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About Integral Equivalence between Linear and Nonlinear
Operator Impulsive Differential Equations ina Banach Space

S. KOSTADINOV and D. SCHOTT

After an introduction into the problems of impulsive operator differential equations sufficient conditions for the
integral and the asymptotic equivalence between linear and nonlinear equations of this kind are presented. These
conditions guarantee that for bounded solutions of the linear equation there are also bounded solutions of the
corresponding nonlinear equation.
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1. Introduction

Many processes considered in natural science and technology are characterized by shortly
acting impulses in their in general evolutionary development. The impulsive differential -
equations are an adequate, mathematical apparatus to describe such processes. Thus the state
y of dynamical systems can often be described by differential equations of the form

dy _ 1
L= fGym),  t20. )

If there impulsive alterations £; of the state caused by external effects occur for fixed

moments t; > 0, then (1) changes into the impulsive differential eqhation

dy _
3 S ey, t20
Ayt) = y+0) - y(t,-0) = & .

Using the vector notation we also integrate systems of differential equations.

As an example we consider a mechanical system consisting of a hull S with mass M and
a rigid body- K of mass m which is connected with S_by a buffer [5:pp.11-13]. Let the
motion of the hull S be rectilinear and caused by an uncontrollable exterior force ¢ = a(t)
depending on the time t. Let the force g effecting the body K depend only on the
displacement y, of the body with respect to the huil and on the relative velocity y,' = dy,/dt
(see the figure below). : :
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Figure: Mechanical system with a buffer
If z denotes the displacement of S with respect to an inertial system, then the motion of the
system will be described by the differential equation
Mz’ + m(y, + z") = o, m(y+z") = g(y,, y]) .
Eliminating z" and using the abbreviations u = - (M + m)g/(Mm), F = - o/M the equation
yi+ ulyy) = F . « - @
arises which expresses the motion ‘of K with respect to- S. (A similar- equation will be
obtained if we know the acceleration z” of S instead of the force 0.) If now the

unaccelerated system (F = 0) suffers shock effects for fixed moments t,, then instantaneous

increments

Ay = y{(t.+0) - Y16-0) = Ryt~ 0),y; ¢~ 0)) @
of the velocity y,’ occur. Here R; descrlbes the dependency of the velocity jump on the
starting conditions. The equations (2) and (3) lead to the system

/
1= yzlm, s Y2 5 -u(yl’yz)ltn, ’

Ayl(tj) = yl(tj*"O) - yl(t,‘o) =0

AY2(tj) = y;(tj* 0) - y2(tj' 0) = Rj(yl(tj' 0), Y;(tj‘ 0))
of impulsive differential equatlons which is easﬂy solvable for linear forces g (and functions
u, respectively). Under certain assumptlons then also the existence of a solutlon 1n the

nonlinear case with a 51m1lar behaviour for great t as in the linear case follows We wnll

present such assumptions in this paper.
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The mathematical investigation of impulsive differential equations starts with.the papers
[10] and [12]. In the publications [1] - [3] and [14] they are treated for the first time in
abstract spaces. Relations between the solutions of linear and nonlinear equations are studied
in [11], [7], [13], [8] and [3].

" Here we compare the linear impulsive differential equation

i:_’t‘ - AQx() |;“l T - @

(ADE) = x(4+0) - x(t-0) = [x(4,-0) - ‘ (4b)
with the nonlinear impulsive differential equation

L - AOY® + FOTYO,w, : (sa)

(A = y(+0) - y(4-0) = (L, +H) y(t-0) . @)

In the following R, = [0‘, ) denotes the positive real half-axis, X a Banach space and L(X)
the space of all linear and bounded operators from X into itself_. Further we assume:

xy: R~ X, A:R-LX), I,H € LX) G=12273,.)

R xX-X, T:X-X, 0<tj<t,<ty<.., tj~(=).
If the equations (4) and (5) are integral equivalent, then the existence of a bounded solution
x=x(t) of (4) also will imply the existence of a bounded solution of the. more complicated
equation (5). If (4) and (5) are additionally asymprotic equivalent, then both solutions will
not much differ for great t. If we can solve (4) explicitely, then the solution of (5) can be
approximated for great t by a known function. Hence it is important to look for sufficient
conditions which guarantee the integral equivalence and the asymptotic equivalence of (4)
and (5). o |

It will be shown that a solution of (5) satisfies under certain assumptions a fixed point

equation which contains an integral equivalent sqlution of (4). The existence of a fixed point

is proven by using the well-known theorem of Schauder.

2. Definitions and auxiliary theorems

This section contains some notions and relations for impulsive differgntial equations and a

criterion about the compactness of related function sets.
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Definition 1: The function u = u(t) is said to be a solution of the impulsive
differential equation (4) or (5) if it fulfils for t € {t;} the equation (4a) or (5a) and for
t € {t} the jump condition (4b) or (Sb). '

In the following we assume the solutions u of the impulsive equation to be continuous
from the left. Hence we have u(t; - 0) = u(t). Instead of u(t) we shall shortly write u;. Let
Uk(f, 7) be the evolution operator of the differential equation (4a) in the interval (., t] with
to = 0 and let I € L(X) be the identical operator. Besides we introduce the operators
Q=L+ 1(G=123,..)..

Lemma 1: The evolution operator W(t, 1) of the impulsive equation (4) has Sfor
t = 7 > 0 the form

Ut ) . Cfor t<Tstst,,,
Wt,t) = { U, 0t)QU,t,) Cfor t <Tst <tst, ,

Un+1(t’tn)(' -: QjUj(tj’tj_l)) Q,kUk(t,‘k’t) for La<rtsg <t <t<t .

‘The proof of the Lemma is simple. We want to pass it over here. It is also easy to see by
Lemma 1 that W(t, 7) satisfies the equations .
- Witt) = AOW(,T) , teft) , _ L (6a)
W+ 0,7) = QW(E,T) . - (6b)
We shall W(t, 0) abbreviate by W(t). For a projector P, € L(X) we define
P,=1-P, Wits) =WOPWIs), t>20, s>0, iell, 2,
BO =G>0:t<t), Lo ={j>0:tst)

@)

and
. R t LT -o- .
G®,t.d) = [IW,69)1%s + [IW,9)1%ds
0 t . ®
Y IWEHE + Y W, )

jenm jeh®

*

where d is any positive constant. Finally we use for p > 1 and functions z: R, - X the

notation

L(R,,K) = {z: ( fo'|z(t)|vdt)"" ‘<K } . ©)
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Definition 2: The impulsive equations (4) and (5) are called p-integral equivalent if
there exists a bounded solution y = y(t) of (5) to each bounded solution x = x(t) of (4) and
reversely a bounded solution x = x(t) of (4) to each bounded solution y = y(t) of (5) so that
|x® - y@® “ € LP(R+) holds in both cases.

Deﬁnition 3: The impulsive equations (4) and (5) are called p-asymptotic equivalent
if they are p-integral equivalent and if additionally the corresponding solutions x(t), y(t)
fulfil the relation lim,.,, | x(t - y® |} = 0.

We consider the set S(R, , X) of all functions u: R, -» X which are continuous for
t € {t;} and continuous from the left for t € {t}, where discontinuities of the first kind can
occur in t;. S(R,, X) is a linear space which can be metrized by

max, ., [x@® - yoOl
1+max, ., Ix(®) - y®I

P(R,Y) = supy .. (1+2)7

This metric induces the so-called compact-open topology (1 that we alw-aysgwant to use in
SRR, , X). The corresponding con\'rergencek is the mifb’rm’ convergence on each compact
interval of R, B . A

Lemma 2: A set .9' S(R+ , X) is relanvely compact if and only zf the followmg
conditions are sansﬁed
1. The ﬁ;nctlons in & are equlconanuous ie. ,foralle > 0 there exists a numbenS >0
in such a way that forallk 2 1, u € & and t', " in (4., , t] with |t' -t"| < & the.in-
equality |fut’) - u@t"| < ¢ holds. i _ .
2. For allt € R, the subset R, = {u(t) : u s } s relativély compact in X.

The proof of the Lemma is a direct consequencé of the Théorem of Ascoli (see,
e.g., [9,p.47)).
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‘3. Integral equivalent equations

At first we formulate conditions. which ensure the integral equivalence of the equations (4)
and (5). Although these conditions seem to be relatively complicated and difficult to verify;
they are adequate under the intended generality of the problem. An example at the end of
this section shows that the quoted conditions can be verified under rather natural
assumptions. - The notations and concepts are given in section 2.

Theorem 1: Ler the folIowmg assumptions be fulﬁlled for the impulsive equations (4)
and (5): '
LIt holds:

(VD) A is bounded on each compact interval of R, , f satisfies locally the conditions of
Carathéodory, T is cominuous

(V2) The bounded operators Q (1 =1, 2, 3 ..) and therefore also the operators
W) = W(t, 0) exist. '

11. Further, it holds for every closed and baunded central ball B C X: e

(v3) Forall g € X, IlTﬁ I < k(ﬁ) ||o|| with a functional k bounded on B.-

(V4)  The sess f(R, X B) and Ui Q'Hy®B) are relatively compact in X.

1. Fmally it holds for a pro;ector P ‘G L(X), for a Junction w(t;s): R; X R, =R,
" which is monotomcally non-descendmg in s for fixed t and for suitable numbers a € (1,2),
b21,m >0,m>0adM > 0 by observing the notations (7) - (9).anda = a/(a-1):.

(V5)  supp [G(Pptal"* <m,, G(P,-,b)eL(R),

(Vé) L’IPzw-l(§)|¢ + 2;1_Ipzw-l(t))| <w,

(VD 6T < o(ITdD for almost all teR, and all G€X ,
(V8)  o(tc)eL,R,,m) NL,R,,m) forallc20,

(V9 my(c) := SUp, g @(t,c) < w forallc >0,

V10 (5 1Q ' HF ) < M < 1/¢4m,) .

Then (4) and (5) are p-integral equivalent with p = b/(2 - a).
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Proof: 1) Let x be a bounded solution of (4). Then by (V10) there is a number
p 2 2mmy(l-4mM)? >0, 10)
so that x(t) lies for all t in the closed central ball B; with the radius p. Therefore x belongs
to the (-closed and convex set D; = {u € S(R,, X): u(t) € B; for all t}. By assumption
(V3) the number x, = sup {k(@): ] < p}, p = 2p exists. By using the abbreviations
€= px,u = ulty, by = QHELOD, | - Myl 1= sup < o (D
the assumptions (V3), (V7) - (V10) supply for u € D, the inequalities ’
ITu®] < ku®)u®)i sc  foralt,
It Tu®)] < oITu®)]) s ©@,c) < myc) for almost all t, 12)
llhj(u,)ll < ljllujﬂ < plj <spl forallj>0
and the relation :
otc)eL,(R,,m) . I ‘ - (13)
Now V\}e define-on D, the operator

QO = xO) + f W (69)f(s TuE)ds - j W,(,9)f(s, Tu(s)) ds
(14

+ ¥ Wtth) - E W, t)h,(u) .

jen®

The existence of the second integral in (14) follows from the estimates

[ W,9f@Tu@)lds < [ IW;e9)lif@ TuE)lds
s [ IW,E9)los8)ds < [ [ uwz(t,s)u-ds] [ [ o‘(s',a)ds] <mm, - (15
t t t . .

by using (V5), (12), (13) and the inequality of Holder for integrals. The second sum in (14)

exists because of the estimates

Y IW,Gh @)l < Y IW,a )1 @)l
jel jeh® (16)

' Ih i |8
Sp X GO, < o T M) [): 1,] < pm,M
ieh® jel0 jen®

in consideration of (V5), (V10), (12) and of the inequality of Holder for sums. Analogously
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to (15) and (16) the inequalities

t
[ W, 9, Tus)lds < mym, , (1)
[1]
Y WGl < pmM | . ae)
i€en®
are obtained.

2) Now we show by the Theorem of Schauder-Tichonov (see, e.g., [9,p.627]) that the
operator Q from (14) possesses a fixed point in D,. For this purpose we prove the following
- properties of Q:
a)Q ‘maps D, in itself.
b) Qis conﬁﬁuous on. D, (with respect to 9):
¢) QD, is relatively compact (with respect to 0.
To a): Let u be an arbitrary, fixed element of D, . Then we obtain from (14) together with
the relations || x(t) || < », p = 2p, (10), (15), (15"), (16) and (16') the estimates -
t ©
QWO < IO + [IW,t9)f(s,TuE)lds + [ IW,(ts)E(s, Tuls)lds
) ot

0

+ Yy ||Wl(i,t,)hj(u})n . E HWZ(t,t,-)h,-(u,-)Ii

j€n® ienL®
<p +2mm, + 2pmM = p(1+4mM) + 2mm, <25 = p .
It is easy to see that Ql; belongs also to SR, , X). Hence Qu is again in D, .
To b): We consider a sequence (u,) of elements u, from D, and an element u from D,

with the property supicy || u,(t)-u(®) | = 0 (n>o0) for each compact interval M C R, . At
first we win by means of the inequality of Holder and of (V5)

[T ,,5) (5, T, (5)) - (s, Tu()l ds
s [ IW @91, Tu,(6) - f(s, Tu@)ids
< (Wi oras] ([ it Tu ) fs, Taas)

< my (1605, Tu, &)~ (s, Tu(s) ]}
and
[ W€ 9(£6, Tu (6 -1, TuE)ids < m, ([ 66, Tu o0 - fis, Tutey s ™
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respectively, as well as

Y IWG0@) b))l s ¥ IW,6OIh - wl

jeho ieh®
- lli
(‘IE() [IWl(t,tj)ﬂ‘J (21:0 lhj(%—uglijlﬁ < m, LX; Ih,.(%.-u,.)l')
€ l' jE. lt =
and .
o 1fa
20 W (6 t)(hy(u,) - b))l < m, (E uh,(u,,,-u,-)u‘) ,
JenL( j=t

respectively, where u,; = u,(t). Therefore we get with the aid of definition (14)

1A
I(Qu))(® - (Qu®) < 2m,( f i(s, Tu,(s))- f(s,Tu(S)) I‘dS] +2m, [Z Ihy(uy, - upl]‘]
Let & > 0 be arbitrarily given. Now we choose t' > 0 so great that

Wi(s,8)ds < ||, oo f—e Y
tf . [16m1) . je{(:p) ] (lﬁmlp

holds. This leads to the estimate
1(Qu)(®) - QuW®I

[ 4 «

1/
< 2ml[ f If(s, Tu,(s)) - f(s, Tu(s) [* ds + f llf(s,T‘ll,(S))-f(S,Tu(S))lIidS)

t

+2m1(2 Iyt -u)lF + 32 oy u,)n')‘f‘
Jen ) JenLE)

t - . 1a
< Zm,[ [ 1. Tu,@)-f6 Tus)lids + [ (If(s,nx.,(s))n+nf(s,m(s»n)‘ds]
0 .o v

A 15
) 2m,[ IR LICHN RS > (nhj<w1+lhj<"9')') '
Jjen ) jel ) .
Now there is a natural number ny = ng(t’, &) so that for all n > n, and s € [0, t'] the
inequalities
1, Tu, () - fGsTuE)l s —— , I, -u)l s — &
~ 8m, (') 8m, (i)
are satisfied, where i(t) denotes the numbers of points t; in the interval (0, t]. Hence we have
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for n = n, by use of (12)

i w i
QU - QO < 2ml[ i [ ] &+ Ziwi(s,E)ds]
0 t

8m,(t')'"
H A
+2m E — |+ E @e)Y
! je]l(t’)(8ml(i(t'))l/i] jE€na) !

i iV
21 +[<E =231 ¢ ¢,
8m, 8m,

Thus we obtain for each compact interval M C R, the relation
supiem [|QuI® - QWO || 0 (0 = ).
To c): We can verify immediately that the function v. = Qu fulfils the equation

< 2-2m1

vi® = AQVE) + £ Tuw) - | un

for t € {t;}. Namely, under consideration of (4a), (6a), (14) and W,(t,t) + W,(t,t) = I we
find - ' o

vi®) = x'® + W LY Tu®) + W,0f( Tu®)
+ A®) f W, 9f(s, Tus)ds - A®) f W,(t,9)£(s, Tu(s))ds

+AOY, W,tHhm) - AQ Y W,tt)h@)

jel .(l) jeh®

= A(t)X(t) + f(t,Tu(t))

+ A® f W,t9)f (s Tus)ds - A f W,(t5)£(s,Tu(s))ds

+A® Y Withh () - AQ Y, W,tthw)

ien® jen®
= AOQu® + fETu®) = AQVE) + fETu®) .
Therefore we have also
MO s IAOIVOI + IfGTaE)]

fort & {t}. It follows from (V1) and (12) that the derivatives of the functions v in QD, are
uniformly bounded on each compact interval M C R, so that QD, contains equicontinuous
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functions. Now we show that

R, = {v(): veQD,} = {(Qu)®): ueD,}
is a relatively compact subset of X for each fixed t € R, . At first we prove the relative
compactness of the set

RO() = { [ RW ), TuE)ds uer} .
(V6) and (12) imply the boundedness of R?(t). Observing the estimate || Tu(s)| =< cin (12)
the set {Tu(s): u € D,, s € R,} iscontained in the central ball B; C X. Because of (V1)
and (V4) there exists a sequence (f,) of continuous, finite-dimensional functions f,, which
converges on R, X B; uniformly to f (see, e.g., [9, p.626]). The sets

RO® = { [ BW @, 6 Tu@)ds: uer} c X

are finite-dimensional. For sufficiently great m they are also bounded and therefore
relatiirely compact. The Theorem of Hausdorff (see, e.g., [9, p.19]) implies that RA(t) is

then relatively compact, too. On the other hand this means that the set

WORP® = {f” W,t9)f(s Tu(s)ds: ueD,}

is relatively compact. Analogously we get the relative compactness of

WORPE = ([ W,69)f(sTuls)ds: ueD,} .
Taking (V6) and (12) into account we find

EM«) IP,W(t)h, @)l < pl E,-e:,(.) IP,W(t)] < .

Using (V4) we see that also the set

() { Ejelz(t) P2W"(t})hj(uj) : uer} = { Ejel,(t) W,tt)h; () : uer}

is relatively compact. Analogous considerations show that {Ej W,(t, Hh(u): uED,} is

5,0
a relatively compact set. By (14) then R, is relatively compact, too. Finally Lemma 2
supplies the relative compactness of QD,. Since the conditions a), b) and c) are verified, Q
possesses a fixed point y=y(t) in D,.

3) Now we show that

YO = @)O = x0 + [ W96 Tye)ds - [ W,t,9£(s,Ty(s)ds |
0 . t (18)
" L Vb - 3 Wity oy
jel(t

jen®
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is a solution of the impulsive differential equation (5). Letbe t € {t;:j > 0}. Foru = y
we have v = Qu = Qy = y. Thusy satisfies the differential equation (5a) because of (17).

Let be t = t, (n > O fixed). Then by (18) there follows in consideration of (6b) and
Wi(t,s) = W(®P,W'(s), i € {1,2} on the one hand

‘I
Y+ 0) = x(t,+0) + Q, [ W(t,9)f(s, Ty(s))ds
: 0
-Q, f W, (t,)f(s, Ty@E)ds + Q, 5; W, (t,t)h,(v)
jely

-Q, Z W (t.,,t,)h (y,) Q w (t,.,t )h L0
jelz(t.‘)

with the definition J,'(t) = J,(t) \ {t} = {§ > 0: t < t} and on the other hand
[ ' - _ .
Y = 2 + [ Wit 9f6Ty6)ds - [ Wt 9f s, Ty@)ds
0 t, ’
+ E Wl(tn,tj)h’(yj) - E Wz(tn,tj)hj(y}) .
j i€l

J€N )
This impiies in view of Qnr = I., + I and (4b) the expression

¥(t,+0) - y@t) = I(x)

t °
+ 1 f W, (t,,9)f(s, Ty(s))ds - in f Wz(tn,s)f(s','l‘y(s))ds'
0 4
LY W(pho) -L Y W,,0h)
;el,(z_) ,sl,(t_) _
* QW ()b, 0) + QW th,G,) -
Finally with the aid of
Wil Db, 0 + Wit ,t)h,(,). = b,G,) = Q'H)y,
we get the result E
| Y6+ 0) - 36 - Ly, + QQ;" H)y, = (,+H)y, .
Hence y=y(t) fulﬁls also the j Jump condmon (5b). :
4) Lety € D, be a bounded solution of (5). If x is separated in (18), then equation
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t o
X0 = y® - [W,eHfETy)ds + [ W,t9)f(sTy(s)ds
0 t
(8"
- Y Wby + 2 W,(tt)h,(y)

jen©
arises. We can show similarly as in part 3 that the function x defined in this way is a
bounded solution of (4). A
5) Now we prove that the relation |x(t) - y(t)| € L,(R,) follows by (18) and (18"),
respectively. At first in view of (15), (15'), (16) and (16’) the estimate

t “ ' '
Ix®© - yOI s [IW,@9)f6TyEDlds + [ IW,€9)f6Ty(Dlds
0 t
+ Y W GG + 3 IW,Lt)hG)l a9
jeh© ’

j€el®
<K +K, + sl +S,

holds with

= K,® = f IW,t,9)lo(sE)ds , K, = K = f uw,«,s)ws,c)ds. 20

=S®=p Y IWAHIL, S, =S50=p Y Wevl,,

jell(t) 1513(0

where € = p sup {k(d): |G| < p} as in (11). Next we define numbers «, B, 'y>0
according to -

~ 1 1 b 1 -1 1

¢=p, —=—-—, —== -2

B a ap’' y a p L
and choose p = b/(2-a) > 1. Then we have 1/a + 1/8 + 1/y = 1. Further we put 8’ =
épYB, v' = ap/y. Now the (generalized) ‘ineqﬁality- of Holder suf)pligs fn consideration of
(V5), (V8) and (V9) with m; = m,(C) the estimate

t . P.
v = [ [ W, 691" 0 63)IW, 6,9 w”’(sﬁ)‘h]‘
(]

t (] t p/p t Y
< ( / uw,(t,s)n"“'vw"’v(s,z)dsr [ / uW.(t,s)u°ds] [ i m‘(s’s)ds]u“ @D
0 0 0
< mf'm)’ f W, 0 6,8)ds < mf'm!m; f IW,(t9)lPds . |

By (V5) the function K;” belongs to Li(R,). Therefore we have also K, (S L,,(R+) Ana-

logously we can show
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P . b : ' 22)
K; < m{mim; [ [Wts)Pds | -
t

and K, € L,(R,). Using (V5), (V10) and (11) we obtain beyond it

sf = p’( )R LA b |W,(t,t,.)|"°1;”)"
jei )

. p"( > nwl(t’tj)lbalpljlulp)ﬂﬂ ( ¥ ||W,(t,t})||-)vll’ (jz lj')””

€k © jen® en® 23)
spPmfMT Y IW,GOPL < pPmfMY1Y T W, GO
jeh© j€h© .
Because of (VS) the function S° lies in L,(R+). Thus §; € L(R,). Similarly we find
P < pPmfMYE T W, P ' e

ieh®

and S, € L,(R,). Finally |[x(t) - y(t)|| € L,R,) arises in connection with (19) m

Remark: If X is finite-dimensional or f does not depend on x, the assertion of Theorem

1 remains true without assumption (V4).

Using more special natural conditions we can also show the property of integral

equivalence.

Theorem 2: Let the space X be finite-dimensional. Besides let be ﬁdﬁlléd the folldwing
assumptions for the impulsive equations (4) and (5):
1. There holds: ‘ . ‘
(B1) A is bounded on each compact interval of R, and integral-bounded with a constant

@, ie f° |AGs) |ds < at (t = 0). Moreover the commutativity relations A(s)A(t)
] .

= A(WA(s), QA() = A(W)Q, are satisfied forall s, t = 0 and all j = L.

(B2) The operators Q; (j = 1) are continuously invertible. The sequence Q™) is norm-
bounded.

(B3) T is continﬁous, fis continuous on R, X X.

II. Further, for each closed bounded central ball B C X there holds:

(B4) Foralla € X, |Ta| < k()| a| with a functional k bounded on B.

(BS)  The sets f(R, X B) and U, Q"HB) are bounded in X.
INl. Finally, for a projector P, € L(X), for a monotone non-decreasing and bounded

JSunction " : R, =R, and for suitable numbers a € (1, 2),L >0, K >0, Q > 0,
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qQ>a,l>0,N>0,86>0 andy € N there holds with the notations (8),a = a/(a-1),
Q = sup; | Q|| and d(t) = max {j: {; < t} :
(B6) Each interval 1 C R, of the length | contains at most -y members of the sequence (t).

BN W, t9)] < Ke?® 0 <ss<t),[Wyt,9)] s Ke®t? (0<t<s).
1 ‘
@) JHQIsQe™ (t20.
j=dto

®9) [f@&Tuw)] < Le™w*(ITul) for almost all t € R, and all u € X.

& ad 1-e-%1

- ) 1 V(LK 1/(1-3)
®B10) ¥ HF < =| |2— + 2k )
4Q .
Then (4) and (5) are p-integral equivalent with p € (1/(2-a), a/(2-a)).

We omit the proof here. It can be shown that with the exception of the second part of
(V5) all assumptions of Theorem 1 are fulﬁlled. But this part is not necessary,'because the
relations K|, K,, S,, §; € L (R,) are in this case essentially a consequence of (B6) and B7)
(see [6]). Impulsive equations of type (4) satisfying the condition (B7) with positive constants
K and & are said to be exponentially dichotomous. Examples for such equations are contained
in [4].

Example: Let be X = R*and t; = jh (h € [0,1]). We define
8, nn(t)]

A0 =160 20

where a,(t) € [0,o] for i,j € {1,2} and all t > 0. Further, we assume that the functions a;
fulfil the following properties: '

(P1) a,,(t) = a;(t), an(t) = ay,(t) forallt = 0.
(P2)  ajy(t)ay(s) = a,(s) ay(t) :
a;() a,,(8) + a(s) an(t) = a;(t) a(s) + ay(t) ay(s) forallt,s = 0.

(1) 2(8) + ay(1) an(s) = 2,(1)ayy(s) + ax(t) ay(s)
(P3) Thereist” > 0sothat €** max{a,(t), a,,(t)} < a,,(t) ayt’) - a;5(t) 2, (t)
holds and the spectrum of the matrix
i [-.,«') a.,(t')]
8,07 ay(t")

is contained in the left half-plane.
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Finally we choose for x = (x;,X;) € R}, t € R,

e - o[ |sm(x,x2)l + 3| cos(x, +x2)I]’ 0o -

*”‘2

x| a,(x)
IXI a,x)|’

wherea,a.recontmuousfunctlons(1 =12,Q=L+I=QandH;=0(G=1,2,3, ..).
Then simple calculations show that the conditions (B1) - (B10) of Theorem 2 are satisfied
for all numbers a € (1, 2). ‘Hence (4) and (5) are p—integral equivalent in this case for
every p = 1 ‘ ‘ ' .

4. Asymptotic integral equivalence

Supposing additiona1 cqnditions we can ensure the asymptotic @quiyafence of the equations
(4) and (5).

' Theorem 3: Let the assumpnons of Theorem 1 be satisfied wzth a= =b. Further we assume
the following conditions:

(Z1) lim__ w(t,c) = O for each constant ¢ = 0.

(Z2) lim 1 =0.
Z3)  tlim,__ ||Wl(t,s)||’ds lnnth Jere) W@ =0 for arbitrarily great r,
r > 0

@4) lim,_ [ "W t9)I*ds = m_,z yeno WP =0 .
Then the zmpulstve differential equations (4) and (5) are p-asymptotic equtvalent with
P = a/(2-a). ‘

Proof: Observing Definition 3 and relation (19) it is sufficient to show, that the limits

lim K,®).= lim K, = lim §,0 = lim S,0) -

t-eo too
hold for the functions K|, K,, S, and S, defined in (20). Let ¢ > 0 be arbitrarily given.
Because of the assumptions (Z1), (Z2), (Z4) there is a number T > 0 such that for
t = T, § = T the inequalities
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- P » .
0te) s ————n, 1< s ]
2‘4”mlp m;' ml' 2.4Pppmlﬂ MY mlﬂ . s .,-
3 : : P A L
Frmors s —2 . 5 mapr i
t #mPm!m; Cieho PormP MY

hold with the notations used in Theorem 1. Now we choose numbers T, r : > T, fgr which

the limit relations in (Z3) are fulfilled. Then a number T’ max(r, r) exists so that for
t = T’ the inequalities

b 4 -

. . P

[ W &9Pds < —, LY Wy s —— S

0 241’m1 m; my; = jeheh’ 2 4Pp"m M"l“

[N

are realized. Now-let be t = T'. By .(21) we get with a = b .the estimate
r i . B t . - -
)4 [ PR Y2 P Y
K! < m{ m] [ [ W @9 S)ds + [IWE9l'e (s»c)ds]
- 0 . t . )

e"m; . e"m,‘

sm,m,2

’

e?
- 4P"-' N

24’m,m2m3 24"m,m,2ml
.{X

where the assumptions (V5) and (V9) are used. Consequently it holds Kl <::¢&/4. Further, by

(22) we win with a = b the estimate . i

KP < mf'm!m; f W,690'ds < mPmim; — & - &,
. tnfmimy ¥
In view of (23), a=>b, (V5) and (V 10) the mequalmes

31 P"ml ‘MY Z W, lj + E ||W,(t,t)||'1
— jehed . jero s ‘
ePl® | ePm,’
< p"m MY +
24Pp"m M”l‘ ' 24"p"ml M"ml

follow, where J7(t) = J,() - J,(r') = {j > 0: ' <t < t}. Fmally we deduce from (24)
and a = b the estimate

©

| 4
P < o M"1* ¥ IW,e)I < pPmP MY — & - &
/ ’
Jel® 4Pppml° MY'18 4°

But for t > T this means [|x(t) - y®)| < ¢ W
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