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On Approximation-Solvability of Nonlinear Equations 


in Reflexive Banach Spaces 

R. VERMA and L. DEBNATH 

We extend the Zarantonello numerical range to the case of reflexive Banach space opera-
tors, and study the approximation-solvability of nonlinear equations relating to the results of 
Zeidler (1990). 
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1. Introduction 

We consider an inner approximation scheme 7t0 = {X5 ,E5 ,R5 , 1',, Q} represented by 
A 

X	-9	Y 

R5.L1'E5

A, 

X.  

Diagram 1.1 

Here X and Y are two normed linear spaces, and {X5 } and { Y, } are two sequences of finite-

dimensional normed linear spaces. Let {E5 }, {R5 } and {Q,,} be three sequences of connection 
operators. All operators A. = QAE5 are assumed to be nonlinear and continuous, where 
A: X - Y is nonlinear corresponding to the equation 

Ax=b,xEX, bEY. (1.1) 
As far as the solvability of the equation (1.1) is concerned, we consider not just the usual 
solvability—the existence of a solutiOn of equation (1.1) is somehow established, but an 
approximation-solvability—a solution of equation (1.1) is obtained as a limit of solutions of 
the simpler finite-dimensional problems 

A5; = Q5b for X. E X,,, Q5b E Y,.	 (1.2) 

Now the problem is: For what type of a linear or nonlinear mapping A, is it possible to 
construct a solution of equation (1.1) as a strong limit of solutions x, of equations (1.2)? 
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Browder and Petryshyn [1] developed A-proper mappings to solve this problem. They studied 
A-proper mappings in a series of publications, and that turned out closely connected with the 
approximation-solvability of equation (1.1). The theory of A-proper mappings does extend and 
unify results concerning the Galerkin type methods for linear and nonlinear equations in the 
theory of strongly monotone and accretive operators, operators of the type (S), P,-compact, 
ball condensing and other mappings. For details, we refer to [1-6] and [8]. The concept of an 
A-proper mapping extends also to the stability of the projectional method in the sense of Mikhlin, 
and relates to the solvability of elliptic partial differential equations. We extend the Zarantonello 
numerical range [7] to the case of reflexive Banach space operators, and establish the 
approximation-solvability of the related nonlinear equations. Some interesting special cases 
are also considered in a Hilbert space setting. 

Before proceeding to the main results, we need to recall some definitions for the sake of 
the completeness. 

The symbol K shall denote either the real or the complex field. In what follows, the symbol 
"—+ shall denote strong convergence, and the symbol '- shall denote weak convergence. 

Definition 1.1. An approximation scheme 7t0 = {X,E,R0 , Y, Q,,} is said to be 

compatibleiflimIiERx — xII = O V X  X 

consistentiflimiiQAx —ARxfl=O V XE X 

stable if, for d> 0, iIAu —AvIi Y. ^: d1_11 ufl, -=11 vii Ix. V u,v E X, 

admissible inner, if it is compatible and the following conditions (C I) - (C3) hold: 
(Cl) X and Y are infinite-dimensional normed spaces over K 
(C2) X and Y are normed spaces over K with dimX = dim Y <00 

(C3) E and Q,, are linear and continuous operators with sup II E II, sup ii Qii <00. 

Note that the definition of the stability here, a special case of the usual stability condition, 
is relevant to the present investigation. 

Definition 1.2 (Solvability). The equation (1.1) is said to be solvable if it has a solution; 
and it is said to be uniquely approximation-solvable, if, for each b E Y, the following conditions 
are satisfied: 

(C4) The equation Ax = b, x E X, has a unique solution. 

(CS) The approximate equations Ax = Qb, X E X, n ^! n0 , have unique solutions x.
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(C6) The solution sequence {x } converges to the solution x of the equation A = b in 

the sense that limDEx —xI[ =0. 

Definition 1.3 (A-Properness). An operator A: X - Y is called A-proper with respect to 

the approximation scheme it0 = {X, E, R, Y, Q,,} if the following holds: 
If {x: x, E X} is any subsequence such that DA N; - QbjJ , -4 0 for some b € Y, and 

sup li xjj X. <cc, then there exists an infinite subsequence {x} and an element x € X such that 

Efl kxfl k - x in X (as k ---> oo) and Ax = b. 

Definition 1.4 (Duality mapping). We recall that a continuous function 
J.t: R = {t: t ^! 01 - R is called a gauge function if p(0) =0, and g is strictly increasing. Let 
Xbe a real reflexive Banach space and X its dual. We denote by [, 1 the duality pairing between 
the elements of X' and X. A mapping J: X —* X' is said to be a duality mapping between X and 
X with respect to gauge function j.t if. 

(C7) [Jx,x] = .t( II XII) 11 XII , and II JxJ = .t( l x ii) for x E X. 

We note that if 11(t) = t, J is called a normalized duality mapping. If X is strictly convex, 

then J is uniquely determined by t, and if X is also reflexive, then J is a single-valued demi-
continuous mapping of X onto X, which is bounded and positively homogeneous; furthermore, 
J is monotone and satisfies the property 

(C8) [Jx —Jy,x — y] = [Jx,x — y] — [Jy,x — y] 

^:j.t(ii x II)—j.t(lj y lJ) III x— y ii Vx,yeX. 

If  is a normalized duality, (C8) reduces to 
(C9) [fx—Jy ,x-- y]^!iIjxl—Ii y Il iHx— y li V x,y€X. 

If X is strictly convex, then the operator J: X — X' is strictly monotone and bijective. The 

inverse operator f: X -4 X equals the duality mapping of the dual space X provided that X 
is reflexive. For more details on the duality mappings, see [8]. 

Let X be a normed space, x € X an element and {x}, {yj c X sequences with 11xii = 

and Iixii =ii y ii = 1 for all n. Then X is said to be 
uniformly convex if x + y -4 2 implies x — y, — 0 

locally uniformly convex if; +x — 2 implies; —* x. 

In particular, each locally uniformly convex space is a
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Kadec space, that is IJx,,II -9 flxII , x,, - x implies x,, -4 x. 

Note that each Banach space, which is locally uniformly convex, is strictly convex. 

Definition 1.5 (Numerical range). Let X be a reflexive Banach space and X its dual. The 

numerical range of an operator A: X - X', denoted by n [A], is defined to be the set 

I[Ax,x]+[Ay—Az,y—z
n[A]= [Jx,x]+[Jy—Jz,y—z] 

xyzExY#z}. 

Here J: X -4 X' is a strictly monotone duality. Clearly, n [A] is a subset of K, and when 

X is a Hilbert space, it reduces to the numerical range [5] defined by 

V[A]=X>+2 YZ>:x,y,zeX,y#z 
lixil +IIy—z112 

where (.,.) is the standard inner product on X. The numerical range n [A] reduces to the special 
cases of the Zarantonello numerical range [7] when A (0) =0. It coincides with the usual 
numerical range when A is linear and  —z =x. 

2. Approximation Schemes in Banach Spaces 

Let A: X -3 X be an operator from a separable reflexive complex Banach space X to itsdual 
X. Consider the operator equation Ax = b (x e X) with approximate equations 

E:AE,,x,,=E:b(x,,e X,,,b E X'(n eN)).	 (2.1) 

corresponding to an approximation scheme it, = {X,,, E,,, R,, ,X,, E,} represented by Diagram 2.1. 

A 

X	-4 X 

R,,.1.l'E,,

A,,


x,,	-	x 

Diagram 2.1


Here all An = En  E. are continuous. Let {X,,} be a Galerkin scheme in X with 

X,, = span le i .,..., e,,,, }, n E N and E,,: X,, -3 X the embedding operator corresponding to 
X,, c X. Furthermore, for each x E X, there exists at least one element R,,x E X,, such that 
U x - R,,xII = dist(x,X,,). For n e N, assume the approximate equations (2.1) are equivalent to 
Galerkin equations [Ax,,, es,,] = [b, es,,] (x,, e X,,; j = 1,2, .. . , n'). We recall the following result,
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crucial to the inner approximation-solvability. 

Lemma 2.1 [8, Proposition 34.9]. Let A: X -4 X' be strongly monotone. If 

7t 1 = {X, E, R, X,, E } represents an admissible inner approximation scheme with consistency 
and stability, then the equation Ax = b, x € X, is uniquely approximation-solvable if and only 
fA isA-proper. If in addition, C: X - Xis compact, then,for each 2L # 0, X (A + C): X - X 

is A-proper. 

We first give results concerning elementary propeities of the numerical range. Then we 
establish results on the solvability (inner approximation-solvability) of a class of nonlinear 
equations. 

Theorem 2.1. Let A, B: X -9 X be mappings from a reflexive Banach space X to its 

dual X, J: X - X a strictly monotone normalized duality, and XE K Then 

(i) n[XA]=Xn[A] (ii)n[A +B]cn[A]+n[B] (iii)n[A —XJ]=n[A]—{X}. 

The proof follows from the definition. 

Theorem 2.2. Let X be a separable complex Banach space with dim X- < — , and X its 

dual. If X and X are locally uniformly convex, A: X - X is continuous, J: X - X is a 
normalized duality, and X € K is at a positive distance dfrom the numerical range of A, then, 
for each b E X', the equation Ax - X Jx = b (x E X) has a unique solution. 

Corollary 2.1 [5, Theorem 2.2]. Let X be a separable Hilbert space over K, A: X -4 X 

continuous, and X E K be at a positive distance from the numerical range V[A ] of A. Then, for 
each b E X, the equation Ax - X  = b, x E X, has a unique solution. 

Proof of Theorem 2.2. Since X is strictly convex (and hence J: X -4 X is strictly 

monotone), we have, for x,y,z E X with  #z, 

IRA —XJ)x,x]+[A — XJ)y —A —XJ)z,y — z]l 

=[Ax,x]+[Ay — Az, y —z]—X([Jx,x]+[Jy —Jz,y - zI)I 

- [Jx,x]+[Jy—Jz,y—z] 

^!dRe([Jx,x]+[Jy—Jz,y—z]) 

^:d(Ij x II 2 +II y -zil IIIII -lizIll).	 (2.2) 

For x =0, this inequality reduces to the fundamental inequality



358 R. VERMA and L. DEBNATH 

I[(A—?J)y—(A—J)z,y—zJI ^!dIIy—zII IIIII —lIzIlI	 (2.3)


for all y,z E X. This implies that 

II(A —XJ)y —(A —XJ)z II ^!dIlIyIl —lizIll	 (2.4) 

for. all y, z e X. Since X . is strictly convex, it follows immediately from here that A - X  is

one-to-one. Let us take c(r) = dr- II (A - A. J) (0)1. Then, for x e X, we obtain from (2.3) that


I[(A —),J)y,y] I ^!l[(A —XJ)y—(A —XJ)(0),y]I —I [(A —XJ)(0),y]I 

^dIly1I 2 -11(A —AJ)(0)II 11 Y11 

= c (II y 11)11 Y11, 

and so II (A - A. J) y II ^: c (Il y lI ) for y # 0. For each M >0, therefore, there exists k(M) such that 
if II (A - A. J) y 11 :5 M, then 11 y :5 k(M). Thus, (A - A. J) carries bounded subsets of R(A - A. J) 
into bounded subsets of X, and is continuous. By the Brouwer theorem on invariance of domain, 
R(A - XJ) is open. To this end, it only remains to show that R(A - A.J) is closed. To prove 
this, let (A A.J)Xm -4 b. Thus, {(A A.J)Xm } is a Cauchy sequence. Since X i's finite-
dimensional, there exists a subsequence, again denoted by {x}, such that, for some x e X, 
Xm Hence, by the continuity of A —A..!, we obtain (A —XJ)x =b, and sob E R(A —A.,!). 
Thus, the nonempty set R (A - ?J) is both open and closed, and hence R (A - A.!) = X and A - A..] 
is bijective. 

Theorem 2.3. Let X be a separable reflexive complex Banach space with dimX =oo and 
X its dual. If X and X are locally uniformly convex, A: X -4 X is continuous, J: X —p X is 
a normalized duality, and A. E K is at a positive distance dfrom the numerical range of A, then, 
for each b E X, the equation Ax - XJx = b, x e X, is uniquely approximation-solvable. 

Proof. We prove the theorem by an application of Lemma 2.1. To do this, we first show 
that 7r, = is an admissible inner approximation scheme. Since II E II = 1, this 
implies that II E,11 = 1 for all n and since {X} is a Galerkin scheme, we obtain dist(x,X) —. 0, 
for all x E X. Thus, II Rx —xli -4 0, and the compatibility condition is satisfied. 

Consistency: Since A (and A - A. J) is continuous, the compatibility condition implies that 

II (A - A.J)ERx - (A - A.J)x 11 —* 0. Since sup II E,11 <oo, we obtain (as n -4 oe) 

II E:(A—A.J ) x—kRx II =IIE(A—XJ)x—E(A—A.J)ERxII 

II	II (A - A. J) x — (A - A.]) ERxil — 0. 

Stability: By inequality (2.3), we obtain
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flAx-Ayll Ox—yli 2!1[Ax—Ay,x—y]I 

=I[E;(A -xJ)EX-E;(A -A.J)Ey,x-y]l 

=[(A -2J)Ex-(A -kJ)Ey,E,,x-E,,y]I 

=[(A-)J)x-(A-kJ)y,x-y}I 

^:dliixlI —ll yDl Ux—yO 

for all x, y E X.. This implies that II Ax - Ay Ii ^! d ill xfl -11 y fl for all x, y E X. 

A-Properness: To show that A - X J is A-proper with respect to the approximation scheme 

7t 1 = {X, E, R., X., E;}, let sup fi x, <cc for some x E X. such that II A; - E;b II = 

E,(A - ), J) x,, - E,b 11 -i 0. Since X is reflexive and separable, there exists a subsequence, 
again denoted by Ix. }, such that, for some x e X,; - x in X. Since 11 R —x li -30,x -3 X 

implies that

(2.5) 

Also, we obtain (as n - oo)

b-(A-?J)Rx-4b-(A-.J)x.	(2.6) 

It would suffice to show that x, -* x and (A - Xi) x = b. From (2.5) and (2.6), it follows, for 
some x e X. as above, that (as n -* oo) 

d lll x ll — llR x Il IlI x,, —R,,xlJ :5 I [A,,; -A,,R,,x,x,, -R,,x] I 

[E. (A -J)x,,-E;(A -Af)R,,x,x,,-R,,x]l 

= l[E (A -X.J)x,, -E;b +E;b -E;(A -?J)R,,x,x,, -R,,x]l 

=l[E;(A-A,,-Eb,x,,-R,,x]+EEb-E(A-AJ)R,,x,x,,-R,,xu 

=l[E;(A-?)x,,-E;b,x,,-R,,x]+[b-(A-?J)R,,x,E,,x,,-E,,R,,x]l 

= l[E (A -AJ)x,, -E;b,x,, -R,,x]+[b -(A -?J)R,,x,x,, -R,,x]I - 0. 

Since II R,,x - xli -* 0, it follows from Ill x,,II — Il R,,xll I - 0 that II x,,ll - l x ii . Since Xis locally 

uniformly convex, x,, -3 x and ii x,,Il -4 li x Il implies that; -9 x. Hence, (A - XJ)x = b by the 
continuity of A (and hence A -?.J), and the theorem follows from Lemma 2.1. I 

Corollary to Theorem 2.3 [5, Theorem 2.2]. Let X be a separable complex Hubert space 
with dimX = 00, and A: X -4 X be continuous. If ?. E K is at a positive distance from the 
numerical range [5] of A (that is d = dist(?, V[A]) >0), then, for each b E X, the equation 

Ax - X x = b, x € X, is uniquely approximation-solvable.
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