Zeitschrift fur Analysis
und ihre Anwendungen
Vol. 12(1993),425-455

Free Boundary Value Problems for the Stationary Navier-Stokes Equatibns
in Domains with Noncompact Boundaries

R.S. GELLRICH

A free boundary problem for an incompressible viscous fluid in a domain with noncompact

boundaries is considered; the upper boundary is to be determined by equilibrium conditions
involving the fluid stress tensor and its surface tension. It is proved that if the data of the

problem are regular, then the free boundary, the velocity vector and the pressure are regular.
-Furthermore the exponential decay of the solution is shown.
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1. INTRODUCTION

We consider statioﬁary flows of an incompressible viscous fluid that
occupies a three-dimensional semi-infinite doma?n Q between a fixed bottom
[ and a free upper surface 1"‘. which is governed by surface tension. Both
surfaces approach horizontal planes at infinity. The flow is driven by an
outer pressure gradient -Vpa =.a (a = const), the gravity g and an outer

force fs. It can be described by the following sysfem:

(N1) -vau + (u-V)u + Up = f

s

. in Q,
(N2) Vou=0
(B1) u=0 . : onT_,
(B?) un =0
83) t'"VTw,pln =0 (i=1,2) on T,
(B4) ' nT(u, p)n = -p + gh + 2xH
(B5) u(x y) — q(y) . for |x| — =.

Here @ = {(x,y) € R°X R: =b(x) < y < h(x)} is the domaln occupied by the
fluid, v is the viscosity ‘and k is the capillary constant. The ‘stress
tensor T 1s defined by T, j(u.p) = -p6U+ v(aluj+ ajul). The vectors t'"

.and n are the tangents and the normal to l" and H is the mean curvature of
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F’. The system (N) is the Navier-Stokes system of equations for the
velocity u and the pressure p; the boundary conditions (B2) and (B3) are of
mixed type, and equation (B4) is an additional equation determining the
free boundary r.. The ;imit veloci@y q 1is the equilibrium velocity on a
strip of height b (b(x)' — b for |x| — «).

The corresponding instationary problem was considered by Beale [9]. He
used Lagrangian coordinates, therefore his method cannot be used in our
context. The stationary problem on bounded domains was studied by Bemelmans
[10]). Amick and Fraenkel [4,6,7] considered stationary flows in unbounded
channels. Gerhardt [13,14] derived decay estimates for "~ an exterior
capillary problem. ’

The main result of the present paper is the following

Theorem: Let r e R, fse H;(R3) n C*’a(Ra) (k €N, 0 < @ < 1) and

[D“fs(x,y) , [D#fs]a(x,y) = c“exp(—czlxl)» for Ix| =z r_, (1.1)

1P bxr-b )|, 0P bex-b )1 = cgexpl-c,|x1)  for x|

c, > 0). If the ¢®%-norm of f is sufficient;
s .

(1.2)

v
~

(lul = k, |Bl = k+3, €y CB"
ly small, then there is a v,> 0, such that the problem (N), (B) has
exactly one solution (u,p,h) € it &y oy ke for all v > Vo

Furthermore we have

[D’(u(x,y) -qly))| = cwexp(-czlxl) for |yl

< k + 2, (1.3)

|D¢(Vp(x,y) - Vpa)| = coexp(—czlxl) for || = k, (1.4)

D h(x) = c_exp(-c_Ix|) for |t} = k + 3 (1.5)
T 2

in {(x,y) e QuT: |x| = ro), with C?' ¢ € > 0.

The proof is divided into three parts: First we consider the Navier-
Stokes equations (N) with the boundary conditions (B1) - (B3) and (BS) in a.
fixed domain 2 (Section 3). We prove the existence of a weak solution
u=v + g in this domain €. The velocity field g is a solenoidal function,
which satisfies the boundary conditions (B1), (B2) and (BS), see Defini-
tion 3.1 below. With this function g and the assumptions on the surfaces h,
b and on the force density {s'"e get an a priori estimate for the.Dirichlet
norm of v. Then we can conclude that a weak solution of the Navier-Stokes
equations (N) exists. With the regularity results of Agmon, Douglis and,
Nirenberg [3] and Solonnikov and S&adilov [22] we show higher regularity of
this 'solution. Finally we get the exponential decay in (1.3) and (1.4) with .
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the help of Green's function for the linearized problem. When we show the
exponential -decay, the nonlinearity of (N1) plays an important role.

Next (Section 4) we consider the problem for the free surface

Hix,h(x)) + ch(x) + f(x) =0 on R®.

hix) — 0 for x| — =,

where ¢ is a po‘sitive constant and f and its derivatives up to t.ﬁe order
k+1 decay exponentially for |x| — w. With the help of an appropriate
variational problem we show the existence of a solution. The exponential
decay is shown as follows: we get the decay of the function h with a
maximum principle and that of the first derivative with a method that
Trudinger (23] used to show the boundedness of the derivative. The decay of
the higher derivatives is shown with the help of Schauder’s interior
estimates. '

In the last part (Section S) we consider the full prdblem (N), (B). The
existence proof is based on the following successive approximation: the
Navier-Stokes equations (N) with the boundary conditions (B1) - (B3) and
(BS) are solved in a domain QO. for example a strip of height.bo. The
solution (ul,pl) inserted into equation (B4) leads to the surface I‘:, and
so we get a new domain 0'. In this domain we solve the Navier-Stokes
equations once more and put this new solﬁtioh again into the surface
equation (B4) and so on. The convergence of this sequence W™, p" h") is
shown with a fixed point argument. The exponential decay. of the limit
function follows directly from the uniform estimates for the approximating

sequence.

2. PRELIMINARIES

2.1. Notations. In what follows, the derivatives of a function

'f:Q—)an,Q=(z-=(x,y)elR2le:~b(x)<y<h(x)~}

are denoted .by

Df = af=a{ (i =1,2) and Df=—af=af.
1 6x‘ i ] i .. 3. 3

In the strip S ={( ¢ = (§,0) € R’x R: —bo< n < 0} we use coordinates £ and

n and denote the corresponding partial derivatives by

_ 8 e ' : o 8
Vig = —(f‘—g (i = },2) .ancri .Vag = a—ng .

By "div", "curl" and "DIV", "CURL" we mean the divergence and rotation on Q
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and S, respectively. As usual we use 0% and v* for the partial derivatives
of order |u«l, « € . In R" all integrals are taken with respect to the

n-dimensional Lebesgue measure. In particular

i}
1}

I f(z) dz J f(x,y) dx dy I f(z) for UcQ
U U U

[ ewac = [ gemagan = [ g0 for ves.
74 14 ) 14

Let U be an open set in Rr"; by the Sobolev spacé V:(U) (m e No , p 2 1)
we mean the real Banach space of functions f such that f and its
generalized derivatives D%f (|a| = m) belong to LP(U). The norm is defined

@ 1/
by | f "mﬂhu = ( Zlalsm Iy |D7f|P dz ) ", The space-J(Q) denotes the set

of lnfinitely differentiable vector vfields v = (vl,v ,v3), that are

2
solenoidal and the horizontal coordinates (xl,xz) have compact support in Q

and which satisfy on r, the boundary conditions v =0 and vn,. = 0. The

IT_ Ir,
real Hilbert space H(Q) is the completion of J(Q) in the Dirichlet norm

| u "Q = ( IQ ]Du|2 dz )1/2. The inner product is definded by <wu,v>o =

IQ Blnj a‘vJ dz. ‘
Let U be a function space; then Usol is the intersection of U with all
solencidal functions. We define V(Q) to be the closure of
Q) = C:ol(Q) n{ ¢ : supp ¢ is compact in Q in (xl,xz)-direction }
nig¢:¢=curlp=0onT; ¢t"’= 0, curl¢ n =0 on r, )
R :

in the norm "¢”V(Q) = IQ |A¢|2dz. Furthermorev we define for functions

u,v,w € U;(Q) the bilinear form

1 1 ,
[u, v, -2_J'Qo(u).u(v) dz = 7J'n(alvj+ 8,v)(@u+ du) dz

I (Bvadu +38vadu)dz
PO R I B PR R R g

and the triple product (u,v,w)n = IQ u(v-9)w dz, whenever the vector fields
u,v and w are such that the integrals are defined. If v is in H(Q), we get
(u,v,w)Q = fn‘ulvja)wléz = - IQ vjajulwldz =~ —{w,v,u)n, and therefore
(u,v,u}n = 0. With Holder's inequality we get

<

| {u,v,w}

ql el @Vl (qlvlg -
4 : 4

The corresponding expressions on S are defined analogously. In Section 3 we

need the space H. This funétion space is the closure of
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J =c®(Q) n {v : supp V is compact in Q in (xl,xz)-direction)

N{V:V=0o0nE; VN=0o0ncE)}

in the Dirichlet norm, where N is the outer normal to 20.

2.2. Construction of a map F. Sometimes it is useful to consider the strip

S ={C=(£&n) € R R : -b, < m < 0} instead of the domain Q = {z =
(x,y) € Rx R : -blx) < y < h(x)}. Therefore we construct amap F : S — Q
with
. b(£). + h(§)
F (€l.€2.n) — [El'gz’-___ji;_——_ n + h(E)]

Then F maps the upper boundary I = {(g.,m) € R°x R: n = 0} of S on r, and
the lower boundary £_ = {(g,n) € R%x R : n = —bo) on I

) af
hix)
- ol — 0
a _F s
Wt
: . 7B S—8(x) %

Fig. 2.1. The domains Q and S

Now we list some properties of the map F:

-1

VF =1+ E and DF = =1 + EZ'

where El (i =1,2) are 3x3-matrices with coefficients of order Q(Dh,Db,
h.b-bo) as |x|] — «. The derivatives of a function f : § — R" transform
as follows:
a, _ 0, B
D°f =V f+ E EB v Vaf .
IBl=lal-1

with Eg of order oto’n,u’(b-bo)) as Ix| — o (lg] = l«l).

The functions that appear in the Navier-Stokes equations are transformed

in the following way:

Ug) = DFTY(F(L)) ulF(L)) det DF(L)
P(g) = plF(g)) . ’ - for { €S .
F (&) = DFTMF(Q) £ (F(Z)) '

By this U is defined such that div u = 0 in Q is transformed into DIV U =0
in S. Furthermore we have U =0 on £ ; UN =0 on I and u(F(Q)) = U(g) +
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EU(L), where N is the outer normal to £ and E is a 3x3-matrix with
coefficients of order O(V“h,v“(b-bo)) as €] — o (lal = 1).

The following lemma involves the form of Q more closely.

Lemma 2.1. Let Q be a domain as defined above. Then for every v € H(Q)

and V' = DF 'v-det VF we have:
a) vl ) =¢lvlg
2

b) ﬂvvuLz(S) s Clv], and ”VV"LZ(S) s Clv|,

2 2
vl -1 vl
o [ A jaetor™y = | = ac |ov|? o = c |v]2
Q v s v L,(s) @
h(x)
I I |v(x1.x2,y)|2 — 0 as IXJI — oo (i,j=1,2; = j).

xle$ -b(x)

Proof. a) The first estimate is Poincaré’'s inequality, which is true
because Q is contained in a strip of finiteiwidth‘and v is equal to zero at
the lower boundary. )

b) This inequality follows directly fron the transformation of the
derivatives and part a).

c) Let v € J(Q), then we get with partial integration

0 )
2 0
I Ldn = _Zlvlz /—_n ‘ +‘4 J. |V||VnV|V‘T) dn
-p V77 _bo -b_
o
0
=< 4C(b ) f—— vvli d
- I " | dn
-b
0 > 172 [o] 172
= 4C(b ) IL dn I 19 vi%dn ;
. o’ |. (- )1/2 m
' -y T -b
0 0
and so
0 o
2
J dn = Clb ) I 1v,vI%n .
-b -b
0

Integrating with respect to &£ and extending the result to H(Q) by
continuity, we obta1n the result on S Transformation of the integrals to Q

and part b) show the result on Q.
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d) This expression refers to the Lz-trace on a plane xJE const. Again we
take v € J(R), then we get for a fixed §1
. 2 ¢ * ] 2 2
[vix .x,.y)|" = 2 J~ vd v dx s J~ (lv]® + [o,vl ) dx,
x X
1 1
Let @ = {(x,y) e @ |xx| > §1). then we get with b)
hix_ .x_) .
te? ~ 2 2 2 2
[ [ g s [ v+ 1541 s c vl
~ 1'72 Q 1 QO
xeR -blx ,x_) o
2 1°72
Hvl]Q tends to zero as §1 — o, therefore this is true for the integral on

o
the left-hand side. We get the corresponding result for xzs const by
changing the roles of X and X, The result for v € H(Q) follows by
continuity =

Later we need a mollifier with support near the boundary.

Lemma 2.2. For every € > 0 there is a mollifier pu(-;e} € CQ(R;IO,II) with
supp atu < (0,e); p(0;e) =1, ple;e) = 0, ult;e) = e/t'* and |agu(t;c)| s

e/ttt for t > 0.

pltse)

€ t

Fig. 2.2. The mollifier p({;c)

Proof. For every a« > 0 and &8 € (0,1/4) let =t(t) =t(t:«,8) be a
Cc®-mollifier corresponding to Fig. 2.3. The function Tt should have the
following properties: 0 = t(t) = ¢4 everywhere; t(t) = t™* in {2a3,
(1-28)a]) and *(t) = O for t = 8 and t = (1-3)a.

Py

-1/4
t

xd 2ad (1-20)x (1-0)«x t “
Fig. 2.3. The mollifier (t)
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Let T = I‘; T(s) ds , then we define ult;e,8) =1 - ’-}T J’; t(s) ds. Because
o a(1-28)
T > J sV%s = as3s%° mize) 4/3 [(a(l-za))3" - (2«6)3/4]
20 2ad

we define & by 4/3((«(1-28))** - (2a5)**) = 1/e such that 1/T < e and
|8tu| = t(t)/T = et If we take ale) = e£/(1-3) and u(t;e) .= ult;ale),
8(g)), we get supp alp c (0,e], and for t € supp atu we get et 21 2
plt;e) =

3. THE'FLOW IN A FIXED DOMAIN

Now we consider the Navier-Stokes equations

) -vAu + (u-V)u + Vp = !’s } in Q
divu=20
with boundary conditions
(B1) u=20 on TI_
(B2) un = 0 on T
#) t“Tw,pn=0 (=12) on T,
(Bs) u —>gq as |x| —> o
with 2 = {(x,y) €e R R : -b(x) <y < h(x)}, hbe C™%R®) (meN, O«

a < 1) where the functions b and h.are known. Furthermore the derivatives

of h and b—b0 up to the order m+3+a are bounded by exp(—czlxl) as x| 5> »

(Cz = const). The force density f is of class 'Cm'a with all derivatives
s

bounded by exp(-02|x| ), too.

3.1. Existence and uniqueness of solutions. We will show the existence of a

weak solution to this problem with the help .of an a priori bound.

Definition 3.1. Let Q be a domain as described before. A vector

field g € Cc¥(Qur) will be called flux carrier, if it satifies

div g =0 in Q, gn =0 on l'“
(©) g =0 on I' | g —q as Ix| — o .

’

Definition 3.2. A veidcity field u = g + v is a weak solution of (N)

’

(B), if g is a flux carrier, v € H(Q) and
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A f D(u):D(w) - {u,u,w}. = J fw, Vwe JiQ) (3.1)
2 d Q s
) Q
or equivalently
% JQ DLvI:Dw) - {v.gsv,whg = (g.v.w)
=-2 I Dlg):D(w) + {g.g.w) +J fw., VYwed@. (3.1)
Q n °

Equations (N1) correspond to (3.1): if u is a classical solution we ob-
tain (3.1) upon multiplying (N1) by any w € J(R) and integrating by parts.
The converse, that (3.1) implies (N1}, will be shown in Subsection 3.2.

Remark. The velocity v € H{Q) carries no flux, i.e. fA vndo = 0 for

every cross-section A of Q.

Lemma 3.1, Let Q be a domain as described before and define

(q.u,u)s
VO:= sup ——
ueH (SIN{0} [u,u]s

For v > &o there exists a flux carrier g such that
= | DO:D(v) - (g, vy, = -2 D(g):D(v) + (ggvy. s [ rv (3.2)
2 9] 2 Q s
Q . Q Q
implies |]v|]Q = C for any v € H(Q), where C depends on Q, v and a (see

Section 1).

Proof. i) We construct g as follows: On a compact subset of Qv the
velocity g consists of two parts, having their supports near the upper and
the lower surfaces, respectively. At ‘large distances g lIs the slightly
disorted equilibrium velocity. To this end, we use some mollifiers: for any

€ >0 let ul(-;e) e Cw([O.m):[O,ll)' be -a mollifier for extending the

14 1
\u(t:e) K .
€ T * !

Fig. 3.1. The mollifier u(t:e) Fig. 3.2. The mollifier p(t;s)

z/3 7% T
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boundary-value functions: u(t;e) = 0 for t =z g; u(0;e) =1, atp(o;c) =0

-IM. The existence of u was shoﬁn in Lemma 2.2.

and p(t;e), |atp(t;e)| = ¢t
Furthermore we use p(-;8) € C*(R;[0,1]) with p(t;8) =0 for |t| = 2/&;
p(t;8) =1 for |t| = 3/8 and |6tp(t;6)| = c8, |6t6Lp(t;8)| = ¢3° for 2/8 =
it =< 3/8.

‘ We set g = VF-G-det DF_1 , where G = ROT Q énd Q= Qa + 02 is a vector
potential in S. We define

0 - 0
a3 a 3 . :
Ol = —61) bou(—ﬁ’c)z +.. — gbo H.(bo*’n,e) [1 = P(|§|.5)].
0 0
R ’ a 1 3 2 a 3 T
Q, = Oap(IEI;G), with Q= [ 0, _z_u[?" - bon] * o o O ]

and get Gl = ROT 01, G2 = ROT 02. Then G = G1 + G2 satisfies: G = 0 on Z_;
GN =0on Z; DIVG =0 in S and G(€,n). — q as |§] — . w. With the trans-
formation of the velocity we see that g satisfies (G).

First we estimate the term {g.v.v)Q of equation (3.2). We get

2
|g1|2 = czcaldet DF'1| ; l1/4 . . 174 ’
(-7) (bo+ n)
for |V1p| = 1. This implies
LT _ o lVlZ" Ivlz 172
[{g,.v.vig| = eC, J' |det DF™7| — ¢ 73 Ivig
Q (-n) (b°+ n)

and with Lemma 2.1 and Korn’s inequality [9] we have

1A

. R o
|(gi,v,v}Q] CCSHV"Q,S CCG[V'V]Q' _ ' . (3.3)

For the corresponding term with g, ve get
o C . i . .
(gz’v'V,}Q = Iquldet D.F'~ [v‘aivli» V1F3v16lv3] A
-1
+ JQ 7(n)V3F3V1pvlalv3det DF

a

with y(9n) = ¥

1 3 3 3
[T[ bo— n ] + bon]. Because of |V1p| < ¢8 the last inte-
grand is small on the support of p(-;38). It follows that

(gz,v,v)Q = {qu,v,v)Q + IQ R1 s (3.4)
where the term R1 consists of all terms, which are small on the support of

p(-;8). The function qq is the equilibrium velocity q of S transformed to
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Q. With Lemma 2,1 and Korn’s inequality we get
| Jn R| = ['3‘(<S)|]v[]l’2.Q = CB(3)v,v], ,
with B(8) — 0 as 8§ — 0. Let

_ {eq,,u,u}
v(s) := sup ———jl————il. (3.5)
ueH(Q)\{0} [u,u]Q

Like Amick [4) we can show that »(5) — vo'as 3— 0. Collecting (3.3) -

(3.5) we get I(g,v,v)n| = [‘FCG* v(d)+ c;s(a) ][V’V]Q' If we choose c.= €,

and 3 = 60 sufficiently small and v > vy We get
I(g,v,v)Ql 5'1/2(1)..4,_v°)[v,v]Q . ) . (3.6)

“1i) With v =V + EV and g = G + EG for the velocities, the corresponding
formulas for the transformation of the derivatives and partial integration

we get for the terms on the right-hand side of (3.2)

[rt =1l @l * Vg
_ |J D(g):D(v) 5"1 VTGN - J aGV | + I Ean“chV' . -
. ‘<, - . & .
l(g,g.v)nl = |-{V.G,G)¢| + <ISEUk.aGlGJV v,
where
- ¥ 0¥ (e - <o i
EaB’ El"'a = 0(97h, 97 (b-b ) (lat, 1Bl =1, |2l =2; i,j,k € {1,2,3}).

Now we divide the domain S into two parts, the bounded part S'= {(§,n) € S:
1€] < 3/60) and the wunbounded part S"= S\S’. The function g and its
derivatives have bounded integrals on S’. Poincaré's inequaliiy and the

bounded embedding V;(S') < LZ(BS‘nZ‘) lead to

l S'AG Vi + [{V.G.G)g, | + VT(G)N’ s c"vvﬂLz(S,)
‘ : _ asinE, - - -
in S" we have G = q, therefore
J “VT(CIN = I VT(q)N = 0
as"nz, . 8s"ng,
and : . ©
8G.V = ClG) | v = I' f "WN'=0,
s _ s £ - X(g,)

because V carries no flux..Here:X(El) is a part of the (€1,€2,n)-plane for
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every €1 € R, which lies in S and has N = (1,0,0) as normal vector. The
triple product (V,G;G)S i{s zero because G = q in S".
By h, b-bo € V;(IRZ) we get for the remaining terms

+

a . f3
Ussaﬁv ooy

= Wl (s, -
2

(+4
J'Ssljk,ac‘cjv v,

where C = c(IGl So we get for -the terms at

c (Suz)'ﬂhﬂa.z.ﬁz'"b-boﬂs,z,ﬁz)'
the right-hand side of (3.2) .

v .. i - T . .
l-T [ p@yow) « tggvig+ [ rv | = clwvl g = clvig - (3.7)
Q Q 2
Collecting the estimates (3.6), (3.7) and the definition of [v,v]Q it
follows that [v,v]s.2 = ZC/(v—vo')[lvﬂn. With Korn's inequality we get the

assertion []v]]Q = C(v,vo.,h,b.bo,a) a

Theorem 3.2. Problem (N), (B) has a weak solution u for every viscosity

v > v.
o]

Proof. Let (S} eN be .an expanding sequence of simply connected bounded
m m .
subdomains of S such that Sm — S as m — o (see Fig. 3.3) and asm is of
3 _ 3
class C°. The sequence (Qm)melN = {F(Sm))_melN of bounded C subdpmains of Q

converges to Q as m — wo.

-m m m+T  mtl

Fig. 3.3. A domain Sm

We consider the problem of finding a weak solution (u ,p ) of (N) in Q
m m

with boundary coditions

m

u =0 : . onTF =80 AT,

m - m -

un=o0, t‘”T(u,p)n=O onIMm =802 nT,

m m m + m R
a(lxl)t‘l)T(um,Pm)n + (I—m(lxl))um= (1-a(lx]))g on anm\r“‘,

with a C”(R";[0,1])-function a = «(t) such that, for 1 » T > 0, «(t) = 1

for ms t =m+ T and a(t) =0 for m+ 2t s't. So we are looking for a
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function u=.v +g, v € H(Qn) and g as before, which satisfies

-;—I Dlu):D(e) = {u_,u_,@}g J' fo. Ve
Q o o
@ .
Standard methods show the existence of a weak solution u in Qm. Because Qm
is bounded for fixed m, we have u, € H(Qm). The domain Qm lies in a strip

of finite width, so with Poincaré’s inequality it follows ||w{],_ @) =

C[](..)[]Q for all w € H(Q ) and we conclude that H(Q ) is continously embedded

in LZ(QE). This allows t.he analogue of (3. 1) to be extended to all test
functions in H(Qm). Choosing w = v we get '

%J‘nu(vn):u(vm) - g v ) = -%J‘Qo_(g):n(‘}n) g8V g + Iﬂfsvm,

where v, € H(Q), if we set v=0 in O\Q . Thus each v satisfies (3.2) in
m m
Lemma. 3.1, so . that []vml]n is bounded independently of m. Hence there exists

a subsequence (vm) and an element v € H(Q), such that Vp VY weakly in
n - n
H(Q) as o @ Now we have to show that v is a solution of (3.1’). For

simplicity we now write (vm) instead of (vm }. The function v is a solu-
tion of "

%Iﬂ D(Vm):D(“’)‘ - (vm.ngvm.e:)Q - (g,i'm.w)n

= -2 | D(g):Dl) + {g.g0}, +| fo., Veeda).
2 - " Q s m
Q o Q

i o . L3 .
For any given w € J(Q) we have supp w C.Qk for some k, so thatym satisfies
(3.1’) for that w, If m=z= k. With this fixed w the linear terms on the
left-hand side of (3.1’) define a bounded 1linear functional, say
f : HQ) — R. Then f (v) — f (v) as m — o by the definition of
w,g ¥,g o ¥, 9
weak convergence. For the nonlinear part we have rm = (v,v,w)Q - {v ,vm.w)n

Y=L . Va

and therefore'

Tel = (vl @ @) * P @)Vl o)) Mg
. . 4 k 4 k ' 4 k 4 k- k

For the bounded domain Qk the embedding W;(Qk) c L‘(Qk) is compact. So v
]
converges strongly to v in L4(Qk) and with Poincaré’'s inequality and

Lemma 3.1 we get

%, = vl (14, o * Wl o0 JWvvaly @) = Gl vl oy -
LIRS LY 1,2,Q m'1,2,Q U mL4(ﬂk)A 2 "'Lamu)

where C2 is independent of m. With 'vm — VvV as m > w in‘L‘(Qk) it

follows {v,v,w)Q - (vm,vm,w)n» -— 0 as m — w. Therefore v is a solu-
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tion of (3.1%), and u =g + v is a weak sofution of the Navier-Stokes

equations =

With standard methods one can show
.Theorem 3.3. The weak solution of (N), (B) is unique for large values of
v and small values of "fs"La(Q) and a. . - '

'

To exclude that a classxcal solutlon is in the generally greater space
H*(Q) = { u e V (Q): un =0 on F,u=0onTl, divu=01}

we show .that for our type of domaln the spaces H'(Q) and H(Q) are

identical. For that we need some notations:

1) ={uecC”@run=0onl,u=0o0onrl, ,
supp u is compact in (xl.xz)Jdirection in Q },
%) =

{uel(Q): divu =01},
- o . )

H@Q) =17 (@ H*(Q) = {ueT(Q) :divu =0}
Furthermore we need the domains

A=z e®: R< 1zl <2R), -=qana®  and o =@ v,

where Q is a small set such that QR is of ¢! type. Boundary pleces of of
are denoted by r for the lower boundary, r for the upper boundary, sh= {z
€ Q: |z| = R} and S , respectively, for the lateral boundaries. 3{= FT V]
r?. v éR v S2R is the boundary of Q and 3" is the boundary of the
smoothed domain (cf Flg 3. 4) ' ' .

Fig. 3.4. The domalns Q_and &

Theorem 3.4. Assume the followzng

1) For every R = Ro > 0, QR is a connected domazn and ‘for every @ €

sz ) = {y € Lz(Q ): (Y,1) = 0} there is au € ”2(9 ) such that.

(i)divu=9 inQ and (ii) 1oull, gy = CRlel, (R
2 2
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R
.
2) There Is a C> O such that nwle(QR) s Czﬂle]Lz(QR), for w € H*(Q).

: = . = e
3) For every domain Q= {.z e Q: lzi <R}, H(Q ) = H(Q,).

Then H(Q) = H*(Q).

Proof. Because H(Q) ¢ H*(Q) it remains to show H*(N) c H(Q). Let
v e H*(Q) and ¢.e C(R) be a cut-off function with &(t) =1 for 0 s t = 1
and {(t) =0 for t = 2.

clt)

Fig. 3.5. The function g(t)

The function C is monotonically decreasing in (1,2) with |g'| = C,. Ve

construct for the vector v € H*(Q) a function v by v (z) = v(z)CR(lzl)

+

u (z). where { (r) = C(r/R) and 4" is an element of V (Q ) with div(d® )
9" tn % and []Du ﬂL (Q) = CR|]V(; vﬂL (Q) The existence of such a

n

function u® follows by assertion l. The function vR satisfies the boundary
conditions (B1), (B2) and is solenoidal because div v" = div(v)Z® + voc® +
div u® = 0. 'So we get vie H*(Q). Furthermore v® vanishes for |z| = 2R. Thus

its ‘restriction to Q- belongs to H*(Q, ). But, according ‘to assertion’ 3.

= e . R R ¢ i p o om
H(Q ) H (,Qza)' so we oan find zi sequence (wn} < I (Qza_) with v -D—>Av
in Q . Extending the vector w: to @\Q, by zero, we get w: e 1°(Q) and
w: 3-) vR in Q. So we have )

ﬂv-wﬂnsﬂv-vﬂn+ﬂw-vﬂn. .'-. . . (3:8)
With assertion 1/(ii) and 2 we obtain _

|]v—v|]n=|]Dv-Dv( - voct UHL(Q)

s [1 + CC/R+CCC, ]I]DvﬂL (20, s C‘IVHQ\QR'
R R )

From (3.8) it follows that [v - "'-'nﬂQ s.‘Cdl]vﬂn\Q+ I",, - v ﬂn. Selecting

first -a sufficlently large R and then a sufficiently. large n we can make
the right-hand side of this inequality arbitrarily small; thus, any vector
v € H*(f1) can be approximated by a sequence (wn) in IO(Q) =
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Now we want to apply this theorem to our problem. We have to prove the
following assertions:

1) In three dimensions the set QR, R zRo 2 0, is a connected and
bounded C'''-domain. With the results of Giaquinta and Modica [15] one gets
for all ¢ € EZ(QR) aue€ ﬁ;(QR). which satisfies (i) and (ii). The constant
C depends on vh by c@®) = ka’

2) Because of the boundary conditions for w € H*(Q) the Poincaré
inequality is true for w with C2 independent of R.

3) The identity of the spaces H©Q®®) and H*(2®) can be shown like

Bemelmans has done in [10; Theorem 4].

3.2. Regularity of the weak solution. In this subsection we examine the
regularity of the ‘weak solution. We show the inclusion u e C3(Q) v C(EUl)
and that there exists a pressure p e CI(Q) v C(Qur'), such that (u,p)
satifies (N), (B) pointwise. Such results are standard for weak solutions of
the steady Navier-Stokes equations and so we will only list the results;
for‘proéfs we refer to [12]. Let V be a bounded doméin such that V <cc Q and
@ eACZ(V). Then we take ¢ = rot ¢ € J(V) aé test function in (3.1) and

partial integration leads to

-(Ap, rot w)v + 1/v{rot ¢,w,y)v = 1/v(irot w.fs)v Vo e C:(V).
This equation can be examihed by Lp-estimates (cf. Agmon (2] for the proof
of the inner regularity) and by the results of Solonnikov [21] and Solonni-
kov, Séadilov (22) for the regularity up to the boundary. Repeated use of
embeleng theorems and the Lp-ﬁheory of Agmon, Douglis and Nirenberg [3]
then show the regularity up to the boundary and the following decay result.

Theorem 3.5. If f_ e C™™(@uI) A W)@) (meN, 0<a<1) and u is a
weak solution of (N), (B), then
i) uel™®%Qur) and v e lf:‘z(ﬂ) (s =z 2),

ii) there exists a pressure p € ™% @ur) such that (u,p) satisfies

(N), (B) pointwise,
iii) for every B,y € N3 with |B| = h+2 and |yl = m
|DB(u(x.y) - q(y))l —> 0, uniformly as |x|] — w inQ u T,
'IDW(Vp(x,}) - Vpa)| —> 0, uniformly as |x| — « in Q u T.

The'equivalent 'is true for the correspondihg H5lder derivatives.
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3.3. Decay rates. We now examine the asymptotic behaviour of the solution
of (N), (B) as Ix| — = in , in case D¥(b-b)), 0%h and DPr_ (lal = k+3,
IBl = k) decay like exp(—czlxl) as x| D w (c2 > 0). We show that D%v
(lel s k+2) is bounded by exp(-c2|x|) in Qs, where 95 = F(Sg) with
=.{(€,n) € S: |]§|]1 = |§1| + |§2| > a} and a has been chosen so large
that G = g in S~.
We transform the Navier-Stokes equations to S and def1ne the linear

operator L in S;, which contains the linear nondecaying part of the first

three Navier-Stokes equations LV = -vaV + (g-V)V + (V-V)q in 55. The
Navier-Stokes equations and vAq = -a = VPa and (g-V)g = 0 give
LV = -(V-V)V - V(P-P_) + E in S~ , (3.9)
a 1 a
V=0 . on = £ n S~
: a. - a
VN =0 . -
) on 25 = Z’ n S;
T(V,P)N = Eo
vl — o0 as || > =,

where E and E contain the terms, which originate from the transformation
of the derivatives: £= 0(%h, PP (b-b )) A (v7V), E = 0(v*h, ¥ (b-b)); A(V,
vq,v9?v,q9%q,v9%q,qv%V,v7P) as I€] — w (lal =3, I8l =2 and Iyl = 1).
The components of the vector-valued function A are linear combinations of
its arguments. For the investigations of the decay it is more favourable to
change to the rotational form of L and to work with the vector potential
¢ € V(S), where V = ROT ¢ and DIV ¢ = 0. We get the operator

~ _ _ a2 _ _
(L¢)p T A ¢p (asqlal ¢ asqlalp¢s * qlassl p)

.cjsp( 28,9, * ;:makqsla“qJ in S _ - (3.10)

{p = 1,2,3) with-boundary conditions

¢ =ROT ¢ = O on I
¢T") = ROT ¢-N.= 0O , _

(1) on E (3.11)
T TROT 9)N =0

¢, ROT ¢ — O Cas x| — .

In order to examine (3.10), (3.11) we consider the adjoint problem. For
v > Yo the corresponding bilinear form is coercive and bounded.: Since
Dirac’s delta distibution is a bounded linear functional in V(S), there

exists for each z, € S a Green matrix function GJp(zo.-) € V(S) (j, p=1
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2,3) such that

A' : .
L Glz ,z) = &(z -z)I in S
“o 0
G(zo,z) = ROT G(zo,z) =0 on Z_
T .6(2_,2) = N-ROT G(z_,2z) = O : (3.12)
(o} o
on Z*
7. T(ROT G(z,,z))-N = 0
G(zo,z). ROT G(zo,z) — 0 as x| — =.

Then the solution of (3.10), (3.11) is given by ¢(z°),= IS G(zo.z)f(z) dz.

For the Green function we have the following decay result.

Theorem 3.6. Let S'= R° x (-bo,O) and v > v, Then for each z € S:

a) There exists a Green matrix function G(zo,‘) € V(S), which solves
(3.12).

b) There exist positive constants C = C(v) and ¢ = c(v) independent of

z_ such that, with r = |z-z |,
0 0
. 3
c/r for |€-€|, =2
IVzVBG(zo,z)[-s { ’ A
‘Cexp(—cﬂﬁo-gul) . for "&O—Eﬂl > 2,
where o and B are multi-indices satisfying |a| + [B| = 4.

c) Analogous bounds hold. for derivatives of order 3, 2, 1 and O.with
C/r? replaced by C/r2, C/r, C. and C, respectively, for U§o-§ul s 2. .

d) For lal + |Bl .= k > 4 there are positive constants Ck such that

|V‘:VBG(zo,z)| = Cexp(-cl€ €] ) for le,-€l, > 2.

Remark. Amick [S5] has shown this result for the Dirichlet problem in two
dimensions. All steps of his proof can also be done with. our boundary

conditions, only slight modifications are necessary.

) In what follows let v > vo and we considgr, for the pfesent, the domain
Sd = {(§,n) € S: "gul > d}, where d will be fixed later. We multiply-the
Navier-Stokes equations (N1) in 2 with a function h € H(Q) and integrate
over Q. By partial integration of the highést order terms and tfansforming
the integrals to S we get
[ [ w(egvv e wewie) - [ vrenon

S S : - : Z‘

J' H(vAG_ - (G_-9YG_+ f) '+ P DIV H
S S S S s
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+ I E A (HG_9*G_,HG vV, Hvv™G_, HVVV Hf ,HV°P)
S 11 S S S S s

. o |
+ J-s E, g, (VP (4G )) - IS HW- )V

Clal, 1Bl =1, |o| = 1). The terms £ and E g are of order O(th.vw(b-bé))
as |§]l — o (ly] = 2). Every term in the following text, which is denoted
by El (i €e N), is of this form with |y| = 3. To avoid confusiqn Qé denote
by GS(C) the vector potential G(g). The variable of integration is z.

Now we introduce a vector potential ¢ € { ¢ € C(SUZ): ¢ = ROT ¢ = 0 on
Z_; T“)¢ = 0, ROT ¢-ﬁ = 0 on E’}; The.éxisteﬂcé of such a potential is

shown in [(12). Let p = p(-;d) € C*(R;(0,1)) be a mollifier ‘such- that

ult;d) = for t =d and u(t;d) =0 for t =d-3. We define S _ =
(. € s: a-3' < Jg], <d). Then for d-3 =3 we have supp u c S, _, and
supp u', supp p" < S __ . So in the above integrals we get’ G =g and

therefore vAGS = vAg = -a = VPa and (GS-V)Gs = (qg-V)qg = 0. With the
definition of the operators I* and L* and H = u ROT G we get for.zo € Sd

the representation

Wiz) = J ROT G(z ,z) "(V-9W dz + T(z), . (3.13)
[o] s [¢] 0
d

where T =T + T_ and
1 2

T (z,) = - JS~ ROT L*(u ROT G) ¢ .dz - Js . W ROT G (V-V)V dz
d-3,d Yd-3,d.
+ I . ga(vcpvv?c,v"g¢v7c) do(z)
d-3,d :
s e (P, arefu, v, PPatp)
Yd-3,d .
a f

+

A6(V My G(P-Pa)) dz ,

Tz = [ uep (ev, vy, w6, viar’F) az
2 0 S 2 4 :
d-3

(lal, 181,181 =1, Iyl =2, lol =1, 1 = |n] = 2).

For each fixed d = a we define the Banach spaces C and‘E by

C :

c (S Uz ;R%),
B d d

E :

3. o _ .
E(SVERY) = ("¢ € C: o] = ::§.| ¢(z) explc (|€]-d))| < = }.
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Lemma 3.7. Define

a <
(A8)(z) := 0 Is ROT Glz,,2) (4-V)V dz for z €S, (lal 1)

d
for all ¢ € C and ¢ € E: Then

a) [A 8l s e@|o], . b) [4¢]. = cld]d]

ahd €e(d) —m 0 as d — o.

Proof. é) Let ¢ € C. Since G(zo,z) is of class w§ we get
(4 )z )| = cl[]¢1|c||vv|]1_2||c(zo,-)||V§ = cz||w||L2|]¢[|C .

where the constant C only depends on S. Because V € W;(S) it follows

"VV"L = || —> 0 as d —»> o. We now show 4 ¢ € C. For ze S, choose
2 0._2.5d « o “d

h such that zo + h is in Sd, too. Then

| (4,8)(z +h) - (4 8)(z )|

1A

c I |VaROT(G(z +h,z) - G(z_,z))|]|(¢-VIV| dz
s' o o 0’ %" !
d

o
c|]¢||c||w[][_p||vo(c(zom,-) - G(Z°"))u"; ,

1A

with 1/p + 1/q = 1. Since V € L’;(S) (p =z 2) and V:VBG e L(S) (1 sq < 32,
q
Izl = 2, IBl = 1) it follows with

[95(Glz+h, ) = Glz,- D2 = C|n|[V3G(z,, )], — O as h — 0,

% 1,4,S

1
q
that 4 ¢ € C.

b) Let ¢ € E, then Aa¢ € C by a) and we estimate "Aa¢"5 in two steps.

i) Let S = {(§,n) e S: |§-€ [ > 2}. Then for la| =1

U V*ROT G(z_,z) (¢-VIV dz
S o] [o]

1A

Clelg fs exp(-cl&-£,l,) exp(-c,(|€]-a)) || az
. _

eIl g (<, 5| -0) ol

1A

where HVV"C = HVV"C(S y — 0as d — o.
4

ii) Let S, = {(g,n) € S, n€_€0"1s 2}. Then for la| =1
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: |J VYROT G(z_;z) (¢-V)V dz|

s, ° ° : .

» v

s Cﬂw":.z"c‘zo"’"wi exp(-c,(-|&-€ | +|€ [-d)) |l
= C"VV"LZHG(ZO.-)ﬂwi exp(-c2(|€o|—d))ﬂ¢HE ,

where "G(zo.-)“wz =< const and ﬂVV"L —50asd —Hwo®s
2 2

Using Theorem 3.6 a tedious calculation [12; Lemma 3.17] gives

Lemma 3.8. Let T(zo) be as in the representation formula (3.13); then

VT e E (IT] = 1).
Now we are able to proof

Theorem 3.9. If the distance d is sufficiently large, then the solution

V of (3.9) is of class E(Sd).

Proof. Formula {(3.13) and the definition of Aa give

ROT y(z ) = V(z) = Z|a|=1a°‘“°‘mz°) + ROT_T(z,)

= AV(z ) + ROT T(z ), for z €S,
o o ‘o : 0 d

with aa¥ 1 or O. For a Banach space B let £(B) be the Banach space of
bounded 1linear maps 8 — B. By Lemma 3.8 we have ROTDT € E. So the
equation V - AV = ROT .T has a unique: solution
a) in C, if d ?s so large that "AHZ(C)
b) in E, if d is so large that "AHZ(E) < 1.

By Lemma 3.7, the number d can be chosen in that way. Since E < C, these

< 1;

two solutions are identical. Because V € C we get the assertion s

By continuity of V on the set {(£,7) € S: a = "g"ls d} e get V € E(Sd)
for all d = a. Using this result in (3.9) we obtain LV - V(PG—P) =
(V-9)V + g where g e E(S)) for all d = a. Using [3; Theorem 9.3] in the
bounded domains ' o

s“=((§,n)es: J=1 < € < j*l; k-1 < &, < k+1} (j.k>a+1)
we get for sufficiently large v

19¥8v ()|, |97 (P -PY(2)|, (VPV] (2), (V9(P -P)] (2) s C_exp(-c,(|€|-d))

! a T 3 : a « 2 2 '
for all z € S, (I8l =2, |yl s 1, 0 < « < 1). By induction and transforma-

tion to 2 one gets
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Theorem 3.10. Under the assumptions in the beginning of this section we

have for the velocity v = u - g and the pressure p
Voo _ 1p¥(p -
v, Dp-p). 10Pv) . 107 (p -p))_ € E(R),

for |Bl = k+2, |yl = k+1, 0 < a < 1.

4. THE EQUATION FOR THE CAPILLARY SURFACE

In this section we consider the problem

Dh R
D | ————=|*ch+r=0 in R, ©(4.1)

V1 + |Dh|?

with a constant ¢ > 0 and a function f € C;(Rn).

4.1. Existence and uniqueness of the solution. First we are looking for a
weak solution of (4.1). That means a function h € Co’l(an) n Lm(fRn)-such
that, for any bounded domain U ¢ IR", h belongs to V:(U) and

J DD ew T ax v c J hp dx + I _fp dx =0, (4.2)
R R R -

for every ¢ E.l:’:(IR"), W= (1 + IDhI2 Y2 With the help of the correspond-

ing variational problem

J (v) = J (1 + |Dv|2)l/2 dx + — f vidx + J fv dx — min. in .BV(B.)
3 2 k
B B B
k . K Kk .
in a sequence of bounded domains Bk — R" one can show the existence of a

solution of (4.2).

3

Theorem 4.1. Let f € C;(Rn). then equation (4.2) has a solution h €
ETR™ AL (RY).
-]
Remark: The uniqueness of the solution follows later by Theorem 4. 3

There we get |h| — 0 as |x| — o, if |[f(x)| is bounded by c exp(-c |x|)
for |x| = r . !
0 .

The higher regularity can be shown with ‘the help of the: gradient
estimates of Bombieri, De Giorgi and Miranda (see, e.g. [10]) and the
theory of quasilinear elliptic equations (cf. [19]). One gets (cf. [12))
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Theorem 4.2. If f € CI(R"). then the solution h.of equation (4.2) is of
, &, .n -2,, . n
class C““(®") (k = 2) and [h] k&g, = C(f]ggn)). If e TR

(k = 3), then h is of class C*'*(R") and “h"Ck’a(R") < C("f"cx-z,a(mn)).

4.2. Decay estimates. To show a decay estimate for h we construct

appropriate barrier functions. To prove an upper estimate we set

ac = clexp(-czlxl) + glx| (e > 0),

where the constants cl, c2 and € should be determined such that Aac + cac +

fz0 for |x| > ro and 68 2 h(x) for |Ix| = ro > 0. A is the negativ mini-

mal surface operator Ah = -Dl[D‘h/V 1 + |Dh|2 ]..Suppose for a momeﬁt that

we have chosen the constants appropriately, then with a maximum principle

{20; Theorem 31) we get

éd (x) = h,, for Ix| =z r_ . I (4.3)

€ o

Thus h is bounded from above by 6c outside of Br . If we are able to bound
o

the constants <, and c, uniformly with respect to € then, going to zero

with €, we obtain the desired result for h. For brevity we set 60:=
clexp(-czlxl). A calculation shows

2
1 n-1 c260
Re = Tar %% * ¢ - — 5~

2

With 1 Wo=1 + 2(c1c52)2 for € = cc, we conclude

1A

A8 + cd + f =
f 24 1 4

C
n-1 2

IxI 3
V1 + 2(c.c))
12

If -f = (¢ - c:)ao, the right-hand side of (4.4) is non-negative for 1x|2.z

[c - ]6 + elxl[c - il ] + f. (4.4)
2 0

2
x|

(n—l)/c: =: rz. To find a lower bound for h we set 38 r= —6c and gét the

requirement f = (¢ - c:)so. The constant ¢, can be determined as follows:
With an estimate of Concus and Finn (see, e.g. [(12; Theorem 4.S5]) it
follows that |h| s (n + cf)/c + 1. Thus with (4.3) we get c, = (n + cf)/c +

1 and we have shown

Theorem 4.3. If f € C;(Rn) with |[f(x)]| = crexp(—cz|x[) for |x| = r,, and

c > c:, c.= (e~ cz)cl, then the solution h of (4.1) satisfies |h(x)| =

clexp(—c2|x|) for |x| =z ros where ¢, = (n*cr)/c + 1.
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For the gradient we get

Theorem 4.4. Let ¢ > 0 and f € C;(R") with |07f(x)| s cZexp(-c2|x|) for

Ix] = r

1A

0'(|7| < 1), then we get for the solution h of (4.1) ]DBh(x)|

cgexp(-c,[x|) for |x| = r,, where c, = CB("{HCI((R“)) (8] = 1.

Proof. Let us introduce some definitions: We denote by ¥ := {(x,h(x))

m

IR"”; x € R"} the graph of h over R". The outward normal vector v at a

point (x,h(x)) is then defined by .
vi=sW'(-Dh,.....-Dh1), W=V 1+ 0n? .

Furthermore, we define the differential opgrators 61= Dl— v‘kak (i = 1,2,
...,n+1) and D = 616‘. Let Y= (xo.h(xo)) € ¥ be arbitrary and .‘fR the
intersection of ¥ with the (n+1)-dimensional ball in R™' of radius
R = Ro = const and center Yo Furthermore, let .‘/’; be the projection of .‘fR
on R", then .7'; is contained in the ball BR= BR(xo) (cf. Fig. 4.1). Rn is

the n-dimensional Hausdorff measure.

F

* x
0 .YR
Fig. 4.1
Let w be defined by w := -log Voot From [23; Corollary 4] we deduce for
R > 1/8 . .
wiy) = C, J’y wdR_ 4 CCR (9) ‘ | (4.5)

R
where G = stup((—Dw.O); X € Y’R) and the constants C3 and C4 depend on n,

o 2 .
CﬂhﬂC(YR) and “fﬂc(.‘/'R)' With [23; Lemma 3,] we get Dw = |3w] - nvDH=
alhalr / W on ¥. Hence we obtain

G = R’sup{(-Dw,0); x € It s stup(la‘f|; x € ¥} supl[3h]; x e ¥ ).

Rewriting the integral I w dH as J wW dx and observing that w = |Dh|2
¥ " ¥ :

.
R o R
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and that W is uqiformly bounded, we deduce for the first term of the right-
hand side of (4.5)

c I w dN scj [Dh|® dx .
3 n S
4 B
R R
For the second term we get with X (¥ ) = W dx = C vol B_ the estimate
n R g 6 R
R
- 2
Cdckn(YR) = CR "f"Cl(BR)”Dh"C(BR)VOI B,

Because of Theorem 4.2, the constants Cs' Cs and'C7 depend on n, c¢ and

Iflgt (g j- Then we obtain from (4.5)
R

wly ) = C, I |Dh|? dx + CBRm2||f|] (4.6)
5 . .

R

c' (8, )"D""cts )

So it remains to estimate the integral I |Dh|2 dx. Let n, 0 s <1, be a

R
cut-of f function being equal to 1 in BR and zero outside B2R such that |Dm|

s 1/R. Multiplying equation (4.1) by nh and integrating partially we deduce

JB {(D‘h)znw_l + DlthnhV_l + (ch®+ fh)n} dx = 0 . ' (4.7)
2R
We have
. ik :
I |on|* dx = K I -  _jadx, (4.8)

By nv 1+ |Dh|?

where Kl depends on "f"cl(mn). Taking the boundedness of h into account and
inserting (4.7) into (4.8), we obtain

2
[ 1oni® ax < &, [ {1onlinl1onl + iriin]ini] ax
R 2R

1A

and therefore

[ 1omp®
B

R

IA

K vol B
3 2R

X

1
P P [ PPN LI S PR (R
2R 2R 2R 2R

where the constant K_ depends on "f"CI(B ) and n, but not on R.
2R
On the other hand, we deduce from Theorem 4.3

"hHC(Bza) s c exp(-c,(Ix |-2R)) = El(R)exp(—czlxol). . (4.10)

Furthermore, we have
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uf"Cl(Bzg) = cr(R,"f"cl(Rn)) expl-c_lx 1) . (4.11)
Using (4.9), (4.10) and (4.11) in (4.6) we get
w(yo) = [CSK3(C1/R"Dh"C(BzR) + crclexp(-c2|x0|})
~ 2 . n
+ CC.R "Dh"C(B )]R exp(-c,Ix )
2R
= Cg(R)exp(-czlxol)[uDhﬂC(BZR) + exp(—czlxol)]
Moreover, since t/2 = log(1+t) if 0 =t =< 1, we derive

2
|Dh(xo)| = 4C9(R)exp(—c2lxol)["Dh"c(azR) + exp(-czlxol)]

and finally, for fixed R, we get'|Dh(xO)| = Cloexﬁ(—czlxol) for |xo] zr m

" For estimating fhe higher derivatives we transform equation (4.1) in
such a way that the linear terms of the second order derivatives are sepa-
rated from: the other terms. We get the equation = Ah = (ch + W+
DlhDthljh - DxthJhDJh' Schauder’s interior estimates and  induction then
show (cf. [12; Theorem 4.9])

Theorem 4.5. Let h be the solution of (4.1).
a) If f e C'(R") and |Dyf(x)|_s c:exp(-czlxl) for |Ix|l zr_ (ly]l = 1),

0
then
.|DBh(x)],‘{DBh]a(¥) = cBepr—czlxI) for |x| = r (18l = 2),
where CB = CB("fucl(Rn)) and 0 < a < 1,
b) 1£ |07 ()|, (D7f1 (x) = clexp(-c,Ix|) for Ixl 2r (3 skeN, lyl s
k-2, 0 < « < 1), then ‘
]DBh(x)|, [DBh]a(x) < cBexp(fczlxI) for |x| =z ro (18l = k),

where cg = cB("f"C;-z,a(Rn))

5. THE SOLUTION OF THE FREE BOUNDARY VALUE PROBLEM

Now we come back to our original proBlem (N), (B). With the help of succes-

‘sive approximation (cf. Lemma 5.2} we show

Theorem S.1. Let f_& C* (&) (ke N, 0 <A < 1) be sufficiently small

and bounded by exp(-c2|x|) for |x| =z ro- If v > v, then there exists one



Free Boundary Value Problems 451

and only one solution (u,b.h) € C*‘Z’A(QUF) x Ck’l'k(ﬂur)lx C*’a'x(mz) =: C

of problem (N), (B). This solution satisfies
o .
|[D7(p - pa)(x.~)| = Clexp(-czlxl)
IDBv(x,-)I s Czexp(-czlxl) for |x| =z r
¥ oo '
|Dh(x) | = Caexp( czlxl) ‘
(lxl =1, IBl =2, |yl = 3), where Cl, Cz' 03 are some positive constants.
Proof. We choose Qo = {(x,y) € R -b(x) < y < 0}. For m=z=0 we

determine (u ,p ) in Q= {(x,y) € R>: -b(x) <.y < h (x)} as solutions
mel " mel m m

of the systems

-viu + Up + (u -Vu =f
m+1 m+1 m+1 m+1 s
: R in Q
div u =0 "
mel
(P1) { u =0 - on I~
m+1 . R . m
(1) . +
n =0 ; t T(u ,p Jn =0, (i=1,2) on T
m+1l m Lo m . m+ 1 m+l [ - . . o
Lu ,, —4d as x| — o .

: .

We get the new surface r and by this the new domain from (u _,
. . - m+1l : ' m+l- me

pm”) by solving

D h
(P2) nT(u ,p )n ==-p +gh - xD [—‘—‘“—“— " in R%.
om m+ +

1 m+l o a m+1 i >
vV 1+|Dh |
m+1

.

The existence and uniqueness of the ;o-lution of (P1) .and (152) follow by
Section 3 and 4. The existence and uniqueness of the solutic;n of problem
(N), (B) then ensue from

Lemma 5.2. If t’s € Co'a(Qmu['m) n Lz(Qm) for all m, then the sequence

{u ,p ,h} defined by Q , (P1) and (P2) converges in C.
o' "m’ o meN [¢] )

Proof. We first show that the sequence does not leave the class C: in Q
we get a solution (ul,pl) of the class % x ¢"*. For (u ,p) € A* x
m m
c¢"'® the solution hm of (P2) is in ¢>%. If we now solve (P1) in Q , we get
: . . : []

,o 1,a
(umi.pmq) e &% x %

To show the convergence of the sequence we f@rst have to. show a result
about the difference of two solutions of (P1) and (P2) (cf. Lemmas 5.3 and
5.4). The difference.of ~two solutions .(u,p) and (v,q) of ..the Navier-Stokes
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equations in the domains QA and QB is defined in the strip S. For that
reason we transform the equations from Q to S and get (U,P) and (U,Q) as

solutions of the transformed equations
1 2 3 4
v(A IV“U’ + vamuJ + Alvlul + AUUJ)
/
+AUYU +A° UU + A VP =F L in S
} o3 JRETED IS 1] ) 1

and

viB'v v + B vv
[T Jot o m

+Bwv +8'v)
3 11 1))

+Bvvev +8° vv +B vQ=¢ L inS ,
33T T g 133 )

vy =0
1

where the coefficients A and B depend on the transformations FA:S — QA

and FB:S — QB (cf. Subsection 2.2). With [3; Theorem 9.3) it follows that
v - V"cz'a(s) + P - O"c”“(s) =

CG(V)[uhA T hgleeg?y ¢ IF - Glgoesy + IV - Vigsy *+ 1P - 0"0(5)]’

where the constant C6 tends to zero like 1/v as v - w. Because F =
d -1 . - . -1 p : -

(DFA) f_ and G = (DFB) fs we can estimate the term |F .G"C_O'a(S) by

||hA- hB"C3’a(R2)’ too. The two last terms of the right-hand sSide ‘are small

for sufficienly large v, so we get

Lemma 5.3. Let QA und’ QB be two domains whose surfaces are defined by
the functions h, and h  and let (u,p) and (v,q) be the solutions of (N),
(B) inQ and Q_, then ' ’

A B

Ju - vl + Ip - algna = U - V] + |P - Qe

1A

c,w)|n, - h8||03,a .
where C7 tends to zero for large v.
For the difference of two solutions of the surface problem we get

‘Lemma 5.4. Let g and h be the solutions of the surface problems (4.1)

for the data A and B, then
||h - g||c3,a“R2) =< K[||PA- PB[lcl,cL + ||UA— UB||cg,a] + C(v)||hA— hB[]ca,a ,

where the constants K and'C are independent of g, h, A and B.
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Proof. We define'w :=h - g € ¢**(R®) and get.

(1*(6 h) )6 v 28 ha ha Mt (1*(3 h] )6 2

f[ g(ag+6h) —28 gag—!B (an*ag)(r(s) +cg)]6w

+ [6ng(62g + 82h) - zaizgalh - m-(azh + azg)(f(B) + cg)]azw_

- e (h))W = WN3(FA) - £(B)) ,

where B depends on Dh and Dg. Therefore w is the solution of a linear
strictly elliptic equaiion. With Schauder's interior estimates it follows
that - '

1A

[]w||ca,a'([R2) : K‘1||f(A) - f(B)||Cx,a( 2 s

R%)
KI{KZ["PA- Pallgtre + 1Y~ UBHC’Z"a] * Cs,(V)”hA_ ha"bz'a}'

where the constants Kl. Kz and Ca do not depend on the data A and B. The

1A

constant Cs(v) tends to zero like 1/v as v —> ». So we have shown the

assertion of Lemma S.4. ®»

Now we continue the proof of Lemma 5.2. We can_shovi that t,'he.map T :
(u ,p ,h) — (u ,P .,h ) is a contraction for small data. We fix the
m D m me+l m+1 o+l
data -'t’ , p and g, but reserve us the right to choose the viscosity v

suitably in the end. With the Lemmas 5.3 and 5.4 we get
14 o1 Um||cz,a + [] - P ﬂcx « Cg(v)[] W m_1||C3_,m

In-h _Jga = K[[]Um Uz [P Pm_l[]cl,a] s cwn_-h |
From the proofs of the lemmas we see that Cg(v) and C(v) are sméll.for
large v. Therefore, we can: choose v.sufficiently large such that Cq(v)Kw
C(v) is smaller .than one. Thus Lemma 5.2 is proven. m .

Lo . . b i

Now. we return to the proof of the decay estimates:-'for the velocity

v =u-g and the pressure p-p in"Q  (m =1,2,..) we have shown in
o m m m o a . m=-1 , . " . S
Subsection 3.3 that- X '
I ¢ . : . . - Co : T D
|D (pm- p.‘)(x. )|, blbﬁvm(x, ). s clex‘p( czlx[_). ~ for Ixl zr .,
o ERErS . ‘m . )
[D, (pm- pa)]A(x. ‘). [lﬁvﬂ])‘(x, ) s clexp( cz!xl) . for |¥] z.ro R

(lel =1, (Bl = 2 and O < A <1) if the force fs. the surface fur;c'tion h \
.o m-
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and their derivatives up to the third order (and the corresponding

Holder derivatives) decay as exp(- c, [xl) for lxl = rye Here c': depends on

the ¢*(R%)-norm of the surface function h et Since the sequence {(h } is
a

uniformly bounded, c: (m=1,2,..) can be estimatéd by a constant Cl. The
constant c, is independent of m.

Because |D (p- P, J(x,+)| and IDBV (x,-)] (a«l s 1, [B] =2) and the
corresponding Holder derivatives are bounded by exp(—czlx]) for |x| = ro
we got in Section 4 for the surface functions hm (m=1,2,...)

‘ |Dah ()], (0%h ]A(x) s c®expl-~c_|x|) " for Ix| =z r_,

= n 3 2 o - o’
(la] = 3, 0 < 7\. < 1) where c'; is a function of ﬂumﬂcz.a(n 1) and ]]pm-
pa|]ct,¢.:;(Q ) Because of the uniform boundedness of these ;orms we can
bound th:mlby a co_nstant_cs. )

Now we have shown that (vm,pm,hm) (m=1,2,..) are uniformly exponen-
tially bounded and therefore this is also true for the limit (v,p,h). So
Theorem 5.1 is proven =

Acknowledgement: The author thanks the referee for a hint concerning a
redundant assumption (cf. Note) and is grateful -to the redaction for their

helpful suggestions in bringing the paper in this form.

Note: The assumption h — 0 as Jx| — « for the solution of the surface equation
[12; Chapter 4] is redundant. It is not used in the proof of the existence of a
solution and the decay of h. That means, if we first show . the decay result for h, we
can use it aftervards for the uniqueness proof.
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