data uog, fo,go (we assume
that problem (1.2) with the exact data is solvable in L?(f2)). The same result holds if
a = a(h,§,n) is chosen, according to the residual principle, so that

64 (Aca, ca)/?n < (Aca — d, B} (Aca — d))? < B(8 + (Aca,ca)/?n)

where (-,-) denotes the scalar product in R! and~8 > 1 is a constant not depending on
h,é,n.
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The convergenge results concerning the a priori parameter .choice remains valid if (2 7)
is replaced by the conditions

ap € L=(Q), sup lug(z)] S ¢, | Vup = Vuoll(L2@))» <7

where the constant ¢ does not depend on 7.

The goal of this survey is to motivate the concepts of L2-1dent1ﬁab111ty of the trans-
missivity coefficient which will be studied in_the following sections. We refer to (5, 6] for
a more detailed exposition of discretization and regularization methods for problem (1.2),
including iterative regularization, to [7] for the general theory of regularization, to [2-4,
8] for other methods (without a regularization) to solve an inverse problem of the type

(1.1).

3. Ll-identifiability in the case of smooth u-

3.1 Introduction. The discretization and regularization methods considered in Section 2
converge to the normal solution of problem (1.2). ‘A question about the uniqueness (iden-
tifiability) of the transmissivity coefficient among the functions of the class L*(Q) acutely
arises. For sufficiently smooth data, the identifiability of the transmissivity coefficient
among smooth functions is sufficiently fully analysed by G. R. Richter {4], C. Chicone and
J. Gerlach [1], and K. Kunisch [3]. Here, imposing only physically realistic assumptions,
we concentrate on 1dent1ﬁa.b1hty within the class of L?(§)-fuictions or more generally
L(9)-functions.

We slightly generalize our inverse problem (cf. (1.2)): having data u € Wl " (9),
f e LX), g € L}(N) at our disposal, we look for a function a € L1(Q) such that

/aVu Vwdz = /fwda:+/gwd5 for all w e whe(Q,T) (3.1)
J ,

where Who(Q,T) = {w € Wb °°(Q) w(z) = 0 for 30\ T'}. Let us recall that 9%, the
boundary of an open bounded region ) C R", is assumed to be piecewise smooth and
[ C 89 is a relatively open subset of 8 with a piecewise smooth (relatwe) boundary on
on. :

We say that the tra.nsmlsswlty coeﬂ‘icxent ais Ll-tdenttﬁable from problem (3:1) on a
subregion Q' C Q if, for any solutions ay,az € L'(R2) to problem (3.1), a1(z) = az(z) for
a.e. T € . Our goal is to describe subregions ' C  where a is L}-identifiable. It is
clear that L!-identifiability of a from (3.1) on &' implies L2- identifiability of a from (1 2)
on the same set V' :

It is clear also that a is L'-identifiable from (3 1)on Q' C Q2 if and only if any solution
a € L(R) to the homogeneous problem

/avu.vw'dz=0 for all we Wh(Q,I) ' (3:2) .
Q

vanishes almost everywhere on €. Thus, for Ll-identiﬁability, assumptions on u_.€
W1(Q) are deciding. Instead of f € L'(R),g9 € LY(T) we could assume that f,g
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define linear continuous functionals on W1:°°(2,T'). In this Section 3 we consider the case
where Vu is continuous; in Section 4 we shall treat the case where Vu may have jumps.

3.2 Flow curves. More precisely, we assume here that
u € W@y nwa®(Q,) forall e>0 , o (33)

where €, consists of all points £ € Q such that the distance from z to a nearest non-
smoothness point of 90 exceeds ¢; if I is smooth, then (3.3) means that u € W2°(Q).
Introduce a flow curve z = (t,y) through a point y € Q as the maximal solution (the
solution on the maximal time interval) to the Cauchy problem

dz/dt = —Vu(z), z(0) = y. o : (3.4)‘

Physically, the ground water flows along those curves but the speed depends on Vu and
the transmissivity coefficient (Darcy’s law).

Due to (3.3), Vu is bounded and locally Lipschitz continuous on 2, with possnble
singularities of Lipschitz coefficient only as z tends to a non- smoothness point of 9.
Therefore, problem (3.4) is uniquely solvable and ¢(t,y) is defined on a finite or infinite
time interval (¢, tj); if t; or t} is finite, then o(2,y) tends to a point on dQ as ¢ | t, or
t Tt respectively. If Vu(y) # 0, then Vu(p(t,y)) # 0 for all ¢ € (t,,t]) and u(cp(t,y))
is strictly decreasing:

du(ip(t,))/dt = Vu(p(t,9)) - dp(t,y)/dt = ~[Vu(p(t)P <0 (€ (7.,

"A corollary is that problem (3.4) allows no periodic solutions.
Introduce further the following subsets of Q:

| Qc={y€Q:Vu(y) =0} -
= {yeN:Vuy) #£0; t} = 400}, 0 ={y€0:Vu(y) £0, t; = ~o0}

Q+={y€Q
Q;:{yeﬂ

Since I' C 99 is relatively open, Q and Oy are open subsets of Q. The interior of Q%
and O~ will be denoted by int 2+ and int Q“, respectively.

Vu(y) #0, t} < +00, ¢(t,y) transversely (non-tangen-
tiolly) reaches a smoothness point of ' C9Q as ¢ T t;’

Vu(y) # 0, t; > —o0, ¢(t,y) transversely (non-tangen-
tially) reaches a smoothness point of ' C 99 as ¢ | ty )

3.3 Mam results and comments. If Q¢, the set of critical points of u, has a positive
Lebesgue measure, then the function a € L®(f) defined by a(z) = 1 if Vu(z) = 0 and
a(z) = 0 elsewhere in Q-satisfies the homogeneous problem (3.2) but does not vanish a.e.
on Q¢. Thus, a cannot be L!-identifiable from (3.1) on Q¢ if meas Q¢ > 0.

Theorem 1. Under condition (3.3), the transmissivity coefficient a is' L!-identifiable
from problem (3.1) on the sets intQ*, intQ~ and QFf, OF; on int Q+ and int Q' L.
identifiability holds even if I' = 0. ‘ :
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The proof of Theorem 1 is given in Subsection 3.4.

Figure 1 illustrates a case where 0t and 2~ cover § except for the isolated cntlcal
points of u. In this case we can identify a putting I' = @. Figure 2 illustrates a case where
a boundary condition on a part ' of € is necessary to identify a all over Q.

Fig. 1 : ‘ Fig. 2

A result of C. Chicone and J. Gerlach [1] says the following: if u € C?(f}) where
is open and contains  (the closure of {2), then a is C!-identifiable (identifiable among
- functions @ of the class C*({?)) from problem (1.1) with ' = @ on the closure of the set
int QT Uint Q™. A result of G.R. Richter [4] can be interpreted as-C-identifiability on
the closures of 2 and Qf (the smoothness conditions and a priori assumptions on a are
not explicitly formulated but a must be differentiable at least in the direction of Vu).
Theorem 1 extends these results to the case where no a priori smoothness of a is assumed.

Remark 1. Theorem 1 fails if assumption (3.3) is replaced by u € Wh(Q) N W2r(Q),
p < oo (see a counter-example in Subsection 5.1). Thus, for L'-identifiability, the con-
ditions of Theorem 1 are rather close to the necessary ones. For the L2-identifiability of
a on intF and Q% the conditions of Theorem 1 are only sufficient and seem to be far
from the necessity — examining the examples one can conjecture that here (3.3) may be
replaced by u € C(Q) N H%(Q). Unfortunately, our proof method does not work in this -
case since the flow curves may be non-uniquely determined from (3. 4) if (3.3) fails.

Remark 2. Under condition u € Wh(Q), it is easy to see that meas 39 = 0, therefore
the Ll-ldentlﬁablhty result of Theorem 1 can be extended from Q+ a.nd If to their
closures. On the other hand, for some (rather exotic) functions u € W2 °°(Q) and even
u € C*(Q), the sets 9(int Qi) may be of positive measure, and the result of Theorem 1
about the Ll-identifiability of a on int Q% and int 2~ cannot be extended to the closures
of those sets (see a counter-example in Subsection 5.2). Here a difference between the
results about L!-identifiability and C-identifiability appears. : :

Remark 3. fue W2'°°(Q) and u(z) = 0 for z € GQ\T, then
QU uQfuar o O\ (3.5)

The proof is outlined in Subsection 3.5.
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‘3.4 Proof of Theorem 1. We have to show that any solution a € L!(Q) to the
homogeneous problem (3.2) vanishes on sets int QF and Qf.
(i) We first prove that a(z) = 0 for a.e. z.€ Qf. It. sufﬁces to show that

a(:z:)dz =0 (0 <e<e= eo(z ) (3.6)

U(z",t)
where z° € Qf is arbitrary fixed and U (2% ¢€) are small neighbourhoods of z° constructed
as follows. Introduce the set N(z%¢) = {y € N : u(y) = u(z%), |y — 2% < €} and put (see

Flgure3)
U(z° ,6)?{$€Q=z'—f¢(t,y), y€EN@E'e), —e<t<e} -

V(:co;e)= {zeQ:z=0p(y), y€ Nz'e¢), —e<t< t;}.

T

Fig.3, . . o . Fig.4

Since Vu(z%).# 0 and T is open and due to the transversality condition in the definition
of O, the sets N(z! 0 €),U(z° €) and .V (z° ,€) are well-defined for small ¢ > 0. Further
introduce the functions .

t+e . forz= (ty),yEN(:t ,€), —€<t < +e
we(z) = { 2¢ for z = ¢(t,y), y € N(z%,¢), +c<t<t+'»
0 :. -elsewhere JnQ

o e:&:(:z.)h___ v{be,&(’y). for z = (8, y), y € N(:c ) —e<t< t;}’
. Lo . elsewhere in ) -

where b 5 : N(ac0 e) . R isa smooth functlon such that 0 < bt 5(y) <1and
() 1. foryeN(z €), |y—z°|<e—26 ,
dy 0 foryeN(a: ,€), |y—x°|>e—5. o o

and § € (0,€/2) is a parameter The function e swe is contmuous and piecewise contm-
uously differentialble on (2, therefore e, sw, € Wl *°(9); the support of e, sw, lies in the
closure of V(z%,¢€) which, for sufficiently small € > 0, intersects 92 on T, tlierefore e, sw;
vanishes on 3\ I" and belongs to Wl °°(Q 1") From (3.2) we obtain

aVu- 'V(egygwf) dz = 0 (0 < €< €). (3.7
V(z%€) '
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Since = = ¢(t,y) is the solution to the Cauchy problem (3.4), we have

Vu(p(t,)) - Tulp(t,1)) = —dudo(t)/de={ o0 TS

and
Vu(p(t,y)) - Vees(p(t,y)) = —dees(¢(t,y))/dt =0,
thus (3.7) takes the form :

- / a(z)ees(z)dz =0 (0 <e<eo)
U(z%¢)

Taking the limit § — 0 we obtain (3.6). : :

(ii) Now we prove that a( z) = 0 for a.e. z € int Q+ Aga.ln, it suffices to establish
equality (3.6) for any fixed z° € int 7; the construction of U (z%c¢) is the same as in part
(i) of the proof and

V(a:_ o )={z€:z€p(ty), y€ N(z®¢), —e < t < o0}

(see Figure 4). Define the functions

t+e for z = o(t,y), y € N(2%¢€), —e <t < +e
'wcT(:t)= 2¢ forz = (’y)yeN( 0,)+€<t<+T
' 2¢—(t-T) forz=¢(t,y),y€N(:c°,e) +T <t <+T +2€
0. elsewhere in (2
ecs(z) = {bc,s(y) for z = p(t,y), y € N(2,€), —e <t < +o0
' 0 elsewhere in 2

where bes is the same function as in part (i). This time, supp(eesw,r) C €, thus
€csWe,T € wh °°(Q I') again, and (3.2) ylelds ’

aVu - V(e swer)dz = 0. (3.8)
V(z%)
We have again Vu- Ve = 0 and, for z = ¢(t,y) € V(z%,¢),

-1 for —e <t< +e¢ ’
Vu(p(t,y)) - Vwer(p(t,y)) = { 0 for +e <t<+T andt>T +2¢
41 for +T <t < 4T + 2¢,

thus (3.8) takes the form
.- / aecsdz + / aesdz =0
U(z%e¢) V(z%¢,T) '
where

V(a: cT) {zeV(:c €)'z = o(t,y), yEN(n:o-,e),T<t<T+2e}.:
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Taking the limit § — 0 we obtain

- / adz + / adz =0 (0 < e <€)
U(z0¢) V(2,¢,T) '

Now we obtain (3.6) since meas V(2% ¢,T) — 0 as T — oo. To see the last relation,
note that, for £ = 1,2,... , the sets V(zo,e, k) are disjoint for € < 1/2 and therefore
S s meas V(2% ¢, k) < meas§ and meas V(2% ¢, k) — 00 as k — oo.

(iii) For QF and int Q= the proof is similar as for QF a,nd int Q% in parts (i) and (ii),
respectively. The proof of Theorem 1 is completed.

3.5 Proof of Remark 3. Assume that (3.5) does not hold: for a point z° € Q\Q¢, we
have z°-¢ Q¥ U Q- U Q+ u QI‘ Smce Q\QC» is open, there exists a number r > 0 such

that A

B(z°r) C Q\Qc, B(z%r)n o = 0, B(z°,r)u 0t = (3.9)
The first two relations in (3 9) mean that, for any y € B(z% 1), we have t, > —oo,
t§ < +00; let us denote z = hmt_,,;t o(t, y) € 00. We assert that at least one of the
pomts z)f, z; belongs to T Indeed if 2}, z;~ € OQ\T, then, according to the condition of
Remark 3, u( zy) = u(z}) = 0. Due to the mean value theorem, there exists te (t,tF

such that (d/dt)u(p(2, y)) =0. Usmg (3. 4) we find that o(Z, y) € Q is a critical point of
w

0= —-u(sO(t,y)) = Vu(w(t,y)) ” v(t ) = ~Vu(e(iv)P.

But this is impossible since a critical point.can be attained by (¢, y) only asymptotically
as t = too. Thus, for any y € B(z%r), z zy or z+ belongs to I'. Due to the last equality
(3 9) I' is non-smooth at z or p(t,y) reaches zi tangentially. Both types of points
y € T can constitute on T only rnamfolds of lower dimensions than n — 1 as y varies
in Q. Hence some of the flow curves ¢ = <p(t,y),y € B(:z: r), reach common points on -
I' C 99 in a finite time. ThlS contradlcts the assumptlon u € W3%(Q) and proves the

remark. *

3.6 The case of the Dirichlet problem. We briefly turn to the inverse problem of
type (1.1) but with homogeneous Dirichlet boundary condition:
Find a € L}(R) such that

- div(d(i)Vu(:t))": fe) z€®)  and  u@)=0" (= € 60). (3.10)

The weak formulation of this problem is given in the following way:
Find a € L}() such that

/aVu.de:z‘: /fwdx " forall we Wol’w(Q), (3.11)

where W'°(Q) = {w € W1eo() : w(z) = 0 for z € 00}. Thus problem (3.11) can be
viewed as problem (3.1) with ' = § and Theorem 1 can be applied: under condition (3.3),
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a is L'-identifiable from (3.11) on int 2+ and int @~. Thereby, the boundary condition
u(z) = 0 for z € G99 implies the equality

. QtuQ” =0\Qc. (3.12)
Indeed, the inclusion Ot UQ~ C O\ is trivial and the inclusion 2\Q¢c C QY U N~
means that, for any y € Q with Vu(y) # 0, we ha\"e t; = —oo or t} = +oo. If t; and

t} both are finite, then u(2;) = u(z) = 0 for 2t = llmt_,,t e(t,y) 6 oQ. Repeatmg an
argument from the proof of Remark 3 we obtam a contradiction.

4. L'-identifiability in the case of piecewise smooth u

4.1 Transversality condition for Vu. Now consider the case where u remains continu:
ous on  but Vu may have discontinuities on piecewise smooth surfaces M; (i =1,...,m)
in §). Physically, M; are the surfaces between different types of soil. Denote M = UL, M;.
We assume that

u € W) nwie(Q, y) forall €>0 (4.1)
where §¢ p consists of all points £ € Q\M such that the distance from z to a nearest
non-smoothness point of Q0 and M; (i = 1,...,m) as well to a nearest intersection point
of a pair of surfaces 90, M; (i = 1,...,m) exceeds €. Further, we introduce the following
consistency condition: ‘

(4.2)

" There is a strictly positive piecewise-smooth function atest, |
‘with possible jumps on M, such that div(aiest V) € Q)
where the derlvatlves are understood in the sense of distributions. Usually, the ”physical”
solution of the inverse problem (1.1) meets this requirement.
Lemma 1. Let z° € M; be in the smooth part of M;, and let v;(z°) denote a unit normal
to M; at this point. Then, under conditions (4. l) and (4.2), _
lim arest(z)Vu(z) - v5(z°) = arest () Vu(z) - vi(2°). 4.3
(B o150 tfst( )WVu(z) - vi(z") = o) (,0) test(7)Vu(z) - vi(z").  (4.3)

Z—Z" : ' z—2°

Proof. Let B = B(z°,¢) be an open ball in R" centered at z° and of radius € such that
M;N B is in the smooth part of M; and B does not intersect 9 and other M;, j # 1. For
any w € D(B), i.e. w € C®(B) with support in B, we have, according to the definition
of distribution derivatives,

/div(atesgVu)wdz = - /am;Vu . Vy) dz.
B

On the other hand, since div(aiestVu) € L}(Q), we can devide the integral over B into
the subsets BY and B~ on different sides of M;, and integrating by parts we obtain

/‘div(ates;Vu)w dr = /div(am.,Vu)w dz + /div(a;es,,vu)w dz
B Bt B-

—‘/amtV_u -Vwdz + / (afhes — G1est) Vu - vi(z)wdS
B M;nB



338 G. VAINIKKO and K. KUNISCH

where al,, and ag, are the limit values of aiest on M; from different sides. Thus,

/ (afhst — Gest) Vu - vi(z)wdS =0 for all w € D(B),
M:nB

and (4.3) follows.
Note that Lemma 1 holds without the positiveness assumption of aies;. The positive-
ness of aiest is needed when the flow curves are considered.

4.2 Flow curves. The following assertion is a direct corollary from'(4.1) - (4.3):

If a flow curve £ = ¢(t,z), in a finite time moment, transversely reaches a smoothness
point of M;, then this flow curve passes M; transversely to the other side of M; and contin-
ues there. We can define sets O+, Q- ,F,QF as in Subsection 3.2 adding a requirement
about the transversal cuttings of M, e.g.;

J Vu(y) # 0, tf = +00 and, for 0 <t < 00, ¢(t,y) cuts M not )
At ={yeQ

more than finite times whereby every cutting is transversal 4
{ and takes place at a smoothness point-of an M;, 1<i<m
Y

( Vu(y) #0, t; > —oo, p(t,y) transversely reaches a smooth-

o ness point of I' C 9Q-as t | ¢, and, for t; <t <0, cuts M
QI‘ = < Yy an ;-
’ " | not more than finite times whereby every cuttmg is transver-

sal and takes place at a smoothness point of an M;, 1<i<m |

4.3 Extension of the main results. The proof of the following assertion is a.na.logous
to the proof of Theorem 1.

Theorem 2. Under condttzons (4.1) and (4.2), the tran“sm;ssivity coefficient a is L}-
identifiable from problem (3.1) on the sets int QF, int @~ and QF,Q specified in Subsec-
tion 4.2; on int QY and Q™ the Ll-tdentzﬁabzhty holds even if I' =

In Subsection 5.3 we present an example which clarifies the role of the consistency
condition (4 2).

5. Counter-examples to L!-identifiability

5.1 Counter-example in case u € WH(Q) N W2P(Q), p < co. Let
Q= {:c—(a:l,xg)GR"'——l <z <1, 0<x2<l}, u(:z)=|:1:1|" v (l<a<2).

Then u € CYQ)NWHP(Q) (p < 1/(2-0)), O = {z € Q : z; # 0} - all flow
curves reach the critical line z; = 0 in a finite time and stop here. Putting ' = @ or
I'={z€d:z2=00r z2 =1}, a hypothetical extension of Theorem 1 to the case
u € WH°(Q)NW?2P(Q) says that a is L!-identifiable from (3.1) on Q. But this assertion
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is false: a = |z;|'~sign z; is a solution to the homogeneous problem (3.2) belonging to
L9(R),q < 1/(a — 1), and non-vanishing in any point of 2*. Indeed,

/aVu -Vwdz =a /(6w/3z1) dz=0 for all we WHe(Q,T),
1y Q V

while a function w € W®(§,T') vanishes for z; = —1 and z; = +1.

This counter-example can be modified so that a homogeneous Neumann condition
aVu-v = 0 is given on I' = Q. The idea is to construct a function u = p(arctan(z2/z1))
on an annulus @ = {z € R? : 1 < |z| < 2}.

5.2 Non-L!-identifiability on the closure of intQ*. Let £ be the rectangle as
in Subsection 5.1. To construct a function u € C%(Q), we consider a countable set
{2}, € (0, 1) which is dense in [0, 1]. For given € > 0, we recursively construct closed
intervals

=[znn—a,z1+a), €1 < min{e/4,21,1 — 21}

and, for k =2,3,.:.,
It = [zi, — €, zi, + €], €¢ < min {e/2k+1, z,,1— z;k,dist(zg,,uf;}Ij)}

where z;,-is the first term in the sequence {z;} which is not contained in the set Uf:lll
The full set U2, 1; is dense in the interval [0 1] since it contains all zg. On the other

hand, its Lebesgue measure on [0 1] is sma,ll meas (U, [x) < Y po 16/2" = e. Now
define

u(z) = z? Zuk(zz) (z = (z1,22) € Q),
k=1
where uy € C?[0, 1) are functions such that Nukllceo, 1) < 1/k? and supp u; = I; whereby
uk(z) > 0 for z € int Iy and u}(2) # 0 for z € int Jx except the center of the interval. It
is clear that u € C%(f)). The set of critical points of u is given by the line z; = 0 and the
set {z € N:zy g UR, int [;}. The set O consists of the rectangles (k =1,2,...) -,

{z€Q:-1< 2 <0, 2, — €& < 22 < z, + €}
and ’
{zeQ: 0<zy <1, 2, — € < Ty < 2, + €k}

inside of k-th pair of those rectangles, u(z) = z?uy(z2) and flow curves can be examined
independently. According to Theorem 1, a is L'-identifiable from (3.1) on O+ which is
open in this example. But a is not L!- 1dent1ﬁa.ble on the closure of 0% which here coincides
with Q, the closure of . Indeed, the homogeneous problem (3.2) has non-trivial solutions,
e.g. a function a € L®(f2) defined by a(z) = 1 if Vu(z).= 0 and a(z) = 0 if Vu(z) # 0,
Note that the Lebesgue measure of 90 as well of Q¢ exceeds 2(1 — ¢).

5.3 Non-L!-identifiability i in case of failing consistency condltlon Consider the
square ) = {z = (z1,72) € R* ; -1 < 21,22 < +1} which is devided into four ‘triangles
01,...,04 by two diagonal stralght lines M; and M, (see Figure 5).

IS
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Fig. 5
Define the function u € C(Q) putting
u(z) equals z),—z2,—z1,22 on (,...,Qy, respectively.

It is clear that u € W1°(Q) N W22(Q\M), thus assumption (4.1) is fulfilled. On the
other hand, the consistency condition (4.2) fails in this example since the limit values of
Vu(z)-v; from different sides of M; are of different sign (cf. (4.3)).. The flow curves reach
M; in a finite time and cannot be prolonged. e ) -

Consider problem (3.1) with I' = Q. It is interesting that there is no subregion
Q' C Q where a is L!-identifiable from the values of u. Indeed, the homogeneous problem
(3:2) has a rather large set of solutions — one can check that any function a € L(0, 1)
generates a solution a € L1(f) to (3.2) via - '

a(z) equals —o(zs),a(=21),—a(-z2),a(z1) on Q,...,0, respecfively.

This example is a modification of an example of K. Ito-and K. Kunisch [2] where u satisfies
homogeneous Dirichlet condition. In our modification, u satisfies homogeneous Neumann
condition Vu - » =0 on 9.
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