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Existence Theorems and Measurement of the Capillary Contact Angle 

B.S. FISCHER and R. FINN 

In an earlier work, Concus and Finn proposed two procedures, based on a dichotomous, beha-
vior of fluid in capillary tubes at zero gravity, designed for-accurate measurement of capil-
lary contact angles. The present work offers modifications to one of their procedures which 
should facilitate the experiments and lead to improved accuracy. The discussion leads to 
explicit characterization of a capillary tube with "canonical" section, which has an indepen-
dent mathematical interest. 
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1. Background remarks 

This paper .can be regarded as a continuation of the discussion' relating to the "second 
method" in the earlier, work by Concus and Finn [4]. The "second method" was proposed by 
those authors as a procedure for obtaining accurate measurements of the fluid-solid-vapor 
capillary contact angle y, when y is close to zero; it is based on height measurements, near the 
boundary arc of smaller radius, of the free surface interface in cylindrical capillary tubes 
whose sections are bounded by two circular arcs, as indicated in Figure 1. 

The underlying idea in the procedure rests on the theorem that there is a critical angle 
v ,depending only on the geometrical , parameters, such that if y> y 0 then there will exist in 
equilibrium ,a connected volume of fluid covering the base fl and with bounded height, while 
if y <y 0 no such configuration can exist. In the latter case, a formal solution of the variational 

problem for a (non-parametric) free surface interface of stationary mechanical energy exists 
only as'a "generalized solution" in the sense of Miranda [8), and has height identically equal 
to infinity on a set of the form of the shaded region Q' of Figure 1.' Physically, for any given 
volume Vof fluid in the container, as y decreases' to y0, the fluid height of the equilibrium 
configuration increases unboundedly over fl" until sufficient volume will lie over" that 
domain so that part of the base in fl I C*will become uncovered. The height changes 
necessarily become very rapid when y is close toy 0 .  

In principle, this "near-discontinuous" behavior should lead to a very easy way to 
determine y0, in which hysteresis effects would be overcome by much larger capillary forces 
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and in which precise observations near the contact line need not be made; that is, it should 
suffice to find configurations in which the fluid tends to empty those parts of the container 
that are not over Cr'. In practice, a difficulty can arise in that C1' can have relatively small 
area and thus the vessel would have to be unrealistically tall to permit the observation. The 
difficulty can presumably be alleviated to some extent by placing a sponge at the top, so that 
once the fluid rises an additional negative pressure would be created causing it to flow to the 
top; nevertheless, it was contemplated in [4] that fluid heights be observed at points near the 
arc E*; these observations should be facilitated by the circumstance that the "high-rise" 
occurs along the entire arc E*.

Figure 1. Two circle domain; extremal r, singular region 

For the theoretical background of the procedures we shall use, we refer the reader to 
[61, Chapters 6and 7, see also [3]. We state here only the formal result that we need. We 
consider a semi-infinite cylindrical tube Z with section C, whose boundary L consists of a 
finite number of smooth arcs meeting at well-defined (interior) angles 4. A corner defined 
by such an intersection point is called reeturatu if 24> it. We seek capillary surfaces u(x,y) 

defined over £1, bounding with Q a (prescribed) finite volume V of fluid, and meeting the 
bounding walls over the smooth parts of E in a prescribed (constant), angle y. Any such, 
surface is determined as solution of the equation 

divTu=211	 '	,	(1) 
in fl, with
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Tu=	Vu .	
(2) 

l+IVi42 
and

2H= -cosy	.	.:	(3) 

under the boundary condition
v•Tu= cos y	 (4) 

on E, where v is exterior unit normal on E. The quantity H can be interpreted geometrically 
as the mean curvature of the free surface interface determined by u(x,y). In what follows we 
restrict ourselves throughout to the "wetting" case 0 :5 y < it/2. The complementary case 7rf2 
<y _5 ir is obtained on replacing u by its negative, while if y = 7r/2 the constants are the only 
solutions.

Figure 2. General domain ; {[';y} configuration 

Definition: A domain (1 as above will be said to admit a {r; y I configuration if there Is a 
non-null proper subset f ' bounded in L) by afinite set {F) of subarcs of sernicircies of ra- 
dius R =	=	, with the three properties: 

[Elcosy 

a) the {F} are disjoint except perhaps at reentrant corner points of E, 
b) the curvature vector of each F is directed exterior to 
c) each intersection point of any arc f € ( F } with L is either a reentrant corner with 

one sided angle between F and L not less than y on the side of F opposite to its.
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center and not less than 71 — y on the opposite side, or else a point interior to a 
smooth subarc ofE where f and E meet at angle y. 

A typical {F; y) configuration is indicated in Figure 2. 

The following result, proved in 151 and in [61 Chapter 6, is basic for the materialthat 
Wows. 
Theorem: A solution u(x,v) of (1) - (4) exists for given () and y 0 if and only if the 

functional

Ry
	 5) 

is positive for ever)' { r VI configuration in f. If 4) 5 0 for any one such (non-null) 
configuration, then there exists one that minimizes.4) among all such configurations. 

The case y = 0 requires special consideration and will not be dealt with here. 

A solution has physical meaning only when u(x,y) > 0 in fl. Following techniques 
developed in [ 71, it is possible to show that under the given hypotheses, every solution is 
bounded below. Thus, by adding a large enough constant to any particular solution, 
(equivalent to increasing the volume of fluid sufficiently) it can be converted to a solution 
with physical meaning. In what follows, we assume that this has been done. We will not 
distinguish among (physical) solutions corresponding to different values of V, as it follows 
from the general comparison principle (cf. Lemma 4 in [71) that any two solutions differ by 
an additive constant and hence are mutually congruent. 

The interest of the theorem derives in large part from the circumstance that in many 
situations there will be only a finitenumber of arcs f (aside from trivial rigid displacements 
arising from symmetries) that satisfy the geometrical conditions; for each such f (or set {f}), 
4) can be calculated explicitly. The dichotomous behavior at y = y 0 , as described in the 
introductory remarks above, is the basis for the proposed measurement procedures. The angle 
v0 is characterized as the greatest lower bound of values y in 10, ir/21 such that 4)(f;O*;y) is 
positive for all f of the type considered. For purposes of the experiment, the domain CI is to 
be chosen so that the subdomain CIo that appears when y = 'y o is of sufficient size to permit 
accurate Observation. Experience in gravitational situations (cf. [ 6, p. 119]) and calculations 
inparticular related geometries [ I ] strongly suggest that as V I y0 the fluid height , will not rise 
rapidly in until V is very close to y0 , after which it will increase greatly in that domain 
with small decreases in y. Since the surface height must be positive infinite over CZ when 'v 
= y0 , and positive infinite over some domain for any V < V 0 , relatively simple observations 
should suffice to determine in any given case whether or not 'y exceeds V 0.
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The arcs r appearing in the statement of the theorem are the euremals of a variational 
problem "subsidiary" to the variational problem (principle of virtual work) giving rise to the 
original equation and boundary condition, see [6], Chapters 1 and 6. 

2. A proposed modification 

As a possible procedure toward improving accuracy of the two circle geometry introduced in 
[4] by facilitating observation of the transition behavior at 'y = y 0, we propose to extend the 
bulge by introducing inclined straight segments L as indicated in Figure 3. 

The idea here is that by extending the bulge, the thickness d of the rising fluid "sheet" 
would be correspondingly increased. In fact, that need not occur in general, as the end points 
of the are r separating the "infinite' region from the remainder of Q may move down the 
"channel" formed by the segments L. Any such situation can however be modified into 
another one, with the same y0 and with r contacting at the reentrant points, by changing the 
radius p of the larger circle and the "extension" distance h. In fact, this step can be effected in 

Figure 3. Modified proboscis; extremal f 

an infinity ofways, corresponding to incident angles y' of r with L varying from y 0 to it/2. A 
heuristic reasoning, supported by the results of our calculations, indicates that the best choice 
is obtained when 'ft = y0 , and we restrict attention to that configuration. In general, this step 
has the effect, for normalized linear dimensions of the cross-section ), of leading to a larger
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thickness d. For purposes of obtaining the desired configurations, it is simplest to by-pass the 
intermediate steps and to solve directly for the requisite parameters; we adopt that approach in 
what follows, and shalt study only those configurations that are determined as we have 
indicated; the actual determination of the parameters corresponding to the indicated criteria 
was done numerically. 

It is clear that the indicated configuration cannot be realized for all data; in particular, 
a provides an upper bound for the values y0 that can be prescribed, and thus the procedure is 
limited in application to the "small" angles for which it was designed. There was however no 
difficulty in obtaining numerical solutions for the parameters in suitable ranges, and an 
existence proof suitable for at least a relevant part of those ranges is not hard to construct. Of 
much more interest for our context is the question of uniqueness. For the intended purpose of 
measuring contact angle, it suffices to know that for parameter values ho, Po, r0 leading to (j) 
=0, there can be no {r;y} configuration, distinct from a single arc [' situated as the arc r of 
Figure 3, which leads to CI' :^ 0; in such a case the fluid could conceivably also rise to infinity 
in parts of 11 other than in Cf. Were such a configuration to exist, there would have to be a 
minimizing one, by the above Theorem. We consider a particular f in a minimizing 
confimiration. and examine the cases that can occur. 

Figure 4. Proof of cases I and 2 

1. F meets C 0 at two interior points p and q, as in Figure 4. This can only occur if 
y0 > 0 and R 0 > Po. Such a configuration would contradict the Corollary to Theorem 6.12 in 
[61.
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2. I' meets Cp0 at an interior point p and a reentrant corner q, see Figure 4. A small 
rotation of U about the center of CPO changes the geometry to the preceding case without 
changing (1). We thus obtain a contradiction as in Case 1. 

3. 1' meets two interior points, one on each segment of L. Then at least one of the 
angles at the contact points p and q must differ from 1' 0 , so that {r} cannot minimize. 

4. U meets one point interior to L (or to Cr0) and one reentrant point p on the other L 
segment. One possibility is the configuration of Figure 5 (or equivalently the reflection of 
that figure in the symmetry axis). We introduce a parallel to L through p and measure the 
incident angle 0 with the extremal U, counterclockwise as indicated. By the definition of the 
{f;y} configuration we have 2a -0 ^! 11- y . Now observe that the indicated configuration can 
be obtained by rigid (counterclockwise) rotation of U about p, starting with an initial position 
in which U is the reflection, in the line joining the two reentrant points, of the arc U 0 (Figure 
6). Denoting by 60 the initial value of 0, we have 0 > 0. By construction, 00 y 0 , unless a 
= irJ2, in which case 0 0 y 1 >y 0 . Thus in any case 0 0 ^:y 0, and there follows 2a +y 0 -it ^! 0 
> 00 '^ y0 , from which 2a > ii, putting a outside the range of parameters contemplated in 
the construction. Thus this configuration is excluded. 

q 

Figure 5. Proof of Case 4	 Figure 6. Proof of Case 4; continued 

The only other possibility in this category is the identical figure but with the sense of 
curvature of U reversed. In this case the incident angle at the reentrant point would be less 
than y0, and thus U would not be in an admissible configuration. 

5. U meets an interior point of L and a point of Cr0. Then both incident angles must 
be equal to y0 . If we extend L as indicated in Figure 7 we obtain a contradiction, as the
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indicated triangle could not be isosceles unless the length of the indicated segment on L were 
zero.

6. r meets Cr0 at two interior points. The reasoning of Case I applies. 
7. f meets E in points p, q, with p € Cp 0 and q E L. We distinguish two cases, 

according to the sense of concavit y of r relative to L 

-	 ,. -	', '.4LV

UCLdJ I
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7a) In the configuration of Figure 8 we find y = a + 0 and (3> y. Thus this config-
uration cannot Occur. 

7b) We wish to exclude also the reverse concavity of F. We denote by 25 the angle 
subtended by 'r between p and q, and by 260 the portion of that angle within the completed 
Cp 0. We distinguish two subcases, according as S +yo ^ iv2 or 5o + v0 <m'2. In the former 
case, S + v0 > 50 +yo ;-> m'2, and we conclude from the second half of Theorem 6.16 of [6] 
that F cannot minimize (see Figure 9a; note that the center of Cp0 has been placed at the 
origin and the figure has been rotated from the configuration introduced in Figure 3, so as to 
fix the center of F on the y-axis). 

Figure 9a. Proof of case 7b: S 0 + Yo 2: it 1 2 

If 5o + y 0 <ir/2, then necessarily R 0 > P0, and up to rigid rotation about the center 0 
of Cp0 and reflection in a diameter of Cp0, the configuration must be as in Figure 9b. We 
may assume that the intersection q of L with F lies on or above the x-axis; if not, we replace L
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by a line through the intersection of (the extension of) r with the x-axis, making the same 

angle y 0 with r, and label this new intersection point with q. 

Our next step is to replace (the resultant) L with a line L I through q and tangent to 

Cp 0 , at a point (xo, yo) . Then yo > 0 and L 1 will meet r in an angle y 1 :5 v (Figure 9c). We 

compute formally
p- R--h-

COS Vo	 (6) 

p2—hy0 
cos y =	 (7) 

so that

2pR (cos yo—cos y 1 )=R 2—p 2— h 2 + 2hv0	
(8) 

>R2—p2—b2 

V 

Figure 9h. Proof otcase7b: 80+y0<a12
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Since ô 0 + y 0 <ir/2, p lies below the x-axis. At p, we have 

p2—y2= R 2—(b—y)2	 (9) 
from which

—2by=R 2—p2—b 2 >0	 (10) 

and we see from (8) that cos y > cos Yi. That is, y > y, which is not possible since the 
construction has been effected so that yo ;-> y 1 . Thus, the indicated configuration cannot 
occur.

8. F meets E in points p E G P O and q € Cr0. We dividethis case into two subcases: 

8a) R 0 ^ Po . Then R 0(-1- + ) > 2cos y, contradicting the Corollary to Theorem 6.12 

of [6].

Figure 9c. Proof of case 7: completion of case 7b
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8b) R 0 <Po. We find again that ô + yo > 7r/2, so that the result follows from the 

second half of Theorem 6.16 in [6]. 
9. IF meets Cp0 in two reentrant points. If r is distinct from fo the only possibility is 

the configuration of Figure 10; other arcs of a supposed minimizing system are excluded by 
the above cases. For the original arc f 0 we have 

	

0 8 IfoI_t COS Yo + - 0oi =0.	 (11) 
Ryo 

Corresponding to the region 11\Q 0 we find the corresponding 

(Poo a Ju —jCOS Yo +

	

404	 (12) 
•9IrJ+1cosyo--1—iL 

R0 

since R =	. There follows 
IIC°5Y	 I00=2If	 .	 (13) 

by (11).

Figure 10. Proof for Case 9 

For the curve F we find. 

1)= d? -	 ( 14) 
R 0	 R0 

where Co is the region bounded by F and r o. We have 

= 2R 02 (r— sin icos i) ,	= 2R 0r	 (15) 

Thus

	

(1)=2R0(T+sinTcosT)>0	 (16) 
which contradicts the assumed minimizing property of F.
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We thus conclude that the configuration of Figure 3, when it occurs with 4 = 0, is the 
unique one having this property; a positive solution of the original capillary problem (1) - (4) 
with finite volume will exist ifyo <y :5 irJ2, but the height of the surface will tend uniformly to 
infinity over Qasy i v0. 

3. Stability of the observation 

We wish to examine the response of a given apparatus to changes in the contact angle of the 
fluid Specifically, it is important to know that if the particular materials yield a slightly 
different angle than the one for which the container is built, the size of will not decrease 
dramatically, causing the near discontinuity to be overlooked. We observe that if 'I' changes 
from y0 then R changes according to the relation 

	

R cos y=R0 cos y0 .	 ( 17) 
This in turn induces a new apparent" incident angle y at the intersection of 1' with L. 
Assuming at first a <ir/2 and that the incident angle at the intersection points is y0 (as in the 
construction), we set =irt2 - a and find (see Figure 11) 

R cos (+ya)=Ro cos (+yo)	 (18) 
so that

cos y Cos ( + YO) = Cos yo Cos (ti + Va)	 (19) 
from which

0< dy,, = cos( + Yo)	sin ''	<	 (20) ôy	cosyo	Siff (t3+y) 
at y= y 0 =y,since0+y 0 <ir/2. 

Figure I K Observational stability proof
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• If 'y > y then ti > 0 and the apparatus will not respond; that is, it will indicate cor-
rectly that the angle is too large. If y < y0 we conclude from (20) that the apparent angle ex-

ceeds y when r passes through' the reentrant points, at least in any range for which (20) 
continues to hold. But if (20) were to fail there would have to be an initial y = y at which 
equality holds on the right side. At this point we have so that (20) would hold as stated, 
a contradiction. Thus as y decreases from yo there continues to hold y 0 > y. But this apparent 
angle increases when F is translated along the channel toward Cro. It follows that y0 

continues to exceed y when F intersects L at points interior to L; that is, F cannot be extremal 
in any such configuration, and thus when. y < y. the extremal arc F will continue to pass 

through the reentrant points, yielding an infinite fluid height in the entire region cut off by 

Cr0. Thus there is no danger of missing an angle that is too small due to "disappearance" of 

the singular set. 

If a = 7T12 then the incident angle y0 cannot be realized at the intersection point. That 
angle must however exceed y0 , from which one sees easily that an analogous result continues 
to hold. 

4. Comparisons of critical behavior 

The formal results are summarized in Figures 12, 13, 14, 15. Where appropriate, the 
corresponding results for the two circle cases studied in [ 41 are indicated, for comparison 
purposes, with a dotted line. Figure 12 shows relative size of small radius r, extension h and 
thickness d of the singular portion of the section, as functions of critical angle y0, when a= 
30o The lengths are normalized by the maximum horizontal diameter of the section. The 
crucial curve from the point of view of experiment design is the one for d, and one sees that a 
very large improvement over the two circle case is obtained for small critical angles, an 
increase of over 50% being found when y o = 10°. The size of h required for the improvement 
is remarkably small, being less than 1.5% of total horizontal diameter. This circumstance 
indicates that considerable precision in construction of the apparatus may be needed for 
accurate results. The requirements do not seem however unreasonable; a change in h of 
0.25% of maximum diameter in the indicated range leads to a change of only about 2° in 
measured critical angle.. 

Corresponding curves for the casesa = 45°, 60°, and 90° are given in Figures 13, 14, 
15. These configurations are suited for measurements in successively larger ranges of contact 
angles. In the case a = 90°, it is not possible to achieve the prescribed critical angle y 0 
between F and L (unless y0 =0) regardless of the choice of p and h. The arbitrary choice h = 

r was therefore made for this configuration.
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Figures 12-15. Relative sizes of r, h, das functions of critical 
angle y 0 ; top row, a = 30°; following rows, a =450,600,90g. 

Dashed lines: two circle ease. Note varying scales in the figures. 

5. A canonical proboscis 

We show in this section that the container geometry can be so designed as to make the 

"proboscis" (and the associated thickness d) as large as desired. We achieve that goal on 

replacing the segments L and arc 00 by arcs admitting at the critical y 0 an entire continuum 

of extremals, as 
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Figure 16. Canonical Proboscis; extremals 

indicated in Figure 16. Our initial observation is a necessary condition: if such a continuum 
is to exist, then since all the radii are equal to the constant R 0 , the curve must have the 
property that it makes the constant angle y0 with a circle of that radius in translatory motion 
along the symmetry axis. This requirement leads to the equations (see Figure 17) 

y=R cos (co +y). 
dv
t=_
 tan c,	 (21) 

Figure 17. Genesis of equation (21)
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for the upper half of the curves. Here and in what follows, we drop the subscript () in the 
interest of clarity of the formulas. From (21) we obtain immediately the separable equation 

= ) sin	 cos y 
y COS y+/R 2 _y2 sin  

which integrates to ______	
R2 - cos - Sfl	

(23) x+c=/R 2 _y2 + Rsinyln

	

	
+IR2_y2 sin  R + y cos y 

A trivial solution of (22) is obtained by setting y equal to the constant value R cos y. 
The solution family (together with its reflection in the x - axis) is sketched in Figure 18. For 
given y, all integral curves between between the lines y = ± R cos y are obtained from any 
given one by rigid horizontal translation; these curves meet the family of all circles, that are 
enveloped by the two lines, in the constant angle y. The curves meet the x-axis in the angle 

— Y, and are asymptotic to the two lines as x -. - o. 

Figure 18. Integral curves of (22);	 Figure 19. Canonical 
representative extremal arcs	 Proboscises 

Figure 19 shows integral curves, corresponding (from the bottom upward) to the 
angles y= 60, 45, 30, 15, 10. and 5 degrees, and normalized in position so as to coincide on 
the axis. The dashed curve in the figure is the circular arc that arises when y = 00. This case is 
in one sense singular, as the formal integration leads only to the initial circle. However, the 
two lines y = ± R now appear as envelopes of the solutions, and can be used to extend any 
given solution an arbitrary distance to the left of the initial arc. We wish next to complete the 

(22)
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boundary curve so as to determine a simply connected domain 1, with the property that 

RY = cosy 
---. This step was effected by introducing a circular arc (Figure 20), the requisite 
1:i  

radius p being determined

Figure 20. Canonical Section

—y 

numerically in cases of particular interest. In all cases tried a solution was possible, and in 
fact could be achieved with p <2R, thus assuring an experimentally feasible configuration. 
The particular case y =00 has, here a special interest, as it returns us from a more general point 

of view to the "keyhole" configuration introduced in 121 (see Figure 21); in this case the 
radius p is easily seen to be (1.974.. .)R, independent of the length h of the proboscis. 

Figure 21. The Keyhole 

With the indicated determination of R, all the arcs F become extremals for the sub-
sidiary problem. If;we.deSCl• be them in terms of a parameter c by relationsJ(x,y; E) =0, then 
4 becomes a function of e. Since each F is extremal, the first variation of t) vanishes for any 

admissible variation. We choose the variation to be 9(x,), c) =' (x,y;e) and obtain 

immediately that 4)'(1-) = 0 for every c, so that (1) in constant for the domains fl * de-
termined by the arcs F But 4) =0 at the contact point with the axis and we conclude that
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=0 for every r in the family. 

The above reasoning determines configurations in which the fluid height can be made 

to become infinite in a proboscis of arbitrarily large length, as the critical angle is crossed. 

On a tentative basis, we propose these geometries as the canonically best ones for 
determination of small contact angles. For this purpose, it will be necessary to exclude 
extraneous extremals as was done in §2 above; we intend to return to that point in a later 
work. Assuming the property, we note that in following the observational stability proof of 
§3, when a <ir/2 the relation (20) now holds on each extremal of the family, and thus when y 

none of the resulting arcs interior to the proboscis can be extremals. We conclude again 

that the singular domain cannot disappear discontinuously down the channel with small 
changes in the contact angle. 
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