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About Integral Equivalence between Linear and Nonlinear 


Operator Impulsive Differential Equations in a Banach Space 
S. KOSTAIDINOV and D. SCHOTT 

After an introduction into the problems of impulsive operator differential equations sufficient conditions for the 
integral and the asymptotic equivalence between linear and nonlinear equations of this kind are presented. These 
conditions guarantee that for bounded solutions of the linear equation there are also bounded solutions of the 
corresponding nonlinear equation. 
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1. Introduction 

Many processes considered in natural science and technology are characterized by shortly 

acting impulses in their in general evolutionary development. The impulsive differential 

equations are an adequate, mathematical apparatus to, describe such processes. Thus the state 

y of dynamical systems can often be described by differential equations of the form 

dy -	= f(t,y(t)),	t ;-. 0.	 (1) 
dt 

If there impulsive alterations t j of the state caused by external effects occur for fixed 

moments t > 0, then (1) changes into the impulsive differential equation 

dy 
= f(t,y(t))	,	t ^t 0 

dt 
y(t) = y(t+ 0) - y(t- 0) 

= 

Using the vector notation we also integrate systems of differential equations. 
As an example we consider a mechanical system consisting of a hull S with mass M and 

a rigid body . K of mass m which is connected with Sby a buffer [5:pp.11-13]. Let the 
motion of the hull S be rectilinear and caused by an uncontrollable exterior force or = o(t) 
depending on the time t. Let the force g effecting the body K depend only on the 
displacement y 1 of the body with respect to the hull and on the relative velocity y 1 ' = dy1/dt 
(see the figure below). 
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Figure: Mechanical system with a buffer 

If z denotes the displacement of S with respect to an inertial system, then the motion of the 
system will be described by the differential equation 

Mz" + m(y+ z") = a , m(y+ z) = g(y1 , y11) 

Eliminating z" and using the abbreviations u = - (M + m)gI(Mm), F = - oriM the equation 

Y1 + u(y 1 , y11) = F	 (2) 

arises which expresses the motion of K with respect to S (A similar equation will be 
obtained if we know the acceleration z" of S instead of the force or.) If now the 
unaccelerated system (F	0) suffers shock effects for fixed moments t, then instantaneous 
increments	 -	- - 

Ay'	y/= y(t+ 0) - y(t- 0) = R(y1(t- 0), y(t- 0))	 (3) 

of the velocity Yi' occur. Here R describes the dependency of the velocity jump on the 
starting conditions. The equations (2) and (3) lead to the system 

Yi = Y2 L	y = -u(y1,y2) 

Ay1(t) = y 1(l+0) - y1(t-0) = 0 

y2(t) = y2(t+ 0) - y2(t- 0) = R(y1(t- 0) , y2(t- 0)) 

of impulsive differential equations which is easily solvable for linear forces g (and functions 
u, respectively). Under certain assumptions then also the existence of a solution in the 
nonlinear case with a similar behaviour for great t as in the linear case follows. We will 
present such assumptions in this paper.
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The mathematical investigation of impulsive differential equations starts with.the papers 

[10] and [12]. In the publications [1] - [3] and [14] they are treated for the first time in 

abstract spaces. Relations between the solutions of linear and nonlinear equations are studied 

in [11], [7], [13], [8] and [3]. 

Here we compare th linear impulsive differential equation 

= A(t)x(t)1,,,.	 .	 (4a) 
dt 
(Ax)(t) = x(t,+ 0) - x(t- 0) = I x(t- 0)	 (4b) 

with the nonlinear impulsive differential equation 

dy = A(t)y(t) +	,Ty(t))	,	 .	 (5a) f(t  
dt 
(y)(t) = y(t+O) - y(t-0) = (I+H)y(t-O) . (Sb) 

In the following R = [O, co) denotes the positive real half-axis, X a Banach space and L(X) 

the space of all linear and bounded operators from X into itself. Further we assume: 

x,y:R-. X, A:R,-.L(X), IHELOC) (j=l,2,3,...) 

f:R,xX-X, T:X - X, 0<t<t2<t3<..., t-.ao(j-.00). 

If the equations (4) and (5) are integral equivalent, then the existence of a bounded solution 

x = x(t) of (4) also will imply the existence of a bounded solution of the. more complicated 

equation (5). If (4) and (5) are additionally asymptotic equivalent, then both solutions will 

not much differ for great t. If we can solve (4) explicitely, then the solution of (5) can be 

approximated for great t by a known function. Hence it is important to look for sufficient 

conditions which guarantee the integral equivalence and the asymptotic equivalence of (4) 

and (5). 
It will be shown that a solution of (5) satisfies under certain assumptions a fixed point 

equation which contains an integral equivalent solution of (4). The existence of a fixed point 

is proven by using the well-known theorem of Schauder. 

2. Definitions and auxiliary theorems 

This section contains some notions and relations for impulsive differential equations and a 

criterion about the compactness of related function sets.
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Defmition 1: The function u = u(t) is said to be a solution of the impulsive 
differential equation (4) or (5) if it fulfils for t iz {t} the equation (4a) or (5a) and for 
t E {t} the jump condition (4b) or (Sb). 

In the following we assume the solutions u of the impulsive equation to be continuous 
from the left. Hence we have u(t - 0) = u(t). Instead of u(t) we shall shortly write u. Let 
Uk(t, r) be the evolution operator of the differential equation (4a) in the interval (t 1 , tJ with 

= 0 and let I E L(X) be the identical operator. Besides we introduce the operators 
Qj Ij + I(j = 1,2,3,...). 

Lemma 1: The evolution operator W(t, r) of the impulsive equation (4) has for 
t > r > 0 the form 

	

U(t, t)	 for t, < t --^ t -< t,,1 

W(t,r) = U (ttn)QnUn(tn V)	 for tn _I < t 5 t,, < t 29 t,,, 

U,1(t,t)(  IJ -n QU(t,t_1)) QkUk (tk, r) for t 1 < t !g t< t, < t !g 

The proof of the Lemma is simple. We want to pass it over here It is also easy to see by 
Lemma 1 that W(t, r) satisfies the equations 

W'(t,t) = A(t)W(t,r) , t (lJ ,.	 -	 (6a) 

+ W(t 0, r) = QW(t, r) .	 (6b)


We shall W(t, 0) abbreviate by W(t). For a projector P1 E L(X) we define 
P2 = I - P1 , WA, s) = W(t) P1W'(s) , t 2! 0 , s 2t 0 , i E{1, 2}	

(7) 
J1(t) = {j > 0: t < tJ , J(t) = (j > 0: t :5 t) 

and

t, d) = fJJw1 (t, s) D'ds + fIIW2(t, s) Odds

(8) 

	

+	HW1(t,t)Ild + 
jeJ1(t)	 Ei2(t) 

where d is any positive constant. Finally we use for p ^t 1 and functions z: R - X the 
notation

L(R,,K) = {z:	 UP.

 
^ 

K }.	
(9)
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Definition 2: The impulsive equations (4) and (5) are called p-integral equivalent if 

there exists a bounded solution y = y(t) of (5) to each bounded solution x = x(t) of (4) and 

reversely a bounded solution x = x(t) of (4) to each bounded solution y = y(t) of (5) so that 

x(t) - y(t) jj E L,(R + ) holds, in both cases. 

Definition 3: The impulsive equations (4) and (5) are called p-asymptotic equivalent 

if they are p-integral equivalent and if additionally the corresponding solutions x(t), y(t) 

fulfil the relation lim, 11 x(t) - y(t) II = 0. 

We consider the set S(R + , X) of all functions u: R.4. - X which are continuous for 

t {;} and continuous from the left for t E {t}, where discontinuities of the first kind can 

occur in t. S(R + , X) is a linear space which can be meti zed by 

maxOd jx(t) - y(t)I 

1 +max,A x(t) - y(t) 
p(x,y) =. SUPO<A<.. (1+A)

This metric induces the socalled compact-open topology 0 that we always want to use in 

S(R + , X). The corresponding convergence is the uniform convergence on each compact 

interval of R. 

Lemma 2: A set Jr S(R+ , X) is relatively compact if and only if the following 

conditions are thti.fied:' 
1. The functions in .9 are equicontinuous, i.e., for all e > 0 there exists a number ô > 0 

in such a way that for all k > l, u E3 and t', t" in (tkI , tj with It'  -.t"I < 6 the. in-

equality II u(t') - u(t") 11 < c holds. 

2. For all t E R the subset R, = Ju(t): u E Jr  is relatively compact in X. 

The proof of the Lemma is a direct consequence of the Theorem of Ascoli (see, 

e.g., [9,p.47]).	 .	 .
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3. Integral equivalent equations 

At first we formulate conditions. which ensure the integral equivalence of the equations (4) 
and (5). Although these conditions seem to be relatively complicated and difficult to verify, 
they are adequate under the intended generality of the problem. An example at the end of 
this section shows that' the quoted conditions can be verified under rather natural 
assumptions. : The notations and concepts are given in section 2. 

Theorem 1: Let the following assumptions be fulfilled for the impulsive equations (4) 
and (5): 

I. It holds:  
(Vi) A is bounded on each compact interval of R. , f satisfies 'locally the conditions of 

Carathéodory, T is continuous. 
(V2) The bounded operators Q' (j = 1, 2, 3, . ..) and therefore also the operators 

W(t) = W(t, 0) exist. 
H. Further, it holds for every closed and bounded central ball B 
(V3) For all ü É X II TO	k(0) 1 1 0 Q with afuncnonal k bounded on B 
(V4) The sets f(R x B) and	Q4HfB) are relatively compact in X. 

III. Finally, it holds for a projector p 1 E L(X),forafisncrjon w(t,$): R X R. 
which is monotonically non-descending in sforflxed t and for suitable numbers a E (1, 2), 
b ^: 1, MI > 0 1 m2 > 0 and M > 0 by observing the notations (7) - (9) and a = aJ(a- 1): 

(V5) SUPtER [G(P1,t,	m1 , G(P1, ,b)€L1(R) 

(V6) jP2W(s)ds +	 P2W(9p < 

(V7) If(t,Tü)I !^ co (t,(JT jI) for almost all tER and all tEX, 

(V8) c(t,c)EL1(R,m2) ñ L(R,,rn) for all c k 0, 

(V9) MI(C) := SUPtER co(t,c) <	for all c	0 

(V1O) (E1	:5 M < 1/(4m1) 

Then (4) and (5) are p-integral equivalent with p = b/(2 - a).
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Proof: 1) Let x be a bounded solution of (4). Then by (V 10) there is a number 

;,-, 2m1 m2(l-4m 1 M) > 0,	 (10) 

so that x(t) lies for all tin the closed central ball B-, with the radius p. Therefore x belongs 

to the fl-closed and convex set D,-, = {u E S(R , X): u(t) E B for all t}. By assumption 

(V3) the number x = sup {k(Cl): 110 II :5 p}, p = 2p- exists. By using the abbreviations 

= px,, u = u(9, h = Q; 1 H €L(X) ,	= lihO , 1 = sup 1,. < 00	(11) 

the assumptions (V3), (V7) - (VlO) supply for u E D the inequalities 

IlTn(t) I !^ k(u(t)) lu(t) I :^ F	for all t 

Uf(t,Tu(t))ll :r. (t,flTh(t)U) T. w(t,) :s m3() for almost all t ,	 (12) 

llh (u )O :!^ l IJu	:^ pI :5 p1	for all j > ,0 

and the relation 
G)(t,c)E1_1(R,,m2) .	 (13) 

Now we define-on D the operator 

(Qu)(t) = x(t) 
+ f W1(t,$)f(s,Tu(s))ds - f W2(t,$)f(s,Tu(s))ds 

0	 t	 (14) 

+ E W1(t,t)h(u) - E W2(t,9hj(uj) 
jeJ1(t)	 j0J2(t) 

The existence of the second integral in (14) follows from the estimates 

f 11W2(t1 s) f(s1 Tu(s)) lids	I gW (t, $) II Uf (s,Tu(s)) Ads 

:g
f 1W2(t1s)1(s,)ds 

^ ( 
11W2(t1 s)rds) (Ic 1 (s)ds) _e. m1m2	(15) 

by using (V5), (12), (13) and the inequality of Holder for integrals. The second sum in (14) 

exists because of the estimates 

E AW2(t,t)h(u) II	AW2(tt) I 1h1 (u) 
jEJ3(t)	 jeJ2(t)	 (16) 

^ p E IlW2(tt) 0i :^ p ( E liW201 t ) i
) 
" (i 1 	15p m1M 

je32(t)	 tei2(t) 	jeJ2(t) 

in consideration of (V5), (V 10), (12) and of the inequality of HOlder for sums. Analogously
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to (15) and (16) the inequalities 

fvWi(t,$)f(s,Tu(s))[Ids !^ m1 in2	 (15') 

E flW1(t,t)h(u)0 pmM	 (16') 
j €J1(t) 

are obtained. 

2) Now we show by the TheoEem of Schauder-Tichonov (see, e.g., [9,p.627]) that the 

operator Q from (14) possesses a fixed point in D. For this purpose we prove the following 
properties of Q: 

a) Q maps D in itself. 

b) Q is continuous on D (with respect to (1). 
c) QD is relatively compact (with respect to 0) 

To a): Let u be an arbitrary, fixed element of D. Then we obtain from (14) together with 
the relations x(t) 11 5 P, p = 2, (10), (15), (15'), (16) and (16') the estimates 

U(Qu)(t)II !^ Ilx(t)D 
+ f 1W1(t,$)f(s,Tu(s))Ads 

+
f 'W'2(t,$)f(s,Tu(s))JJd 

+ E lIW1(t,9h(u) J +	IW2(tt)h (Uj) 
j€J1(t)	 j€J20) 

+ 2m1 m2 + 2pm1 M = (1+4m1 M) + 2m1n  	p 

It is easy to see that Qu belongs also to S(R + , X). Hence Qu is again in D. 
To b): We consider a sequence (u,) of elements u. from D 0 and an element u from D 

with the property sup1 u(t)-u(t) Ii. -. 0 (n-boo) for each compact interval M C R. At 
first we win by means of the inequality of Holder and of (V5) 

f t 6w1 (t,$) (f(s,Tu(s)) - f(s, Tu(s))) lids 

:5 f t liW1 (t, s) Ill f(s,Tu(s)) - f(s, Tn(s)) lids 

	

^ (ftn	Os)"(fUf(sTu(s)) f(s, Tu(s)) Aids)'!' 

m, (f0 llfsms - f(s,Tu(s))IIicIs)a 
and

f ° 1W2(t, s)(f(s, Thu(s)) -f (s,Tu(s))) Ads --^ m, (f ljf(s,1'u(s)) - f(s, Tu(s)) AIds)"
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respectively, as well as 

E B W1(t,9(h(u)-h(up)0 :5 E OW1(t,t)Uh(u,-u)0 
jeJ1(t)	 j€11(t) 

:5. 	(	Oh(u_u)U1)"1 9 m (
	

Bh(uj_uj)O 
Ira 

and	
1) 

V e11(t) (j€31(t)

Ira 

	

t) 
IJW2(tt)(h(u11 ) - h(u)) U !r m (

	
Bh(u - u)' U) 

respectively, where u j = u0(t). Therefore we get with the aid of definition (14) 

	

Ira	 ire 
U(Qu)(t) - (Qu)(t) B :5 2m f Bf(s,Tu5(s)) - f(s,Tu(s)) U*dS + 2m1	Uh(u — ii) 0' 

0 

Let a > 0 be arbitrarily given. Now we choose t' > 0 so great that 

f'(s,)ds ^ I_	1.' ^	£ ) 
. 16ni)	je32(t)	16rn1p) 

holds. This leads to the estimate 
lKQu)(t) - (Qu)(t) 0

Ira 

:5 2m (I' IJf(s,Tu(s)) - f(s, Tu(s)) )ds + fIIf(sm(s)) -f(s,Tu(s)) dsJ 

+ 2m (E I!hj(UgjUj)ll' + E Uh(u-u)U')" 
(.j€i1(t)	 ja12(t')	 ) 

^	 f(s,Tu(s))O'ds + f(if(s,Tu.(s)) I +lf(s,Tu(s)) U)' ds

I[ t	
ira 

Ira 
+ 2 	J(U,-U)U' ^ E (Hhi(uni)0+Bhi (up u)i 

j C'20')
). 

j e11(t')  

Now there is a natural number no = n0(t', ) so that for all n ^t no and s E [0, t'] the 
inequalities 

II f(s,Tu(s)) - f(s,Tu(s)) U 9
e

	

, Bh (u - UP  !C	€ 
8m1 (i(tl))U' 

are satisfied, where i(t) denotes the numbers of points l in the interval (0, Q. Hence we have
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for  ^!t no by use of (12) 

U(Qu)(t) - (Qu)(t)V ^ 2m (	e	ds + f2(s)dsI 
10 18mi(t')'J  

'a 
+2mi

Ix
(_C 

j') 8m1(i(t' ))1/i 

J 
( 

:r 2-2m 
(-l i- ( 8 m , +	 ) ,1'r

\lra 

+ E (2p)l'I 
je12(t')	

) 

= 2 F" -'e -< £ 

Thus we obtain for each compact interval M C R the relation 

SURE  II (Qu..J(t) - (Qu)(t) 11 -" 0 (n -. oó). 

To c): We can verify immediately that the function v . = Qu fulfils the equaton 

v'(t) = A(t)v(t) + f(t,Tu(t))	 (17) 

for t 0 {;.}. Namely, under consideration of (4a), (6a), (14) and W 1 (t, t) + W20, t) = I we 
find

v'(t) = x'(t) + W1(t,t)f(t,Tu(t)) + W2(t,t)f(t,Tu(t)) 

• A(t)fW1 (t,$)f(s,Tu(s))ds - A(t)f W2(t,$)f(s,Tu(s))ds 

• A(t)	W1(t,t) h (uj) - A(t)	W2(t,t) h (uj) 
j€J1(t)	 jEJ2(t) 

= A(t)x(t) + f(t,Tu(t)) 

• A(t)f W1(t,$)f(s,Tu(s))ds - A(t) f W2(t,$)f(s,Tu(s))ds 

• A(t) EW1(tt)h3 (u) A(t)	W2(t,t)h(u) 
jJ1(t)	 jEJ20) 

A(t)(Qu)(t) + f(t,Tu(t)) = A(t)v(t) + f(t,Tu(t)) 

Therefore we have also 

v /(t) :5 IA(t) Iv(t) U + A f (t,Tn(t)) 

for t IZ {;}. It follows from (Vi) and (12) that the derivatives of the functions v in QD are 

uniformly bounded on each compact interval M C R so that QD contains equicontinuous
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functions. Now we show that 

R1 = (v(t): vEQD) = {(Qu)(t): uED} 

is a relatively compact subset of X for each fixed t E R, . At first we prove the relative 
compactness of the set 

R(t) = {fP2w'(s)f(s,m(s))ds: uED} 
(V6) and (12) imply the boundedness of R 12 (t). Observing the estimate 11 Tu(s) H :!9 C in (12) 
the set {Tu(s): u E D, s  R + }is contained in the central ball BC X. Because of(Vl) 
and (V4) there exists a sequence (U of continuous, finite-dimensional functions fm which 
converges on L1. x B uniformly to f (see, e.g., [9, p.626]). The sets 

R(t) = (f,_ P,,W-'(s)f.(s,Tu(s))ds: UEDP} a  

are finite-dimensional. For sufficiently great m they are also bounded and therefore 
relatively compact. The Theorem of Hausdorff (see, e.g., [9, p.19]) implies that R(t) is 
then relatively compact, too. On the other hand this means that the set 

W(t)R(t) = 
{f W2(t,$)f(s,Tu(s))ds: uED} 

is relatively compact. Analogously we get the relative compactness of 

W(t)R1(t) = 
{f' W1(t,$)f(s,Tu(s))ds: u ED} 

Taking (V6) and (12) into account we find 

j eJ2(t)	
'(9h (ui) H !'	J EJ2(t)	

1(t) 

Using (V4) we see that also the set 
W(t) {
	J(t) 

P2W 1 (t)h (U? U ED} = { E EJ2(t) 
.w2(t,t)h. (u) u EDP} 

is relatively compact. Analogous considerations show that { E, EJt(t) W, (t, t)h(u): u ED0) is 

a relatively compact set. By (14) then R, is relatively compact, too. Finally Lemma 2 
supplies the relative compactness of QD 0. Since the conditions a), b) and c) are verified, Q 
possesses a fixed point y=y(t) in D0. 

3) Now we show that 

Y(t) = (Qy)(t) = x(t) + fw1(t,$)f(s,Ty(s))ds -
f W2(t,$)f(s,Ty(s))ds

(18) 
+	W1(t,9h(y) - E W2(t,thj(y 

jeJ(t)	 j€i2(t)
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is a solution of the impulsive differential equation (5). Let be t 1Z (t : j > 0). For u = y 

we have v = Qu = Qy = y. Thus y satisfies the differential equation (5a) because of (17). 
Let be t = L (n > 0 fixed). Then by (18) there follows in consideration of (6b) and 

W1(t, s) = W(t)P1W'(s), i E 11, 2} on the one hand 

y(t+ 0) = x(t+ 0) + Q 
I 

W1(t,$)fs,Tys))ds 

	

QU fw2(t,$)f(s,Ty(s))ds + Q	W1(t,t)h(y) 
ta	 j€J1(t) 

- Q	W2 (t,t)h (Y j) + Q0W1 (ta, t0)h(y) 
je1(t) 

with the definition J2 1 (t) = J2(t).\ {t} =	> 0 : t < ç} and on the other hand 

y(t) = x(t) + / wA, s, Ty (s)) ds - fW2(t,$)f(s,Ty(s))cs 

	

+ E W1(t,9h(y) -	W2(t,t)hy) 
jeJ1()	 j€12(t1)	 - 

This implies in view of Q. = I, + I and (4b) the expression 

At. + 0) - y(t) = I(x) 
ta 

+ I f W1(t,$)f(s,Ty(s))ds - I f W2(t,$)f(s,Ty(s))ds 
0 

• I. E W1 (,9h(y) - I	W2(tt,1)h(y) 
j€J1(ç)	 jJ2(ç) 

•	 + 

Finally with the aid of 

W1(t,ç)h(y) + W2(t,t)h(y) .= h11(y1 ) = (Q;1H)Y 
we get the result 

y(t+ 0) - y(t) I.Y. + Q(Q'H)y. = (I+ H.)y 

- 

Hence y=y(t) fulfils also the jump condition (5b). 

4) Let y E D be a bounded solution of (5). If x is separated in (18), then equation
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x(t) = y(t) - f W1(t,$)f(s,Ty(s))ds 
+ f W2(t,$)f(s,Ty(s))ds 

0	 t	
(18') 

- E W1(t,t)h(y) + E W2(t19hj(9 
jeJ 1(t)	 j€J2(t) 

arises. We can show similarly as in part 3 that the function x defined in this way is a 
bounded solution of (4). 

5) Now we prove that the relation 11 x(t) - y(t) 11 E L(R+) follows by (18) and (18'), 
respectively. At first in view of (15), (15 1 ), (16) and (16') the estimate 

IIx(t) - y(t) 
^ f HW1(t,$)f(s,Ty(s))flds 

+ 
f UW2(t,$)f(s,Ty(s))lids 

+ E QW 1(t,t)h (Yj) H +	HW201t)h (Yj) H	 (19) 

	

jei1(t)	 j€J2(t) 

:g K1 + K2 + S1 + S2 
holds with 

K1 = K1(t) 
= f 11W1(t,$) IIc)(s,)ds , K,2 = K.2(t)	f HW204) ll()(s,)	

)	(20) 
S 1 = S 1(t)	p	fl)W1(t,t)Hl ,	S2 = S2(t) = p 'L )l)w2(t,t)I1i 

j€J 1(t)	 jeJ2(t) 

where = p sup {k(1): hull :5 p} as in (11). Next we define numbers a, 6 7 y>O 
according to

1	1	b	1	•1	1 U =p , - = -	 , - =_ - - -	 - 
a ap	y	a p 

and choose p = b/(2-a) > 1. Then we have 1/a + 1/ + l/'y = 1. Further we put fi) = 

ap'/, -y' = ap/y. Now the (generalized) inequality of Holder supplies in consideration of 
(V5), (V8) and (V9) with m 3 = m3 ) the estimate 

K19 =

PIP	t 

^ 

	

[ftUWj(%S)jb,/p 
 ''(s)ds-

6
 (1 HWi(ts)rds) (i i(s)dsJ'	(21) 

	

:5 rnf m ' f IW 1 (t,$)I	(s,)ds ^g rn)m)m / H W 1 (:s) Hbds. 

By (V5) the function K I P belongs to L1 (R +). Therefore we have 'also K 1 E L.(R). Ana-
logously we can show
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Kf _< minm3' f UW2(t,$) U"ds	 (22) 

and K2 E L,(R,.). Using (V5), (V 10) and (11) we obtain beyond it 

S1 = pP(	flWi(t,tjP1JUWi(t,t)flwP1jV' 
J01(t) ) 

2g pP( E uWI(t,t)u plr/Pra (,E IIwi(t,9O1 1
€J1(t) 	i1(t)	 )	J e11(t) )	 (23) 

:g pmM	UW1(t,t)Vbla !g p1'mMT'l1 E IIW1(t,t?II" 
jEJ1(t)	 jEJ1(t) 

Because of (V5) the function Se" lies in L 1 (R). Thus S1 E L(R.f). Similarly we find 

S2 :g p"mM'l' E W2(t,90b	 (24) 
j eJ2(t) 

and S2 E L,,(R). Finally II x(t) - y(t) 11 E L P(R) arises in connection with (19) • 
Remark: If X is finite-dimensional or f does not depend on x, the assertion of Theorem 

1 remains true without assumption (V4). 

Using more special natural conditions we can also show the property of integral 
equivalence. 

Theorem 2: Let the space X be finite-dimensional. Besides let be fulfilled the following 
assumptions for the impulsive equations (4) and (5): 
I. There holds: 
(B!) A is bounded on each compact interval of R and integral-bounded with a constant 

a, i.e. i: II A(s) li ds :5 at (t ^t 0). Moreover the commutativity relations A(s)A(t) 

= A(t)A(s), QA(t) = A(t)Q3 are satisfied for all s, t ^t 0 and all j ^!t 1. 
(B2) The operators Q (j ^t 1) are continuously invertible. The sequence (Q') is norm-

bounded. 

(B3) T is continuous, f is continuous on R X X. 
II. Further, for each closed bounded central ball B C X there holds: 
(B4) For all fl E X, 11 TO 11 :5 k(ü) 110 11 with a functional k bounded on B. 

(B5) The sets f(R x 13) and U 1 QJ 1 HJ(B) are bounded in X. 
Ill. Finally, for a projector P 1 E L(X), for a monotone non-decreasing and bounded 
function w': R -R and for suitable numbers a E (1, 2), L >0, K >0, Q > 0,
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q > a, 1 > 0, X > 0, ô > 0 and E N there holds with the notations (8), a = aJ(a-1), 

Q = sup 11 Q,' 11 and d(t) = max {j: ; < t} 

(B6) Each interval I C R, of the length 1 contains at most -y members of the sequence (tj). 

(B7) 1W1(t,$)ll s Ke 6 '	(0 ^ s :5 t) , 1W2(t,$)I 15 Ke a '	(0 !^ t :g s) 

(BS)	I H Q 1 0 :5	 (t 2t 0) 
j-d(t) 

(B9) flf(t,Th)O :s Le t (0Thfl) for almost all t E R, and all u E X. 

F'
 (B10)j 0H < (-L)  (21- + 2K_ 

ji	47Q	aô	I-e6'1 

Then (4) and (5) are p-integral equivalent with p E (1/(2-a), aJ(2-a)). 

We omit the proof here. It can be shown that with the exception of the second part of 
(V5) all assumptions of Theorem 1 are fulfilled. But this part is not necessary, because the 

relations K1 , K2 , S I , S2 E L,(R) are in this case essentially a consequence of (B6) and (B7) 

(see [6]). Impulsive equations of type (4) satisfying the condition (B7) with positive constants 

K and ô are said to be exponentially dichotomous. Examples for such equations are contained 

in [4]. 

Example: Let be X = R2 and = j h (hE [0,1]). We define
 ^ajj(t) 

Aft) -
	a.(t) 

- á21(t)	() 

where a1 (t) E [0,a] for i,j E {1,2} and all t	0. Further, we assume that the functions; 

fulfil the following properties: 

(P1) a11 (t) ;?t a12(t), a(t) ^t a21 (t)	for all t ^t 0. 

(P2) a12(t)a21 (s) = a12(s)a21(t) 

a12(t)a11 (s) + a12(s)a22(t) = a11 (t)a12(s) + a12(t)a22(s)	for all t, s ^t 0. 
a11 (t)a12(s) + a21(t)a(s) = a21 (t)a11 (s) + a(t)a21(s) 

(P3) There is t > 0 so that e max(a11 (t'), a12(0} :5 a(t) a(t') - a12(t) a21(t) 

holds and the spectrum of the matrix 
s,,(t	a,2(t) 

-	,lt) a(t) 

is contained in the left half-plane.
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Finally we chàose for x = (x1 , x2) E R2, t E R.,

T(x)=I	I, f(t,x) = 
e (x lsin(xix)	x lcos(x 1 +x

2) 1
 )	 (lxi a(x)\ 

+	 kI a2(x)) 

where a are continuous functions (i = 1 , 2),Q = + I = Q and H = 0  = 1,2,3, ...). 
Then simple calculations show that the conditions (B!) - (BlO) of Theorem 2 are satisfied 

for all numbers a E (1, 2). Hence (4) and (5) are p—integral equivalent in this case for 

every p > 1. 

4. Asymptotic integral equivalence 

Supposing additional conditions we can ensure the asymptotic equivalence of the equations 

(4). and (5). 

• Theorem 3: Let the assumptions of Theorem 1 be satisfied with a=b. Further we assume 
the following, conditions: 

(Zi) lirn w(t,c) = 0 for each constant c ^t 0. 

(Z2) lime,, lj = 0.	 - 

(Z3) lim1__fIiW i(t. s) lids = 1im EJ J() UW 1(tt) r = 0 for arbitrarily great r, 
r'> 0. 

(Z4) Iim_..f'ilW2(t, s) Ilads = hmEJ€,(l) llW2(t,t) 
a = 0 . 

Then the impulsive differential equations (4) and (5) are p-asymptotic equivalent with 

p = a/(2-a). 

Proof: Observing Definition 3 and relation (19) it is sufficient to show, that the limits 

liniK1(0.= thu 1(2(1) = urn S 1(t) = lini S2(t) = 0 

hold for the functions K1 , K2, S 1 and S2 defined in (20). Let e > 0 be arbitrarily given. 

Because of the assumptions (Zi), (Z2), (Z4) there is a number T > 0 such that for 
^?: T,; ^t T the inequalities
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-	 ).- 

2 4Pm 'm 'm1'	2 4PpmM)m

) f HW2(t,$)rds	 IIW(t,9U' ^	 , 

t	 4m m' m'	jEi2(t)	 4p"m MY 'I 

hold with the notations used in Theorem 1. Now we choose numbers r, r' ^t T, for which 

the limit relations in (Z3) are fulfilled. Then a number T'. ^ max(r, r') exists so that for 

t	T' the inequalities	-•	 . 

fHw 1 swds !g	P 1
 /	,	uW(t,t)r :r

c	/ 

o	 24Pm m m jeI 1(r)	 24Pp"th M ia 

are realized. Now-let be t ^t T'. By (21) we get with a = b.the estimate 

K 1" <^ m'm' ^J' 0W , (t^is)0'(a'(sZ)ds
+	II W(t,$) II' (s)ds) -: 

e"m'	.-.. e"m	- K	 + 

2 4m 'm 'm3)	2 4Pm)m2T 'm ,a	4" 

where the assumptions (V5) and (V9) are used. Consequently it holds K, :!5e/4. Further, by 
(22) we win with a = b the estimate	 - 

KI	 '	'	' ' !; minrn f flW2(t,$)rds ^ mmm3a -	/ - 
=

ep


4mnirn3) A' 
In view of (23), a = b, (V5) and (V10) the inequalities 

S' :g prn 'M	uw1(yr 1i 
+ E IIw,(yrl; 

jEJ 1(r	.	.	jeJ(I)	 - 

'	/	&'l'	 -ep 
:g p"m' M	 +	 -	= 

24'p"m 'M'1' 24Pp"mM'm	4"	- 

follow, where J 1(t) = J, (t) - J, (r') = {j > 0: r' :5	< t}. Finally we deduce from (24)

and a = b the estimate 

S i" ^ p"mM1'E 11W,(tyr !^ pT"mMP	E'	- 

J€J2(t)	 4PpPmM'1a	4" 

But fort ;?: T' this means 11 x(t) - y(t)	e
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