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On Approxiniation -Solvability of Nonlinear Equations
in Reflexive Banach Spaces

R. VERMA and L. DEBNATH

We extend the Zarantonello numerical range to the case of reflexive Banach space opera-
tors, and study the approximation-solvability of nonlinear equations relating to the results of

Zeidler (1990).
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1. Introduction

We consider an inner approximation scheme To={X,,E,,R,,Y,,Q,} represented by
A

X - Y
R ITE, lo,
An
X, - Y,
Diagram 1.1

Here X and Y are two normed linear spaces, and {X,} and {Y,} are two sequences of finite-

dimensional normed linear spa(;es. Let {E,}, {R,} and {Q,} be three sequences of connection
operators. All operators A, = Q,AE, are assumed to be nonlinear and continuous, where
A:X - Y is nonlinear corresponding to the equation
‘ Ax=b,xe X, beY. (L.1)
As far as the solvabili& of the equation (1.1) is concerned, we consider not just the usual
solvability—the existence of a solution of equation (1.1) is somehow established, but an
approximation-solvability—a solution of equation (1.1) is obtained as a limit of solutions of
the simpler finite-dimensional problems .
Ax,=0b for x,e X,, QbeY,. (1.2)

Now the problem is: For what type of a linear or nonlinear mapping A, is it possible to
construct a solution of equation (1.1) as a strong limit of solutions x, of equations (1.2)?
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Browder and Petryshyn [1] developed A-proper mappings to solve this problem. They studied
A-proper mappings in a series of publications, and that turned out closely connected with the
approximation-solvability of equation (1.1). The theory of A-proper mappings does extend and
unify results concerning the Galerkin type methods for linear and nonlinear equations in the
theory of strongly monotone and accretive operators, operators of the type (S), P,-compact,
ball condensing and other mappings. For details, we refer to [1-6] and [8]. The concept of an
A-proper mapping extends also to the stability of the projectional method in the sense of Mikhlin,
andrelates to the solvability of elliptic partial differential equations. We extend the Zarantonello
numerical range [7] to the case of reflexive Banach space operators, and establish the
approxiﬁlation-solvability of the related nonlinear equations. Some interesting special cases
are also considered in a Hilbert space setting.
‘ Before proceeding to the main results, we need to recall some definitions for the sake of
the completeness.

The symbol K shall denote either the real or the complex field. In what follows, the symbol

" shall denote strong convergence, and the symbol "—)" shall denote weak convergence.

Definition 1.1. An approximation scheme %, = {X,,E,,R,,Y,,Q,} is said to be

compatible if lim {E,Rx -x||, =0 V x e X

consistent if lim || Q,Ax —A,R, xlly =0VzxeX

stable if, ford >0, |A,u —Avl, 2d| Jull =|v] 1y V u,veX,

admissible inner, if it is compatible and the followmg conditions (Cl) (C3) hold:
(C1) X and Y are infinite-dimensional normed spaces over K

(C2) X, and Y, are normed spaces over K with dimX, =dimY, <o ‘

(C3) E, and Q, are linear and continuous operators with sup|| E,||, sup[| Q.|| < ee.

Note that the deﬁmtlon of the stability here a special case of the usual stability condition,
is relevant to the present investigation. '

Definition 1.2 (Solvability). The equation (1.1) is said to be solvable if it has a solution;
and it is said to be uniquely approximation-solvable, if, for each b € Y, the following conditions
are satisfied:

(C4) The equation Ax =b, x € X, has a unique solution.

(C5) The approximate equations A,x, = Q,b, x, € X,,n 2 ny, have unique solutions x, .
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(C6) The solution sequence {x,} converges to the solution x of the equation Ax =b in

the sense that lim| E,x, —x|| , =0

n—e

Definition 1.3 (A-Properness). An operatorA: X — Y is called A-proper with respect to
the approximation scheme 1y = {X,,E,,R,,Y,, 0,} if the following holds:
If {x,: x, € X,} is any subsequence such that |A,x,—Q,bll, — 0 for some b € Y, and

supl} x,|} x, <% then there exists an infinite subsequence {x,,} and an element x € X such that

E,x, = xinX (ask - e)and Ax =b.

Definition 1.4 (Duality mapping). We recall that a continuous function
p: R*={r: 1 20} - R’ is called a gauge function if n(0) =0, and p is strictly increasing. Let
X be areal reflexive Banach space and X " its dual. We denote by [+, -] the duality pairing between
the elements of X" and X. A mapping J: X — X' is said to be a duality mapping between X and
X" with respect to gauge function p if ‘
(€7D Ux,xI=w(lxDlxl, and [Jx]=p(fix]) for xeX.

We note that if u(r) =1, J is called a normalized duality mapping. If X" is strictly convex,

then J is uniquely determined by i, and if X is also reflexive, then J is a single-valued demi-
continuous mapping of X onto X, which is bounded and positively homogeneous; furthermore,
J is monotone and satisfies the property

(C8) Ux—Jy,x=yl=Uxx=yl-[y,x~y]
2ludlx) -prUyDillx -yl Vx,y € X.
If J is a normalized duality, (C8) reduces to
(C9) Ux-=Jy,x=ylzllxl =yl lIx-yl V x,ye X.

 If X is strictly convex, fhen the operator J: X — X" is strictly monotone and bijective. The
inverse operator J ' : X' — X equals the duality mapping of the dual space X provided that X
is reflexive. For more details on the duality mappings, see [8].

Let X be a normed space, x € X an element and {x,}, {y,} € X sequences with || x|| =1
and | x,[| =| y,I =1 forall n. Then X is said to be ;

uniformly convex if x, + y, — 2 implies x, — y, > 0

locally uniformly convex if x, +x — 2 implies x, — x.

In particular, each locally uhiformly convex space is a
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w
Kadec space, that is || x,|| = | xll, x, = x implies x, — x.

Note that each Banach space, which is locally uniformly convex, is strictly convex.

Definition 1.5 (Numerical range). Let X be a reflexive Banach space and X" its dual. The
numerical range of an operator A: X — X', denoted by n[A], is defined to be the set

[Ax,x]+[Ay —Az,y —7] }
—: x,9,2€ X,y #2¢.
[Jx,x]+[Jy —Jz,y —z] y.2 Y

n[A]={

Here J: X > X isa strictly monotone duality. Clearly, n[A] is a subset of K, and when

X is a Hilbert space, it reduces to the numerical range [5] defined by

(Ax,x)+(Ay—Az,y—Z>_x yeX yn}
Ixi>+ly=z1> 777 ' ’

where (-, -) is the standard inner product on X. The numerical range rn[A] reduces to the special

V[A]={

cases of the Zare_mtbnello numerical range [7] when A(0)=0. It coincides with the usual
numerical range when A is linear and y —z = x. '

2. Approximation Schemes in Banach Spaces

Let A: X — X be an operator from a separable reflexive complex Banach space X to its-dual
" X", Consider the operator equation Ax = b (x € X) with approximate equations

EAEx,=Eb(x,e X,,b € X'(n € N)). 2.1

corresponding to an approximation scheme rt, = {X,, E,,, R,,,X,: E, } represented by Diagram 2.1.

*

X - X
R ITE, - lE ' ‘
A'l
X, - X
Diagram 2.1

_ Here all A,=E,AE, are continuous. Let {X,} .be a Galerkin scheme in X with

X, =span{e,,,...,e,,},n € N and E,: X, > X the embedding operator corresponding to
X, cX. Furthermore, for each x € X, there exists at least one element R x € X, such that
Il x - R,x|| =dist(x,X,). Forn € N, assume the approximate equations (2.1) are equivalent to
Galerkin equations [Ax,,e;,]=[b,e;,](x, € X,; j=1,2,...,n"). We recall the following result,
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crucial to the inner approximation-solvability.

Lemma 2.1 [8, Proposition 34.9). Let A: X X be strongly monotone. If

n, = {X,,E,,R,,X,, E,} represents an admissible inner approximation scheme with consistency
and stability, then the equation Ax =b, x € X, is uniquely approximation-solvable if and only
ifA is A-proper. If, inaddition, C: X — X"is compact, then, foreachA#0,A(A+C): X - X
is A-proper. Co :

We first give results concerning elementary properties of the numerical range. Then we

establish results on the solvability (inner approximation-solvability) of a class of nonlinear

equations.

Theorem 2.1. Let A, B: X — X" be mappings from a reflexive Banach space X to its
dual X*, J: X = X" a strictly monotone normalized duality, and A€ K. Then
(i) n[AAl=An[A] (i) n[A +Blcnl[A]+n[B] (i)n[A-AJ]=n[A]-{r}.

The proof follows from the definition.

Theorein 2.2. Let X be a separable complex Banach space with dimX < oo, and X Tits -

dual. If X and X~ are locally uniformly convex, A: X = X * is continuous, J: X = X" is a
normalized duality, and A € K is at a positive distance d from the numerical range of A, then,

foreachb € X ’, the equation Ax —\Jx =b (x € X) has a unique solution.

Corollary 2.1 [5, Theorem 2.2]. Let X be a separable Hilbert space over K, A: X — X

continuous, and » € K be at a positive distance from the numerical range V[A] of A Then, for

each b € X, the equation Ax —Ax =b, x € X, has a unique solution.

" Proof of Theorem 2.2. Since X is strictly convex (and hence J: X = X is strictly
monotone), we have, for x,y,z € X with y #z, ‘ '
1A =AD) x,x]+[A -2y =(A -2y z,y ~2]] »
=|[Ax,x1+[Ay —Az,y —2] - A ([Ux,x]+ [y - Jz,y - z])|

- |Ax,x]+[Ay —Az,y —z]
T Uxx1+ Uy - Jz,y -2]

A (Ux,x1+ [y =Jz,y —z])I

>d Re([Jx,x]+ [y =Jz,y —21)

2d(jxI*+1y -zl Wyl -bzll). : 2.2

For x =0, this inequality reduces to the fundamental inequality
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[A=-AD)y~(A-AJ)z,y =z}l 2dlly =zl Iyl =Nzl (2.3)
forall y,z € X. This implies that
IA-AJ)y-(A-AJ)zl 2dIlyl -(zll (2.4)

forall y, z € X. Since X_is strictly convex, it follows immediately from here that A — A J is
one-to-one. Let ustake c(r)=dr—||(A —AJ)(0)}}. Then, for x € X, we obtain from (2.3) that
I[[A-AD) y,y1I 21{(A =AJT)y —(A -AJ)(0),y]| =|[(A =1 J)(0), ]I

2dlyl* 1A ~A)O)] [ yl

=c(lyDiyl,

andso (A —AJ) yll 2c(lyll) for y #0. For each M > 0, therefore, there exists k(M) such that
if[(A =AJ) yl €M, then] y| <k(M). Thus, (4 —AJ)" carries bounded subsets of R(A —A.J)
into bounded subsets of X, and is continuous. By the Brouwer theorem on invariance of domain,
R(A —AJ) is open. To this end, it only remains to show that R(A —AJ) is closed. To prove
this, let (A —AJ)x, = b. Thus, {(A =AJ)x,} is a Cauchy sequence. Since X is finite-
dimensional, there exists a subsequence, again denoted by {x,}, such that, for some x € X,
x, = x. Hence, by the continuity of A —AJ, we obtain (A —AJ)x =b, and so b € R(A —AJ).
Thus, the nonempty set R(A — AJ) is both open and closed, and hence R(A —~AJ) =X"and A —AJ
is bijective. § ' ' '

Theorem 2.3. Let X be a separable reflexive complex Banach space with dimX = oo and
X itsdual. IfX and X" are locally uniformly convex, A: X — X' is continuous, J: X = X' is
a normalized duality, and \. € K is at a positive distance d frérﬁ the numerical range of A, then,

foreach b € X', the equation Ax —\Jx =b, x € X, is uniquely approximation-solvable.

Proof. We prove the theorem by an application of Lemma 2.1. To do this, we first show
thatw, = {X,,E,,R,,X,,E,} is an admissible inner approximation scheme. Since || E,| = 1, this
implies that [ E.|| = 1 for all n and since {X,} is a Galerkin scheme, we obtain dis?(x,X,) = 0,
forall x € X. Thus, |R,x —x|| — 0, and the compatibility condition is satisfied.

Consistency: Since A (and A — A J) is continuous, the compatibility condition implies that
(A =ANE,R.x —(A —AJ)x]] = 0. Since sup] E,|| < oo, we obtain (as n — o)

IE](A =AJ)x —AR x| =I EjA —AJ)x - EJ(A ~AJ)E,R x|

SIENNIA-ANx—-A-ANERx| >0.
Stability: By inequality (2.3), we obtain ‘ A -
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lAx —Ayl lx =yl 2[[Ax~A,y,x - y]|
=|[E,(A-A))Ex —E,(A-AJ)E,y,x ~y]|
=llA-ANEx—(A-AJ)E,y,Ex-E y]|
=l [A-AD)x—(A-A])y,x—y]|
2d|xl =Nyl lx—-yl
forall x,y € X,. This implies that |A,x —A,y|| 2d|[|x] =]yl forall i,y € X,.

A-Properness: To show that A —A J is A-proper with respect to the approximation scheme
n,={X,,E,,R,,X,,E.}, let sup|x,) <oo for some x,€ X, such that ||Ax,—E,b| =
|E.(A-AJ)x,—E.b]l = 0. Since X is reflexive and separable, there exists a subsequence,
again denoted by {x,}, such that, forsomex € X,x, — x in X. Since[[R,x —xf| =5 0,x, = x
implies that

x,-Rx — 0. ' (2.5)

Also, we obtain (as n — o)
b-—(A-A)Rx —)b—(A—)\J)Vx.V 2.6)
It would suffice to show that x, = x and (A —AJ)x =b. From (2.5) and (2.6), it follows, for

some x, € X, as above, that (as n — o)
d|lx,l I Rxll 1lx,—R,xl <|[Ax,—A,R,x,x, —R,x]|

=|[E,(A -M)x,~E,(A—M)Rx,x, - R x]|

=|[E.(A -M)x,—E,b+E.b—E,(A-M)R,x,x,—R,x]|

=|[E,(A = M)x, - E,b,x, —Rx]+[E,b —E,(A =A)R,x,x, - R,x]|

=|[E,(A -M)x, - E,b,x,— Rx]+[b —(A = M)R,x,E,x, - E,R x]|

=|[E.(A-M\)x,—E,b,x,—Rx]+[b—~(A -A)R,x,x,—Rx]| >0.

Since || R,x —x|| — 0, it follows from | [ x,]| = || R,x/I| — O that || x,]] = | x||. Since X is locally -

uniformly convex, x, = x and || x,]| —= [ x|l implies thatx, — x. Hence, (A —=AJ)x = b by the
continuity of A (and hence A —A J), and the theorem follows from Lemma 2.1. §

Corollary to Theorem 2.3 [5, Theorem 2.2]. Let X be a separable complex Hilbert space
with dimX =oo, and A: X — X be continuous. If Ae K is at a positive distance from the
numerical range [5] of A (that is d = dist(A,V{A]) >0), then, for each b e X , the equation
Ax —Ax =b, x € X, is uniquely approximation-solvable.
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