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on the Unit Circle 
L. B. G0LINsKII 

Properties of Schur functions on the Unit circle and asymptotic behaviour of corresponding 
Schur parameters are investigated. Connection between the Schur parameters and the reflec-
tion coefficients of a certain system of orthogonal polynomials on the Unit circle is Used. 
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1. Introduction 

In his celebrated paper [13] I. Schur investigated a class of functions which are now generally 

known as Schur functions. A Schur function (S -function ) f f(z) is an analytic function in the 

open unit disk ID = { z E C: IZI < i} with modulus not exceedingunity. Schur used a "continued 

fraction-like" algorithm of consecutive linear fractional transformations of the kind 

f(z)-f(0) fn (Z)	 (n €N0 : {0,1,2, •}; f	f 
Z(1	t)fn(Z)	

). 

This algorithm leads to the infinite sequence of S-functions {fn}o unless fo is a Blaschke 

product. The latter will be excluded throughout the present paper. The Schur parameters (S-
parameters) In = f(0) satisfy lyni < I and arise in various problems of complex analysis and 
its applications (see [3,41). 

It is a remarkable fact that for any sequence { yn} with 'In' < I there exists a unique 
Schur function f with S-parameters In• Thereby the problem of describing the relations bet-
ween the Schur parameters and corresponding Schur functions arises naturally. Investigation 
of this problem is the main goal of our paper. We show that a certain asymptotic behaviour of 
the Schur parameters provides specific smoothness properties of the corresponding Schur 

function in Dand vice versa. 
The first substantial contribution to the problem was made by Ya.L. Geronimus [5,7]. He 

discovered that S-parameters were exactly those occuting in the recurrence relations for the 
orthogonal polynomials on the unit circle. This fact allowed him to obtain some results on the 
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problem in question. In Section 2 of this paper we give a slighly modified proof of the main 
Geronimus' theorem. We would also like to mention the paper [2] where the extreme points of 
the set of all Schur functions were characterized in terms of their Schur parameters. In Secti-
on 3 examples of some simple transforms of S-parameters and corresponding S- and C 
functions as well as some particular examples are given. Recently S.V. Khrushchev proved 
that if f(e'8 )€ Lipa, then y,, O(nlnn)as n —*. In Section 4 this result will be improved 
and generalized (see Theorems 2 and 3 below). At last in Section 5 we prove converse theo-
rems for Schur parameters. 

We shall use the following generally accepted notations: 

S	- the set of Schur functions fwhich are analytic in D and 1 1 f II = SUPZED f(z)I :5 1. 

C	- the set of Carathodori (C-) functions F which are analytic in ID and ReF(z) 2 0. 

C2 ,	- the set of 27t-periodic and continuous functions p on iR with IIpH 2 = sup11,Ip(8II. 

Cm)- the set of functions p € C2 ,. which are differentiable in times and p(m) 
€ 

En '(h) - the best approximation to a function h € C2, by the class 1, of trigonometric polyno- 
mials of degree at most n: E(h) = inf t rIIh(&) - t()II21. 

w(t, f)- the modulus of continuity of the function f € C27 : (t, f) sup0 <€ IIfII2,, if() = 

f( +) - f(E; fE Lipc€ (0< a ^5 1) if (t, f) O(t) as t - 0. 

W	- the set of absolutely convergent Fourier series. 

C(f) - positive constants depending on a function f. 
I	- the conjugate function (cf. [17: Chapter 7, 1]). 

2. Orthogonal polynomials on the unit circle Ui 

Our reasoning is based on the theory of orthogonal polynomials on the unit circle D (see [16: 
Chapters X - XI] and [6: Chapter 8]). 

Let do be a finite positive Borel measure on the interval [0,2it) with an infinite set as its 
support, such that o([0,27t)) = 2it. Let {}, (z) =Xnzn + ... with x,, > 0, be the unique sy-
stem of orthogonal polynomials on ID, associated with this measure, i.e. (6 r,m - the Kronecker 
symbol)

2fl

Snm. 
0 

The monic orthogonal polynomials O n and the reverse polynomials On are defined by 

cD(z) = x,'p(z)= zi+ ...	and	'D(z) 

In the theory of orthogonal polynomials on the unit circle an essential role is played by the 
dual pairs of recurrence formulas	 . . 

	

Z D(z) - 11 G(z)	(n € N)
	

(2.1) 

	

= D n (z) - za'D,,(z)	(n € N)
	

(2.2) 

(cf. [6: Chapter 8, formulas (8.1)]). Here an = - I+(0) are the parameters of the orthogonal
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polynomials O n (OP-parameters; the values - are generally called the reflection coeffi-
cients) and IaI I. The most remarkable fact is that for any given sequence {a} C C under 

the only restriction Ial < I there exists a unique measure (2707'do of unit total mass such 

that for the associated system of orthogonal polynomials {D} the equality an	- 

holds. This result is usually referred to as J. Favard's theorem for the unit circle. 
The polynomials (z) =z" + ... and their reverse are defined as solutions of the 

recurrence relations (2.1) - (2.1) with a, replaced by -a and are called polynomials of the 
second kind. The polynomials 4n are orthogonal with respect to a certain measure dd and con-

nected with G 1, by the equation 

D,(z)4(z) +	z)D(z) = 2hz	where h	IlcItI =	( e)Izdo(4) = x2. 

Hence, in particular, we have Re(4(e1)/D,(e'8)) h/I cD(e18) I 2 > 0 so that F, r/cI e C. 

It is well-known (cf. [6: Chapter 8, formula (8.10)]) that 

27t 
'V,(z) =	j	do&) F(z)	lim	i e +	 (2.3) 

- n	1(z)	21t e 1 - z 
0 

uniformly on the compact subsets of D. Thus the measure do can be recovered from the poly-. 

nomials	, cI (and hence from the OP-parameters a,,) by the inversion formula 

o(t + 0) + o(t -0) = const + lim j'ReF(re8)d. 
2	 r-i-o0 

Ya. L. Geronimus was the first who discovered a tight connection between the Schur 
functions and orthogonal polynomials on the unit circle. Let f be an S-function with S-para-

meters Yn and F(z) = (1 + zf(z))(1 - zf(z)) -1 . It is obvious that 

F(0) = 1	and	ReF(z) 0 - Izf(z)19I1 - zf(z)L 2 > 0 (IzI < 1),

that is F € C. According to Riesz-Hérglots theorem [17: Chapter 4, Theorem 6.261, 

27t 

F(z) - 1 + zf(z) - i	+ z 

	

- I - zf(z) -	J e' - 
z do() 

0 

where the support do is infinite unless fis a finite Blaschke product. Let O n be the orthogonal 

polynomials with respect to do and a,,= - cD,, 1 (0). The following Ya.L. Geronimus' theorem 

plays a crucial role in the whole subject. 

Theorem (Geronimus [5: Theorem IX, 2'] and [7: Theorem 18.2]): The equality a. = y,, is 
true for all n € N0. 

Proof: We start out from the formula for the polynomials of the second kind (cf. [6: 

Chapter 1, formula (1.13)1):	 .	S	 ..	 . 

27t 

=	e& - (cI(e18) - I(z))do(E. (n € N) 

0

(2.4)
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or, in other words,

27t 

Q(z)	F(z)D(z) +	
1 rei +z 

n(Z) =
	e - 

z In(e1)dO(). 
0 

Applying to the both sides of this equality the "*-transform" we get 

27t 
re's + z Q(z) = z 1 ( z 1 ) F(z)cD(z) - 4(z) 

= 	e iO, - z 
0 

Since

27t
10 fork rO,1.... . n-I 
1 1lf0	n 

we can find the Taylor coefficients of the function Q: 

27t 
Q(z) = f(Iln(ei){l +2(±)'}do() = 2h Z n +Q(z1l), IzI <1.	(2.5) 

0 

Next

27t	 27t 
- Q(z)	fDn(e'){	

ei	
-	 f(Dn(e'o)ei&do() + O(z 2 ). 1 +	

+ O(z2)}do()	

2z n+1 

0	 0 

It directly follows from the formula (2.1) for z = &8 that	 = ah and27c 0 
therefore 

Q(z) = 2ahz''1 + O(zz*Z).	 (2.6) 

Consider the functions	(z) = Q(z)/zQ(z) (n € N0). It is obvious that	- 

y(z)	1F(z)-1- 1(z).z F(z)+l  

From the recurrence formulas for 0. and 4J, we further have 

- Q +1(z) - Q,(z) - azQ(z)	i	,(z) -'x(0) z Xn+j(Z) - 
Z Qn+ j ( Z) - z(zQ(z)	nQn )) -	1	 -Xn(Z) 

Taking into account the relations (2.5) and (2.6) we obtain a +1 = In*1• Hence the assertion 
of the theorem is verified I 

We deduce the following result due to D. W. Boyd from the theorem just proved. 

Theorem (Boyd [2: Lemma/p. 146]): Let I be an S-function with S-parameters y,. Then 

27t 
11( 1 -	= exp{4ln(1 - If(e)I 2)d .	 ,	 (2.7)

k=o
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Proof: Let Fbe the C-function given by (2.4) and let a n be the OP-parameters associa-
ted with the measure do. We start from the formula (cf. [6: Chapter 8, formula (8.14)]) 

27t 

	

- akI 2 ) = exp-f1no'()dl	 (2.8) 
k=o	 1 o	J 

(if In o' t L1 , then both sides in this formula are zero). Since o'&) ReF(e 1 ) = ( 1 - If(e)I2) 
xli e i f(e)l 2 holds a.e., we have 

2	 2T 

f

7t	
1 - If(e1)I	d.lno)d	fin1	

eif(e)l2
0	 0 

But the function h(z) = I - zf(z) is outer, so that Jinpi - e i f(e)I 2d = C (cf. [11: Chapter 
5, first theorem]). The relation (2.7) now immediately follows from (2.8) and Geronimus the-
oremU 

G. Szego developed an important theory for orthogonal polynomials on the unit circle in 
the case when do belongs to the Szego class, i.e. lno'€ L'[0,21). Here p = o' is well-defined 
a.e. and integrable in [0, 27E). Ya.L. Geronimus (cf. [6: Chapter 8, Theorem 8.2]) proved that 
the inclusion lnp € L1 [0,21t) is equivalent to the condition	oIakI2 <co and	 = 

= H 0 (1 - Ia kI z ) > 0 holds. Under the condition lnp E L1 [0,2t) the principal tool is the 
Szego function D(do, z) = D(z) which is defined by 

27t 
D(z) exp tJ e - 

z lnP()d}. 
0 

It is well-known (cf. [6: Chapter 2, formula (2.4)]) that 
1. D E H 2 ; the non-tangential boundary value of D exists a.e. on E and ID(e)I 2 = p(s ) a.e. 
2. If p(&) a V > 0 a.e., then ID(z)I a i.t" in D. 
It is more convenient for us to deal with the function 7t = D'. Then we have, uniformly on 
compact subsets of ID, ,r(z) = lim o... p(z) = Under certain additional 
assumptions on the measure this convergence takes place on the unit circle. 

3. Examples 

We consider here some simple transforms of S-parameters and corresponding 5- and C-
functions. We also bring a few particular examples (with regard to examples 1 - 6 see also 
[13: § 14, is]). 

Let F be an S - function with S - parameters y,, F the C - function defined by (2.4) and let 
O n (4,,) be the orthogonal polynomials of first (second) kind associated with do. 

Example 1: Let	= €y 3 (n € N0), where s = e", w = i. It is easy to check that the poly-



nomials

	

= f(i + ) €i + ( l - 4	('I'( .,)	(l - f)c1 3,	-(I + 

satisfy the recurrence formulas (2.1) with a n = y ,3 replaced by ,, (- i,) . Therefore the ortho-
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gonal polynomials	are associated with the transformed measure da. According to (2.3) 

	

_______	(1 - s)'l',(z) + (1 s)4(z)	F(z) - itgw/2 
i(z,$) = urn	= km 

	

n_c(I)(Z,E)	+ s)(I(z) 0 - s)	 (z)	I - iF(z)tgw/2 

f(z,$) = 1(z, s) -1 = sf(z). 
F(z,$) + I 

Example 2: Let, =	si = 1 (n E N 0). As in the Example 1 we have 

b(z,$)	s'D,(sz), cI(z,$) = b(sz)	and	'i,1(z,$)	s',,(sz), 'I'( Z : E) = 

	

F(sz), f(z,$)	sf(sz). 

Example 3: Consider a composition of the transforms from Examples 1 and 2:	= 
and j,, =	= s"-	(n € N0).We have f(z,$) = sf(sz) and iz,$) = s'f(z,t) f(sz). 

Example 4: Let k a 2 be a positive integer and ,, = 0 if n	-1(mod k),	=	if n=
km - 1, m € N (n € N0). It easily follows from (2.1) that 

km*kl(Z) = Zkm.k2(Z) =	= Z')km(Z) 

'km.k i( Z ) =	m+k2(Z) ... = 

The same relations are valid for . Applying induction on m we obtain 

km(Z) = m(Z k) and	kflJ(z) = 

Hence 

P(z) = lm((z)/(z)) = F(z k )	and f(z) zkTlf(zk). 

Example 5 (shift transform): Let -i,, =	(n E N0). From the structure of the Schur al-



gorithm we deduce that 

	

i f(z) - f(0)	i f(z) - 
f(z)f(z)  

	

ZI_7(f(z)	Z 1-yf(z) 

	

ma similar way we have for in =	 .	 . . 

z) 
= zf(z) y	

(3.1)
I+y1zt(z) 

forgiven complex number y, i y l <I. 

Example 6 (cf. [5: Theorem III]): Let Yk = Yk1,... = 0. Then (D; =	= ... and 4 = 
= ... so that F = 4J;/(D;. Note that the measure do is now absolutely continuous and o'() 

i cD k(e)lIlfl . 0 (1 - I T ! 2). In this case the S-function f may be calculated explicitly; fork 
2 we have f 	= ( i +yz)/(1 +70y1z).
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Example 7 (cf. [7: § 24 ]) : Let - = (n + a) -1 (a > 1, n e N 0). As is known (cf [6: Chapter 
8, formula (8.3')]) the difference equation of second order 

TnYn= - (y +	 + i+ 1 z(1 - 1yI 2 )y	0	 (3.2) 

has two linearly independent polynomial solutions y = (I and y, = 4 with initial data y0 = 1, 

y1 I - i0z and yo 1,y1 = 1 +10z, respectively. The equation (3.2) can be solved explicitly 
now. In fact, since -y, * 0 then we have 

= (I +-j','y1z)y1 - y 1 i+ 1 z(1 - 

Denote b	y. 1-yz (here one has to take y = ( a - 1)). It can be readily checked that 
b,+1(I - I-y,I 2 ) = b so that y 12 -	= b 1 y 1 - b,y1,. Hence y,,. 1 - by = Y1 - by,,-i.e. 

	

- bI(z) = I - z	and	4 1 (z) - b,,4(z) = I + a 1 z(2 - a). 

Set u, y	For u, we have the difference equation u	- z u	(1 - z)(n + a), the gene-
ral solution of which is 

u,1 = Az' + n + a - (I - zY'; D(z) = A(n + a - I) - 'z'1 +(n + a - iY(n + a - 

Putting n = 0 we determine the constant A as A z(1 - z) - '. Finally 

cI(z) = I -	z(z' - 1) 
(n + a - I)(z - 1)' 

Similar arguments lead to an expression for 4(z): 

= - z 1 (a(1 - z) - 2) + (1 - z + 2a'z)(n + a - (1 - z)1) 
a(n + a - i)(i - z) 2	0 - z)(n + a - 1) 

Thus

F(z).lim('Y,(z)/(z)) (a(l - z)) - '(a - z(a -2)) and f(z) = (a+ z - az)1. (3.3) 

We should point out that in this case o&) a a'(a - 1) and that there is a mass point at	= 0:
o0) = 2ira1. 

The case a = 2, f(z) = ( 2 - z) -1 has been examined by Schur [13: p. 144] as well as the 
example y = 1/2, - 21(2n +1) (n € N). Using (3.3) with a = 3/2 and the shift transform (3.1) 
with -f = 112 we get f(z) = 0 + z)12. In connection with these examples Schur posed the fol-
lowing question: Are there any S-functions f, continuous in the closed unit disk ID such that 
If II < I and I-rI = co? We give an affirmative answer to this question (see Remark 2 af- 
ter Theorem 1 below). 

Example 8 (cf. [10: Chapter 10.10(e)]): Consider the weight function 

P(s) = 0 +99 1 11 _pe i I 2 = I - j-_j.e1& - j— j-e' = ReF(e') 

where 0< 9 :5 1and F(z) a 1 - 2p(1 +9 2 ) -1 z. It is easy to calculate the moment sequence
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c0 = 1, c = -p(l +p2 ) -1, c3 = c4 = ... 0, and the determinants 

In 
= (_1)+1(p/(1 +p2))n*1	and ,	= (p/(1 +p21U+1(X) 

where U, is the Chebyshev polynomial of the second kind and A = (20`0 . +p 2 ). Hence 

= (-l)"Ic.+1/IcI	- ( U +1(X))'	and	f(z)	(z 
l+p2)-i. 

Let us point out that for p <1 the parameters Yn decrease exponentially (cf.Theorem 5 below). 

4. Direct theorems for Schur parameters 

We adopt the terms "direct theorems" here (and "converse theorems" later in Section 5) from 
the approximation theory. 

Let fbe an S - function with boundary values f(e 1 ). In what follows we deal with the "re-
gular" case

n (R) fE C27,, 11f1	IIf(e i&
)II	<1 

Theorem 1: Let the S-function f satisfy (R). If

(4.1) 

then for the S-parameters.y 

(G)IyI<co 

holds. Conversely, the hypothesis (G) yields (R). 

Proof: Under the hypothesis (R) the C-function Fin (2.4) is continuous in the closed unit 
disk ID and 

0 < V s p(4) = o&) ReF(e18) 
= 

I - If(e')I	
E C27. 

 - eSf(e)I2 
For Fwe have

- F(e) 
=	 - f(e)) +f(e i(	Xe 1	-,e ia) 

(1 - e1f(e'8))(l- ef(e")	,	,	
(4.2) 

whence it follows that 

w( t,F) :^ 20 - If IIY2( t,f)	hf hlsinf	C(f)( t, f).  

Since w(r,p) :^ w(t,F), then (t,p) s C(f)w(t,f), and therefore the weight function p satisfies 
(4.1). The well-known Bernstein theorem asserts that the condition (4.1) implies the inclusion 
P E W, i.e. the Fourier series of p converges absolutely (cf. [17: Chapter 6, Theorem 3.1 and the
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Remark following it]). The conclusion (G) now follows immediately from G. Baxter's Theorem 
[1: Corollary 1.11 (see also [9: Corollary 2.1]) and Geronimus' theorem, proved in Section 2. 

The converse statement in Theorem I is due to I. Schur (cf. [13: p. 143]), who has proved 
that under the assumption (0)

1IYkI 
If 11 2 :, A._i	where Ar	'iYkl	 (4.3) 

k=o 

and so Theorem I is completely proved U 

Remark 1:Ya.L. Geronimus [7: §27, Theorem 27.1 and § 281 has obtained the sharp esti-
mate for I lf II, f satisfying condition (G): hf II -. (A - IXA + I)'. Equality here holds for the 
function f 	= (A - IXA + I)-'z. 

Remark 2: The hypothesis (4.1) cannot be rejected. Indeed, it is well-known (cf. [17: 
Chapter 5, §41) that the function g, g() = Re j n 1 exp(in Inn + ins), is an element of 
Lip i and not of W. For the function p we have p(s) = C + g() ;-- V > 0 for an appropriate con-
stant C and it has the same properties, as g. According to Privalov's theorem (cf. [17: Chapter 
3, Theorem 13.29]) for the conjugate function we have j5 E Lip .Therefore the C - function F, 

27r	 27t 

F(z)	 + z	'J e - 
p(Ed&, M = 

0	 0 

is continuous in FD, F(0) r 1 and ReF(z) 2t V, > 0. It means that the S -function!. 

f(z) - 
- i F(z) - 
 Z F(z) + I 

satisfies (R). According to the above-mentioned theorems of G. Baxter and Ya. L. Geronimus 
(0) is false now. So an affirmative answer on Schur's question (see Example 7 in Section 3) is 
obtained. 

Theorem 2: Let the S-function f satisfy (R) and assume that (t, f)t j € 0(0, 1). Then 

,In	i

IYnI :5 C(f)(J'''"dt +!I)(t,f)dt\ 

	

n I	t2	). 
0	 1/fl 

Proof: As in the proof of Theorem I we have (t,p) ^5 C(f)(t,f). Set q = lnp, so that 
(see the end of Section 2) it( e i&) D_1(e) = exp(-(q(E + i'(&))} holds ac. From the ele-
mentary inequality IInX, - ln 2 I 15 W' 1 IX1 - x2I ( X ,, X2 a	> 0) we deduce Iq(	h) - q(&)I ^ 

+ h) - p(EI and hence (t, q) ^ i"(t,p) so that (t, q)t € L1 . By means of the well-
known Zygmund inequality [17: Chapter 3, Theorem 13.30] we obtain 

s C(f)B(t), B(t) =J.'dx + tJdx.

(4.4) 

Applying the inequality I; - z 2 I s Ilnz 1 - Inz2 I max{Iz11, 1z2 1} (1z 11, 1z2 1 * 0) and taking into 
account that Iir(e)I S 11 -1/2 we get
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I1t(e ih1)) - it(e)I	
2i' 

{q( + h) -	+ I( + h) - 

and (t,7t) :5 C(f)((t,p)+B(t)). But 

t	 t 

p(x'p)
dx a fw(xP) d,a ln2(t/2,p)o(t,p)

o	 t 

so that

s C(f)B(t).
	

(4.5) 

The quantity 8 = x2 - X2 plays an important role in the theory of orthogonal polynomials on 
the unit circle ( and also in the linear prediction theory). As is known (cf. [6: Chapter 2, for-
mulas (2.8), (2.18) - (2.20)]),

	

27t	 1/2 

	

X' inf 1171 - G1I 0 = x2 inf (fiite	- Gn(e1)I2dO&)) 
GneTn	Gc7o 

and the following two-sided estimate x 2_nIakI2 :5
^	 (ak = 

1k !) holds.
Therefore by Jackson 's theorem (cf. [17: Chapter 3, Theorem 13.6]) 

!; x 2ME,(ir) :^ C(f)(1/n, it), M = I1pI1 2 .	 (4.6)

Using (4.5), (4.6) we finally obtain 

IiI = ial :5x5 , --^ C(f)(1/n,it):5 C(f)B(1/n).	 (4.7)

Hence the assertion of Theorem 2 is verified U 

Corollary: If under the assumptions of Theorem 2 f(e18) E Lip a, 0 <a !^ 1, then 1 = O(n) 
for  <a < land Yn = O(n - 'In n) for a = 1. 

Thàorem 3: Let the S-function 1' satisfy condition (R) and f(e)	where m 2- 1 i Tr 

an integer. Then ml CU', m)(lnn/n m)(lIn, f(m)) If in addition f(m)(ei&) Lip a, 0 < a < 1, 
then I y,I :5 C(f,m)nm*. 

Proof: We begin with the second statement. P. K. Suetin [15: Lemma 1.4] proved that if 
p€ C' and.p( m) E Lip a, 0< a < 1, then it(m) € Lip ain the closed unit disk ID. By (47) we 
have

h1,1 --^ C(f)w(l/n,it) :5 C(fm)n m (l/n,i m)) :5. C(f,m)n . 

Next we turn to the general case. Under the hypothesis of the present theorem the -C -function 
F in (2.4) belongs toif we differentiate (4.2) m times with respect to , we obtain 

F'"(') 
= g,,.1(eih)(ei& - 1) +	

(4 8) 11	 (1 - e f(e))2m(l - ei+f(eu1)))2m 

where the functions g0(e' h)	g,,3+1(e h) are continuous and depend on f f	f'' only.
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It readily follows frdm (R) and (4.8) that	t, F( m )) s c(f, m)(t, f(m)) and hence 

w( t, p(m)) ^; (t, F( m)) :1 Of, m)(t, f(m)), p(s) = Re F(e 18 ).	 (4.9) 

We can now apply a theorem due to B. L. Golinsky [9: Theorem 1.2] which asserts that 

I1 Tc (e1 ) -  1P(e')II2 :s C(fm)(lnn/n mn )c(l/n , p(m)) .	 (4.10)

By means of the inequalities (4.9) and (4.10) we obtain (cf. (4.6)) the inequality 

:5 C(f)E,(it) :^ C(f, m) (In n/nm)(lIn, f(m)) 

Thus the proof is completed U 

S. Converse theorems for Schur parameters 

In this section we show that a certain decay of the Schur parameters provides some smooth-
ness properties of the corresponding S - function. 

Theorem 4: Let f€ S. If, for some integer m E N0 ,	0(n-(m '01 -i)) for n -+ co (0 < a :r 1),
then

f(e)EC,	and	(t,f(m))_{O(t)	for0<c<1 
- 0(tln(1/t)) for cx = I	(t- 0) 

Proof: Let us denote t,1 =
We obviously have 

	

Q(,-(m*oc)) as n -. .	 (5.1) 

In particular, fsatisfies (0) (and hence (R) by Theorem 1); the Szegö function D is continuous 
and does not vanish in the closed unit disc	; 0 < V !g p(s) = lr(e i&)1 2 € C2 , it = D . As is 
known (cf. [6: Chapter 8; Theorem 8.5]) under the condition (0) sup,, I(e18)II 27,	C(f) and 
IIit(e 18) - p(e)II 2 :5 C(f)t,,. We proceed with estimating the value	t,g(')) where g = p.
We have 

Ig(E - Ip,(e 1 )I 2 I = 117r(e)I 2
 - Ip,(e)I2I 

:5 {It(e)I - I	(e 1 )I}{I it (ei 8)I + 

^ C(f)it(e) - p(e)1. 

By using (5.1) we get from the previous relations 

E(g) :5 C(f)II1r(e") - p,(e 18)112it	C(f)t 1, -s C(f, m)n m)	 (5.2)

The following theorem due to S. B. Stechkin [14: Theorem 11] asserts that if for some number 
meN0	 S	 S	 S 

	

S	 (5.3)
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holds, then g c	and 

w(i(m)) ffg	^ C(m)J-'5'(k + l)mE,(g) +	kmhff:(g)l. 
I. E	 k,*i	J 

In our case (5.3) is true by virtue of (5.2) and consequently (l/n,gm)) s C(f, m)n, 0 < a :^ I. 
The latter is obviously equivalent to	t, g(m)) Q(fa) as t- 0. We are within a few steps 
from estimating the value	t,f(m)). 

1. If we differentiate m times with respect to 4 the identity p( + h)g() + 
0 we obtain 

(T ){p( +h)Ag(m() +	p ( & ) g(m -k)()} = 0 

whence it can be readily deduced that	t,p(m)) , C(f, .).(t, g(-))  C(f,m)t. 
2. By Zygmunds inequality we have 

	

f O(-tlnt)
O(t)	if 0 < a < 1	

(5.4) 
if a = 1 

and the same relation is valid for w(t, F(m)), since F(e') = () + 
3. Arguments identical to those used in the proof of Theorem 3 (cf. (4.8)) lead to the fol-

lowing identity for the S-function f given by (4.4): 

hf(e) = Gm+,(e'-"h)(e' -1) + IJ0G(e' h)zh F'(e'8) 
(e 1 'F(e 1 ) + e)2m(e 1 (-5 +h)F(ei(+h)) + e1(*1))2m 

where the functions G0(e' h).... . Gm*i(eh)are continuous. So (t, f(m)) :^ C(f, m)(t, F(m)). 
The rest is immediate from the latter inequality and (5.4) I 

Theorem 5: The relation 

r1 = lim	t1/fl 1	 (5.5) 

holds if and only if the S-function f is analytic in the closed unit disk D (i.e. f is analytic in 
the open disk (z e C: Izi <I +} for some  >0) and 11f II < I. 

Proof: Necessity. According to [12: Theorem I] the function it it(z) is analytic in the disk 
z cC: 1z  <	and lim,	I(z) = I - z O ak cD k (z) = x'it(z), where the convergence

is absolute and uniform in any disk f z c C: I z I < R}, R < r1 '. The same is true for the function 
(z) = limi(z). Since 7t(z) * 0 for IzI :5 1, then both the C-function F it,i and the 5-

function f(see (4.4)) are analytic in the disk {z E C: I z I < 1 + c} for some s > 0. The assertion 
hf II < I follows from (0) by Theorem I. 

Sufficiency. Under the assumptions of the present theorem there exists a number q E (0,1) 
and an S-function f1 such that f(z) = qf1 (qz). We also have F(z) = F(qz) for the correspon-
ding C - functions Fand l. So Fis analytic and ReF(z) > 0 in the disk {z c C: Izi q'}. Let 
F(z) I + 2 l ck z',Ck = Uk + i vk, so that p ( = ReF(e 1 ) = I + 2 l(uk cosk& - 
vk sInk). It is actually not hard to see that p admits an analytic continuation into the strip 
hlmAl < - lnq, X =	it. Since 2p(X) = F(e x ) + F(e'), then Rep(X) >0 for Ilm)I < -In q. Thus
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the function p1 is analytic in the same domain. By [8: Theorem 21 •y = an = O(q n) as n 

and so the theorem has been proved U 

Remark: Let S(p) be the set of S-functions I satisfying lim,.e,I ynI" 15 p, 0 ^ p < 1, and 
R(p) = inf{r: every ft S(p) is analytic in the disk Izi < r}. Example 6 from Section 3 shows 
that, for all p, R(p) = 1. 
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proximation theory (St. Peterburg/Leningrad 1991). 
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