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On the Largest Minorants Associated with a Matrix-Valued
Caratheodory Function and Spectral Factorization

B. FRITZSCHE and B. KIRSTEIN

We will study various aspects of largest minorants associated with matrix-valued Carathéodory functions
in the context: of spectral factorization. The first main aim is to derive explicit interrelations between
the largest minorants associated with a Cayley-linked pair consisting of a matrix-valued Carathéodory
function and a matrix-valued Schur function. The second goal is to derive corresponding factorizations

for the normalized limit semi-radius functions associated with a matrix-valued Carathéodory functlon
having ﬁmte entropy. . ’
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0. Introduction’

The classes of left ‘and right maximal matrix-valuéed functions orlgmate in prediction
theory of multivariate stationary sequences. 'WIENER and MASANI [26] created the
notion of the generating function of a multivariate stationary 'sequence. ‘This matrix-
valued function turned out to be an essential object in prediction'theory. MASANI
(19], [20] studied the analytic properties of these generating functions. In particular,
he recognized that such functions are so-called left maximal functions belonging to the
matricial Hardy class, which can be conceived as an immediate matricial generalization of
scalar outer functions belonging to the ordinary Hardy class. The importance of maximal
functions is essentially caused by their role as largest minorants of a Lebesgue-integrable
nonnegative Hermitian matrix-valued function on the unit circle (see MASANI [19], {20],
SZ.-NAGY-and FOIAS [25], SUCIU a.nd VALUSESCU [24], CONSTANTINESCU 5] and
BAKONYTI [3]).-

1In view of famous theorems due to F.Riesz-Hergiotz and Kolmogorov, there is an
essentially unique correspondence between multivariate stationary sequences and matrix-
valued Carathéodory functions. In this paper, we will study certain properties of largest
minorants associated with matrix-valued Carathéodory functions. Parts of this paper con-
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tain a continuation of the authors’ former studies on the Weyl matrix balls associated with
nondegenerate matrix-valued Carathéodory functions (see [11, Parts IV and V], [13]). For
prediction theoretical interpretations of these Weyl matrix balls, we refer the reader to
the papers [11].

Factorizations of the normalized limit semi-radius functions generated by a sequence
of nested Weyl matrix balls were first studied by DUBOVOJ [7] in connection with non-
degenerate matrix-valued Schur functions. Using a theorem due to BRODSKII [4] he
represented such a nondegenerate Schur function f as the characteristic operator function
of an appropriately chosen unitary colligation A. With the aid of this A Dubovoj defined
certain matrix-valued functions ¢ and 3 and formulated the assertion that w@® and %%
are exactly the normalized left and right semi-radius functions associated with the given
f. However, his proof given in [7] was not correct. Influenced by DUBOVOJ’s paper
(7], KATSNELSON [16] studied the normalized limit semi-radius functions occurring in
the matricial version of KREIN’s (18] continuation problem for positive definite functions
given on a finite interval of the real axis. Katsnelson’s approach is based on two essential
components, namely on the classical work of HELSON and LOWDENSLAGER ([15] on
prediction theory of stationary sequences and on fundamental results in weighted approx-
imation (see ACHIESER [1], MERGELJAN (21]). In particular, Katsnelson recognized
that the normalized limit semi-radius functions generated by the sequence of (nested)
Weyl matrix balls occurring in the matrix version of Krein’s problem can be written as
®9* and ¥*¥ where ® and ¥ are outer matrix-valued functions in the upper half plane.

Inspired by DUBOVOJ’s [7] and KATSNELSON’s [16] investigations the authors [11,
Part IV] turned their attention to the normalized left and right limit semi-radius functions
associated with a matrix-valued Schur function having finite entropy. Using results due to
DELSARTE, GENIN and KAMP [6] on the asymptotic behaviour of matrix polynomials
orthogonal with respect to a given nonnegative Hermitian-valued Borel measure on the
unit circle, we recovered Dubovoj’s factorization theorem. Moreover, we recognized that
these factorizations are realized by outer matrix-valued functions in the unit disc. It
should be mentioned that, during his stay in Leipzig in 1990, Dubovoj informed the
authors that he found a correct proof of his original result. His proof is based on his ‘joint
paper [9] with RAMADAN K. MOHAMMED, where BRODSKII’s [4] gencralization of
the known SZ.-NAGY-FOIAS model for contractions [25] is extensively used.

One of the main aims of this paper is to derive corresponding factorizations for the nor-
malized limit semi-radius functions associated with a matrix-valued Carathéodory func-
tion having finite entropy. .Our approach relies heavily on the asymptotic behaviour of
matrix polynomials orthogonal with respect to the F.-Riesz-Herglotz measure associated
with the considered matrix-valued Carathéodory function.

" Another main goal of this paper is the study of further aspects of spectral factoriza-
tion. More precisely, we will derive explicit interrelations between the largest minorants
associated with a Cayley-linked pair consisting of a matrix-valued Carathéodory function
and a matrix-valued Schur function. Moreover, we will discuss connections between the
largest minorants associated with a nonsingular matrix-valued Carathéodory function

and its inverse 27!, Hereby, we will essentially use the maximum modulus. principle, for
the Smirnov class.
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1. Preliminaries

Let us begin with some notations and preliminaries. Throughout this paper, let m,
p and g be positive integers. We will use INg and C to denote the set of all nonnegative
integers and the set of all complex numbers, whereas ID, T and €, stand for the open
unit disc, the unit circle and the extended complex plane, respectively:

D:={zeC:|z| <1}, T:={z€C:|z] =1}, Co:=CU {oo0}.

The linear Lebesgue-Borel measure on T will be designated by A

If x is a nonempty set, then x?*? denotes the set of all p x ¢ matrices each entry of
which belongs to x. The symbol 0,4, stands for the null matrix that belongs to CP*7,
whereas I, designates the identity matrix which belongs to C?*?. In cases where the size
of the null matrix (respectively, the identity matrix) is clear, we will omit the indexes.
If A and B are p x p Hermitian matrices, the Lowner semi-ordering A = B means that
A — B is nonnegative Hermitian. If A — B is positive Hermitian, then we will also write
A > B to indicate this fact. If A € C*9, then the symbol || A || designates its norm as
an operator from €7 into C” when both of these spaces are equipped with the standard
inner product. If A belongs to C?*?, then the Hermitian matrices

1 1
Re A := 3 (A+A°) and ImA:= % (A—-A%)

are called the real part of A and the imaginary part of A, respectively. If A € CP*?
satisfies ReA 2 0, then it is readily checked that det (I + A) # 0.

If B stands for the complex linear space of all Borel measurable functions f : T — CP*9,
then

= {rem:3ceT: () # 0} =0}

is a linear subspace of . If f € B, then we will use (f) to indicate the element of
the quotient space B/3 which is generated by f. Obviously, (f) = (g) if and only if
f(¢) = g(¢) for A-almost all ¢ € T.

Let B,x, be the o-algebra of Borelian subsets of C**9. If (A, 9, u) is a measure space
and if ¢ € (0,00), then let (A, %, g;C) be the set of all 4 — B,,,-measurable functions
f:A — Csuch that |f]* is integrable with respect to the measure u, whereas £°(A, %, u; )
stands for the set of all essentially bounded 2 — 8,4, measurable functions f: A — C.
It is well-known that [£'(A, 9, u; €)]P*? coincides with the set of all % — B,4,-measurable
functions f : A — €”*? for which (trf*f)*/? is integrable with respect to u.

Lemma 1: Let (A, %, p1) a measure space, and let W € [£'(A, 2, u; C)]P>P.

(a) Ifg: A — CP*9 is an ‘Zl—ﬁBpxq-measurable function which satisfies gg° = W p - a.e.
on A, then g belongs to [£3(A, ‘21,;4; )P,

(b) lfh A — C¥*P 4s an U — By -measurable functzon which satzsﬁes h*h W;, .
a.e. on A, then h belongs to [£?(A, 9, u; C)|P*9. ‘

The proof of Lemma 1 is straightforward. We omit the details.
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2. Some Facts on Various Classes of Meromorphic
Matrix-valued Functions

First we will summarize some basic facts on particular classes of meromorphic func-
tions. A detailed treatment of this subject can be found, e.g., in NEVANLINNA (22] and
DUREN [10}.

Suppose that G is a simply connected domain of Co. Then let N M(G) be the Nevan-
linna class of all functions which are meromorphic in G and which can be represented as
quotient of two bounded holomorphic functions in G. Observe that M(G) turns out to
be a division algebra over C. If g € N M(ID), then a well-known theorem due to Fatou
implies that there exist a Borelian subset B¢ of the unit circle T with A(‘Bo) =0 and a
Borel measurable function g: T'— C such that

lim_g(rz) = g(2)
for all z € T\Bo. In the following, we will continue to use the symbol g to denote the
boundary function of a function g which belongs to NM(ID). The subalgebra of all
g € NM(G) which are holomorphic in G will be designated by A'(G). The class M (ID)
can be characterized as the set of all functions g which are holomorphic in ID and which
satisfy
sup /log+ | g(rz) | A(dz) < 40

76[0 1) 27{

where log? z := max (log z,0) for each z € [0,00).
If a function g : ID — C admits a representation

g(w) = a-exp [%/i_*_ log k(z)A(dz)} , webD,

T

with some o« € T and some Borel measurable function k : T — [0, oo) which satisfies -
1 .- .
—/Ilog kldA < + o0,
2m '

then ¢ Belongs to M(ID). Such functions are ca.lled outerfunctzons in N(ID). If g € N(ID)
is outer, then |g| = k a.e. on T. .

For each g € N(ID), the inequality
) , B . . ) :
2 + 2 i +
37 [ loe" a2 3e) £ tim, o [ log" lg(ra)l Ae) 1)
Ty : -

is satisfied. By the Smirnov class Ny (ID) we will mean the set of all ¢ € N'(ID) for which
equality holds true.in (1). The class N, (ID) proves to be a subalgebra of AV'(ID). If ¢
is outer in M(ID), then g necessarily belongs to M (ID). If ¢ € (0, 00), then the symbol

H*(ID) will be used to denote the Hardy class of all holomorphlc functions g : D — €
which fulfill

/ lg(rz) |* A(dz) < +o0,

rE[Ol) 27
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whereas H>(ID) designates the set of all holomorphic and bounded functions g : ID — €.
Observe that

H*(ID) € H(ID) C N4(ID) C N(D) C NM(D), (2)

where 0 <t < s = 00 :

In our following considerations, the next theorem (see, e.g., [10, Theorem 2.11]) will
play a key role. It can be conceived as a maximum modulus principle for the Smirnov
class. Hereby and in the following, let B be the o-algebra of all Borel subsets of T.

Theorem 1: Let p € (0,00], and let f € Ny(ID) be such that f belongs to
C?P(T,B,)/27;C). Then f belongs to H?(ID). )

For the convenience of the reader, now we are going to recall some facts on outer
functions which belong to the matricial Smirnov class. A function ® € [A,(ID)]™*™
is called outer (in [M;(ID)]™*™) if det ® is outer in A(ID). An outer function ® €
(Vi (ID)]™*™ is called normalized if $(0) is nonnegative Hermitian. The following useful
properties of matrix-valued outer functions can be taken, e.g., from AROV [2].

Remark 1: & € [(NV(ID))™*™ is outer if and only if ® admits the representation
o= é(b, with some outer functions ®, € [H*°(ID)]™*™ and , € H*(DD).

Remark 2: (a) If & is an outer function in [A4(ID)]™*™, then det ®(z) # 0 for all
z € ID, and 7! is an outer function in {A(ID)]™*™.

(b) If & € [N4(ID)]™*™ satisfies'det ®(z) # O for all z € ID and 'if ®~! belongs to
[M4(ID)]™*™, then both ® and ®~! are outer functions in [Ay(ID)]™*™. .

Remark 3: If both ® and ¥ are outer functions in [M,(ID)]™*™, then the product
&V is also an outer function in [V, (ID)]™*™. A

Remark 4: ¢ € [H*(ID)]™*™ is outer if and only if det® is outer in H¥™(ID).

Remarl‘<. 5: Let ¢ € (1,00), and let ® be an m x m matrix-valued function which
is holomorphic in K(0;9) := {z € € : |z| < p} and which satisfies det ®(z) # 0
for all z. € K(0;p). Then the restriction Rstr.p® of ¢ on!,o ID is an outer function in
[I{w(ID ]mxm

‘A function ® € [H*(D)]™*™ is called left mazimal if, for each T € [H}(ID)]™xm
with (ZZ°) = (@ ®"), the inequality £(0) £*(0) £ &(0) $°(0) holds true. Analogously, a
function ¥ € [H?*(ID)]™*™ is said to be right mazimal if, for each = € [H?(ID)]™*™ with
(E°Z) = ("¥), the 1nequal|ty *(0)=(0) £ ¥*(0) ¥(0) holds true. A left (respectively,
right) maximal function is called normalized if it has a nonnegative Hermitian value at
z = 0. Every left maximal function ® and every right maximal function ¥ in [H?(ID)]™*™
satisfy rank ®(z) = rank ®(0) and rank ¥(z) = rank ¥(0) for all z € ID (see, e.g., MASANI
(20)).

Lemma 2 (see, e.g., MASANI [20]): Let ® € [H}(ID)]™xm. Thg:n‘the Jollowing three

statements are equivalent:

(i) & is left mazimal and rank $(0) =
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(i1) @ is right mazimal and rank ®(0) = m.

(iti) ® is outer.

Let CT*™ be the set of all nonnegative Hermitian m Xx m matrices, and let
W : T — CT*™ be Lebesgue integrable. A function % € [H¥(D)]™*™ is called a left
(respectlvely, right) minorant of (W) if '

L2 2 W J-aeonT (respectively, 25 = W Ji-ae. on T). (3)

A function ¥ € [H?*(ID)]™*™ is said to be a largest left minorant (respectively, a largest
right minorant) of (W) if the following two conditions are satisfied:

(i) Inequality (3) is fulfilled.

(ii) If = is an arbitrary left (respectlvely, nght) minorant of (W) then _.(0) *(0) £
£(0) £°(0) (respectively, Z*(0) Z(0) = £*(0) £(0)).

A function £ € [H?*(ID)]™*™ is called a left (respectively, right) spectral factor of (W) if
L =W }-ae. on T (respectively, 2°X = W - a.e. on T). ‘
The following theorem, which shows the existence of largest minorants, was proved

by MASANTI {19] in the context of prediction theory. Later SZ. NAGY and FOIAS [25]

developed an operatorial version.

Theorem 2: Let W : T — (D’Z”x"‘ be Lebesgue integrable. Then:

(a) There ezists a unique largest normalized left minorant ®, of (W). This function
is left maztmal.

(b) If @ is a largest left minorant of (W), then ® = ®oU- with some unitary matriz U.
In particular, <I> ts left ma:zimal

(c) There ezists a unique largest normalized right minorant Wo of (W). This function
Yo ts right mazimal. :

(d) If ¥ is a largest right minorant of (W), then ¥ = V¥, with some unitar;} matriz
V. In particular, ¥ is right mazimal.

(e) If [; log(det W) d)\ > —oc0, then ®y and Uy are an outer left spectral factor of (W)
and an outer right spectral factor of (W), respectively.

- 3. Some Interrelations between Matrix-valued
Functions Belonging to the Classes of Schur
and Carathéodory

An important subclass of [H%(ID)]?*? is the so-called Schur class S,xq(ID). It con-
sists of all p x ¢ matrix-valued functions defined on ID which are both holomorphic and

contractive in ID. If we speak of a p'x ¢ Schur function f, then we mean that f belongs
to Spxq(ID).

Lemma 3: Let f € Smxm(D).
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(a) There are at most m numbers n € T such that det (n] + f) has a zero in'D.

() If n € T is such that det[nl + f(20)] = 0 for some z € ID then det(nl + f)
tdentically vanishes in ID.

(¢) Ifn € T is such that det [n] + f(z0)] # Ofor some zo € D, then det (71 + f) nowhere

vanishes in ID.

Proof: Apply Lemma 2.1.6 in (8] B

A function Q : D — C™*™ is called m x m Carathéodory function if Q is holomorphic
and has nonnegative Hermitian real part Re§)(z) for all z € ID. We will write C,»(ID) for
the set of all m x m Carathéodory functions. There are several interesting interrelations
between matricial Schur functions and matricial Caratheodory functlons It will be useful
to recall some of them.

Proposition 1: The following statements hold true:

(a) Let Q belong to Cn(ID). Then det (I + ) does not vanish in ID. The function
fi==Q)I+ Q)" belongs to Cr(ID) and fulfills

I+f=2(+Q)7". . | (4)
In particular, det (I + f) has no zeros in ID. Moreover,
- Q=(-HU+N =T+HNTU-n )
and

rank [Re)(z)] = rank [I — f*(z) f(2)] = rank [/ — £(0) o) (®
for all z € D.

(b) Let f € Smxm(ID), and let n € T be such that det [n] + f(z0)] # O for some 20 € DD.
Then Q := (I — f)(nl + f)~! belongs to C,,(ID). Furthermore,

f=n-)U+0) ' =9I+ UI-9).

A proof of Proposition 1 can be found in [8, Propositions 2.1.2, 2.1.3 and part (f) of
Lemma 1.3.12).

The following result, which is taken from AROV |2}, provndes an interesting connection
between Schur functions and outer functions.

Proposition 2: Let f € Spxm be such that det (I + f) does not identically vamsh
Then I + f is an outer function in [H*(ID)]™*™. .

Corollary 1: Let f € Smxm be such that det (1+ f) does not identically vamsh Then
(I + f) is an outer function in Spxm(ID). -

"Proof: Use Proposition 2, Remarks 3 and 5 and the inequa.lity

H%U+IHF—UUH+Hfm§.
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Corollary 2: C,,{(ID) C [N, (ID)]™x™.

Proof: Let @ € Cn(ID), and let f := (1 — Q) (I + )~'. According to part (a) of
Proposition 1 and Proposition 2, I + f is an outer function in [H®(ID)]™*™. Part (b)
of Remark 2 yields that (/ + f)~' € [Ni(ID)]™ ™. Since I — f obviously belongs to
[H(ID)]™*™, the fact that N, (ID) is a subalgebra of A'(ID) implies that (1 — f) (I + f)~!
belongs to [N4(DD ]"‘""‘. By virtue of part (a) of Proposition 1, we have the identity

= (I =) + )7 Thus, Q € W (D)™ B

Observe that, as a consequence of Corollary 2, every m x m Caratheodory function
has boundary values Q A-a.e. on T. :

Proposition 3: Let Q € Cn (D). Then: ,
(a) (I+ Q)" is an outer function in Spym(ID).

(%) f:=U=-Q)(I+Q)7" is an outer function in [H*(ID)|™*™ if and only if I — Q is
an outer function in [N, (ID)]™*™,

Proof: (a) Using properties of the Cayley transformation (see, e.g., Lemma 1.3.12 in
8]) we obtain that f is an m x m Schur function which fulfills (I + Q)~" = 1 (I + f). I
particular, det (1 + f) does not identically vanish. Since f belongs to Smxm(lD) Corollary
1 shows that (I + Q)~' is an outer function in Smxm (D). :

(b) From part (a) and Remark 2 we see that / + £ is an outer function in [V, (ID) ]""""
Remark 3 yields the asserted equivalence @

Proposition 4: Let Q € C(ID), and let f := (I - Q) (] +Q)7'. Then the following

statements are equivalent:
(1) Q is an outer function in (V4 (ID)]mxm,
(i) det Q does not identically vanish in ID.
(i) det (I — f) does not identically vanish in ID.

(tv) I — f is an outer function in [H®(ID)]™*™.

Proof: Part (b) of Proposmon 1 shows that f is an m x m Schur function for which
I + f does not vanish in ID. Thus, we see the equivalences as follows: o

(i) = (i)’ : Usc Remark 2.
"(11) = (iii)’: Apply part (a) of Proposition 1.
(i) = (iv)": The function —f is obviously an m x m Schur function.
Hence, condition (iii) and Proposition 2 imply (iv).

"(iv) = (i)’ : Proposition 2 and Remark 2 yicld that 7+ f and (14 f)~! are outer functions
in [N4(ID)]™*™. Therefore, we get from part (a) of Proposition 1 and Remark 3 that (i)
holds true W o

Proposition 5: Le.t Qe C";(H)) be slzch that det Q does not identically vanish. Then:
(a) The function det Q) does not vanish in D, and Q! belongs to Crn(ID).
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(6) Q7' is an outer function in [Ny (ID)]™*™,
(c) ReQ™! =Q~!' ' ReQ-(27})" = (27!)"-ReQ - 0! X-ae. on T.

Proof: By virtue of Propositvion 4 and Remark 2, det 2 nowhere vanishes in ID. Thus,
Q7! belongs to Cr,(ID) (see, e.g., [8, Lemma 2.1.10]). To verify part (b) it remains to apply
part (a), Corollary 2 and part (b) of Remark 2. The identities stated in (c) are obvious B

4. On Connections between the Largest Minorants
Associated with a Cayley-linked Pair Consisting
of a Carathéodory Function and a Schur Function

First we will turn our attention to crossconnections between matrix-valued Carathéo-
dory functions and nonnegative Hermitian-valued Borel measures on the unit circle.

Remark 6: Let Q be an m x m Carathéodory function. Then the matricial version
of the famous classical theorem of F. Riesz and Herglotz (see, e.g., [8, Theorem 2.2.2))
shows that there is a unique m x m nonnegative Hermitian-valued Borel measure on the
unit circle T such. that

Q(w) = / :Zp(dz) + 1 1Im Q(0) | (1)
T

for all w € ID. This measure F is called the F. Riesz-Herglotz measure associated with
the matriz-valued Carathéodory function Q. If

Q(z) = ) Tue*, zeD, (®)
k=0 .

is the Taylor series representation of (2, then the Fourier coefficients

C,EF) = / z7 ¥ F(dz), ke Ng, (9)
A
of F satisfy
(") _ ReT. (7 _ 1
o = Relo and Cy, = EFkH, k € No . (10)

Lemma 4: Let Q € C,(ID), and let F be the F. Riesz-Herglotz measure associated with
1. Then Re{ is the Radon- Nikodym dcrivative of the absolutely continvous part F, of F
in the Lebesgue decomposition of F with respect to the normalized linear Lebesgue-Borel

measure :\/27r on T. In particular,

ReQ € L! (T,m,i\/:zyr}; a:) . ‘ A (1_1)‘
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Proof: For z € T and r € (0,1), we get from (7) that

Re [(rz)] = /Re (“”) (df) = / o Pl (12)

Let W be the Radon-Nikodym derivative of F;, with respect to A/27. From [10 Theorem
1.2] and (12) we see thus that

= r_.l 0/ If F(d{) = E{T}O Re [Q(r2)] = Q(2)

holds true for A-almost all z € T. The proof is finished B
The next theorem will prove to be essential for our following considerations.
Theorem 3: Let ! € C,n (D), and f:= (I - Q)({ +Q)!

(a) Let & be a largest left minorant of (ReQ). Then the m x m Schur fuﬁciion @ =
2(1+9Q)7'® is a largest left minorant of (I — f f*). If Q(0) = I, then (0) = ¢(0).

(b) Let ¢ be an arbitrary largest left minorant of (I - ff). Then®:=(I+ f)y lpis
a largest left minorant of (Re Q).

(c) Let U be a largest right minorant of (Ref)). Then the m x m Schur function ¥ :=
29 (14+9)7! is a largest right minorant of (I—f 7). If Q0) = I, then ¥(0) = (0).

(d) Let 3 be an arbitrary largest right minorant of (I — f f*). Then ¥ := 4 (I + f)!
is a largest right minorant of (Re(d).

Proof: By virtue of Proposition 1, the m x m Schur function f satisfies (4) and (5).
Moreover, we see that det (/ + f) does not vanish in ID. Proposition 2 yields that I + f is
an outer function in [H*(ID)]™*™. Hence, Lemma 2 implies that I + f is left maximal.
Moreover, part (a) of Remark 2 shows

(+n"e Wi (D)™™ . (13)

From Lemma 4 we see that (11) holds true.

(a) In view of (4), we see p = (I + f)®. Thus, as a product of functions which belong to
[H=(ID)]™*™ and [H?(ID)]™*™, respectively the function ¢ also belongs to [H?(ID)]™*™.
Since 9 is a left minorant of Re{}, we have ®$* = Re! A—a.e. on T. Thus, .

I+ e [+
4(I+9Q)" - ReQ- [(1 +Q)_l]. A-ae.onT.

ey

A

Using properties of the Cayley transformation (see [8, part (i) of Lemma 1.3.12]), it follows

=I-ff A—ae.on T. Thus, ¢ is a left minorant of (/ — f f*). Now let 5 be
an a.rblt.rary left minorant of (1 — f £). Then n belongs to [H¥(ID)]™*™ C [Ny (DD))mxm
and satisfies

QQ' £ 1—£f £] J-aeonT.
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Theorem 1 yields then 7 € Spxm(ID). As a product of two functions which belong to
the Smirnov class, the function £ := (I + f)~!5 also belongs to [N (ID)]™*™. Using
properties of the Cayley transform (see part (g) of Theorem 1.3.12 in (8]), we get

(U+D™" a7+ D"]'

I+ U+£0)" [+ D7 = Reg fmaeonT.  (14)

L

A

From (11) and Lemma 1 we see then £ € [L*(T,®, /27 ; €)]™*™. Thus, Theorem 1
provides that ¥ belongs to the Hardy space [H2(ID)]™*™. Since @ is a largest left minorant
of (ReQ), we obtain from (14) that £(0) £*(0) £ &(0) ¢"(0) holds true. Then it follows

n(0)n*(0) = [I+ f(0)] £(0)E*(0) [ + f(O)"
(7 + f(0)] (0)2°(0) [/ + f(0)]" = »(0)"(0) .

Therefore, ¢ is a largest left minorant of (I — ff7). If QO0) = I, then p(0) =
2[1+Q(0] 1$(0) = &(0).

(b) By assumption ¢ belongs to [H?(ID)]™*™ and satisfies '
p° < I-fr A-ae. onT. (15)
Moreover, if n € [H*(ID)]™*™ is an arbitrary left minorant of (/ — L’f)., then
n(0)n°(0) = (0)¢*(0) . (16)

In view of (13),.the function @ is a product of functions which belong to the Smirnov
class. Hence, ® belongs to [NV, (ID)]™*™. Using Lemma 1.3.12 in [8] and (15), we get

i

00" = (I1+) ¢y [(1+D7]

T+)" (U= [U+D7'] =Re@ d-aeonT.  (17)

From (11) and Lemma 1, then we can conclude that & belongs to [£2(T, B, A/2r ; C)]™*™.
Theorem 1 thus implies ® € [H?(ID)]™*™. Therefore, ® is a left minorant of (Re ). Now
let £ € [H*(ID)]™*™ be an arbitrary left minorant of (Re Q). Then n := (I + f)L belongs
to [H?(ID)|™*™ and satisfies :

nn" = (1':+1)g_>:;'(1+£)' S(+f) ReQ-(I+f) A-aeonT. (18)

The last identity in (17) thus yields 7 £7- fr Ma.e. on T, i.e. 7 is a left minorant

of (I — f f7). Sincé y is a largest left minorant of (/ — f f*), then we obtain n(O)r) (0) £
©(0) ¢*(0). Prop/o5|t|on 1 shows det [/ + f(0)] # 0. Thus it follows

7+ £ 2(0)n7(0) (I + £(0)]7")°
[7+ £(0)) ™" 0(0) 9" (0) ({7 + £(0)]™")" = &(0)®°(0) .

£(0) £*(0)

Al

This completes the proof of part (b). Parts (c) and (d) can be analogously verified @

/
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In the operator case, the paper (5] of CONSTANTINECSU contains investigations
on largest minorants associated with a semispectral measure- F'. In particular, using ap-
propriate operator functions taken from the Naimark dilation of F, Theorem 4.1 and
Corollary 4.4 in {5] describe some distinguished interrelations between the largest mino-
rants associated with expressions comparable with {Re ) and (I — £ 7). Now we will
establish relations between the largest minorants associated with a Carathéodory function
 and its inverse 27!, respectively.

Theorem 4: Let (2 € C,(ID) be such that det Q does not.identically vanish.

(a) Let ® be a largest left minorant of (ReQ). Then &, := Q~'® is a largest left
. minorant of (Re Q™). .If Q(0) = I, then &,(0) = ®(0).

(b) Let ¥ be a largest right minorant of (ReQ). Then ¥, := UQ! is a largest right
minorant of (ReQ2™'). If Q(0) = I, then ¥,(0) = ¥(0).

Proof: By virtue of Proposition 4, Q is an outer function in [N;(ID)]™*™. Remark
2 shows then that Q7! is an outer function in [M;(ID)]™*™. Since & € [H*(ID)]"*™ C
[N+(ID)]™*™, the function ®,, as a product of functions which belong to the Smirnov
class, is a member of [A,(ID)]™*™. Since ® is a largest left minorant of (Re ), part (b)
of Proposition 5 yields

2:2,° = 07122 (Q7) £ 07 -ReQ-(27!) = ReQ~! A-ae.onT.  (19)

Part (a) of Proposition 5 shows that Q' belongs to C,(ID). Hence, Lemma 4 pro-
vides ReQ7! € E’('II‘,%,:\/27r;(D). Thus, Lemma 1 and inequality (19) imply that
®, € L*(T,B, \/27; C). From Theorem 1 we then obtain that &, belongs to [HZ(ID)]™*™,
Therefore, ®, is a left minorant of (ReQ~'). Now let £, be an arbitrary left minorant
of (ReQ~'). Because of Corollary 2, the m x m Carathéodory function Q belongs to
[NV+(ID)]™*™. Since E; € [H?(ID)]™*™, we obtain that £ := QF, belongs to [N, (ID)j™*™.
Consequently, it follows from part (b) of Proposition 5 that

ZE =0550 £ Q -ReQ' Q@ =ReQ J-aeonT. (20)

By virtue of Lemma 4, Re ) belongs to L£Y(T, s, :\/27r; C). Thus, Lemma 1 and inequality
(20) show that ¥ belongs to £%(T,®,A/2r;C). Then we see from Theorem 1 that ¥
belongs to [H*(ID)]™*™, i.e. ¥ is a left minorant of (ReQ). Since ® is a largest left

minorant of (ReQ), we get £(0)£*(0) £ (0)®*(0) and, therefore,
Z:(0) £1(9)

(2(0)]™" £(0) Z*(0) ([2(0)]™")"
[Q(0)]™" ®(0) @7(0) ([2(0)]™")" = @,(0) ®;(0) . (21)

Consequently, @, is a largest left minorant of (ReQ='). If Q(0) = I, then ®,(0) = &(0)
immediately follows. Thus, part (a) is proved. Part (b) can be verified analogously B

Theorem 3 leads us to the following interesting factorizations of maximal functions.
Proposition 6: The following statements hold true:

(a) Let & € [H*(ID)]™*™ be left mazimal. Then there are an outer function ¢ €
(N4 (ID)]™*™ and a left mazimal function ¢ € Smxm(ID) such that & = cyp.
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(b) Let ¥.€ [H*(D)|™*™ be right mazimal. Then there are an outer function n €
[N4(ID)]™*™ and a right mazimal function 1 € Smxm(ID) such that ¥ = yn.

Proof: By the formula
F(B):= 5 / 00°d

where B is any Borel subset of T, a nonnegative Hermitian Borel measure F on T is
obviously given. By virtue of the matricial version of Herglotz’ Theorem (see, e. g (6,
Theorem 2.2.2]) the function  : ID — C™*™ defined by :

Q(;);:/:“F(d) zeD,
T

belongs to Cn(ID). From Remark 6 and Lemma 4 we obtain (ReQ) = (®®"). Since
® is left maximal, ® is a largest left minorant of (Re Q). Proposition 1 yields that

= (I-2)(1+Q)~" belongs to Spxm(ID) and that det (I+ f) does not vanish in ID. Then
we see from Proposition 2 that (I+ f) is an outer function which belongs to [H*(ID)]™*™,
Thus, Remark 2 provides that ¢ := (I + f)~! is an outer function in [N (ID)]™*™. By
virtue of part (a) of Theorem 3, the m x m Schur function ¢ := 2(7 4+ Q)~'® is a largest
left minorant of (I — f f*). Proposition 1 yields that the identity (4) holds true. Hence,
® = J(I + Q)= cp. Part (b) can be checked similarly 8

Observe that, for the operatorial case, a phenomenon of similar type as described in

Proposition 6 was obtained by SUCIU and VALUSESCU [24, Theorem 8].

5. On the Weyl Matrix Balls Associated with a Non-
degenerate Matrix-valued Carathéodory Function

Let 7 be a nonnegative integer or 7 = co. A sequence (['x)j_, of m x m complex
matrices is called m x m Carathéodory sequence (respectively, nondegenerate m x m

Carathéodory sequence) if, for every integer n with 0 = n £ 7, the block Toeplitz matrix

Tn:= Re [Su(lo,Ty,..., )] (22)
where
I'p O 0 0
Iy To 0 ... 0
Su(To, Ty, Ty) = | T2 o ... 0 , (23)
I1n I‘kn—l Fn—2 ... Fo

is nonnegative Hermitian (respectively, positive Hermitan). If ([')2, is a given sequence
of m x m complex matrices, then the power series

=3 N, zeD, (24)
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defines an m x m Carathéodory function Q if and only if ([')32 is an m x m Carathéodory
sequence (see, e.g., [8, Theorems 2.2.1 and 2.2.2]). An m x m Carathéodory function § is
sald to be nondegenerate if the sequence (I'x)2, of its Taylor coefficients (in the Taylor
series representation of { around the origin) is a nondegenerate m x m Carathéodory
sequence.

Now we assume that n is a nonnegative integer and that (I';)7_, is a sequence of com-
plex m x m matrices. We will use the notation C,, [Ty, Iy, ...,I'x] to denote the set of all
Q € C(D) for which (I'k)7_, is exactly the sequence of the first n + 1 Taylor coefficients

in the Taylor series representation of  around the origin. The set Cn[To, Iy, ... ,[a is
nonempty if and only if (Ck)i=o is an m x m Carathéodory sequence (see, e.g., [11, Pa.rt I
Section 4]). If (T'k)i_, is a nondegenerate Carathéodory sequence, then Cp[[o, 'y, ... ,,]

can be described by certain linear fractional transformations (see, e.g., 11, Part V, The-
orem 28}). Furthermore, in this case, one can show that, for each z € ID, the set

{Q(2) : Qe€Cn(lo,Ty,...,Th)} (25)

can be represented as a so-called matrix ball. If M € Cpx" AeCPand Be C?9, then
the set

R(M;A,B):= {XeC™ : X =M+ AKB, K € K,x,} ,

where IK,», denotes the set of all p x ¢ contractive matrices, is called the (closed) matriz
ball with center M, left semi-radius A and right semz-radzus B. (In [23] SMULJAN gave
a summary of properties of matrix and operator balls.) In order to state the explicit
representation of the set (25) as matrix ball, we need some preparations.

Suppose that (I'x);_, is a nondegenerate m x m Carathéodory sequence. Then the
matrices [, 6, := Sa(lo, Ty, ...,['x) and T, := Re &, are nonsingular. Set

Zn = (F‘,,,F,,_l,..,,[‘l) y Yn = (FI,F;,...,F:‘). )

L ._ [Rehy , n=0
" Relo — 3z, Tz , n>0,
r _‘_' Rel"o o y n=20
noT ReTy — %y; e, >0,

and
= (6;") Tns;'.

Lemma 28 in [11, Part V] shows that I, 2 0 and r, = 0. Furthermore, we define the
matrix polynomials 7, <a, 77, and ¢’ by

Mn(2) := eam(2) Ty €1,(0) ,  6a(2) 1= €5 (0) Ty " €aml(2) (26)
Tn(2) = enm(2) 3" €1(0) ,  <h(2) 1= €0n(0) T, Enml(z) (27)

z € C, where e, : €© — C™*(**I™ 5nd ¢, C — CRHImxm 40 given by
€nm(2) := (Im,zlm,zzl,,,,...,z"l,,,) (28)

and
enm(2) = (B, 2" M my o2y Im)”, 2€C. (29)
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If 2o, z,, ..., z, are complex p x ¢ matrices, and if the p x ¢ matrix polynomial X is given

by
X(z2):= Za:kz", z€C,
k=0

then the reciprocal matrix polynomial X of X with respect to the unit circle T and the
formal degree n is the ¢ x p matrix polynomial which is defined by

X(z) := Zz;_kgk, 2€C.

In this sense, let 7, (respectively, 7,4,,<)) be the_reciprocé.l matrix polynomial of 7,
(respectively, 7;,,¢n,5,) with respect to T and the formal degree n. One can check that
the matrices

P(z) = () aale) = 1o (in(2))" 7aia(2) (30)

and - )
Q(2) = na(2) ran(2) — 12I* Sa(2) b (Ga(2))° SN
are positive Hermitian for all 2 € ID (see [11, Part V, Theorem 29]). The functions
M, : D - C™™, g#: D — C**™ and R, : D —» C™*™ given by

Ma(2) [1(2) ([3")" mami(2) + 12 &(2) T5" ln (Ga(2))] [Q)

£k(2) [P(2)]" and ®a(2):= [Q(2)]"

are called the Weyi-Carathéodory center function, the canonical normalized left Weyl-
Carathéodory semi-radius function and the canonical right Weyl-Carathéodory semi-
radius function, respectively, associated with the nondegenerate m x m Carathéodory se-
quence (['x)R_,- One can show that the inequalities

ReM,(z) 2 0, £¥(z) > 0 and R,(z) > 0 (32)

hold true for every choice of z in ID (see, e.g., [13, Lemma 6]).
- Now we are able to state the announced representation of the set.(25) as matrix ba.ll
A proof of this result can be found in [11, Part V, Theorem 29].

Theorem 5: Let n € INg, and let (I'x)p_, be a nondegenerate m x m Carathéodory
sequence. Further, let M,, £# and R, be the Weyl-Carathéodory center function, the
canonical normalized left and the canonical right Weyl-Carathéodory semi-radius func-
tions, respectively, associated with (Fk);‘_o For each z € D, the set (25) comctdes with

the matriz ball &(9M,(2);|2|"*! / \/—(z_)

Now we turn our attention to the limit behaviour of the Weyl matrix balls a.ssoc1a.ted
with a nondegenerate m x m Carathéodory function.

Theorem 6 (see [11, Theorem 4]): Let 2 bé a nondegenerate m x m Carathéodory
function, and let (8) be the Taylor series representation of . For n € INy, let mm,,
£# and R, be the Weyl-Carathéodory center function, the canonical normalized left and
the canonical right Weyl-Carathéodory semi-radius functions, respectively, associated with

(Ti)pzo- Then:
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(a) For each z € D, limp_.oo M, (2) = Q(2).

(b) For each z € ID, the sequences (£¥(2))%, and (Ra(2)), are monotonously nonin-

n=0
creasing and convergent. The corresponding limits £#(z) and R(2) are nonnegative
Hermitian for all z € ID.

Observe that parts of Theorems 5 and 6 are already contained in KOVALISHINA'’s
paper [17).

The functions £# : ID — C™™ and % : ID — C™*™ given in part (b) of Theorem 6
are called the canonical normalized left and the canonical right Weyl-Carathéodory limit

semi-radius functions, respectively, associated with the nondegenerate m xm Carathéodory
function Q. '

6. Factoqizatio'l‘its‘iof: the Normalized Limit Semi-radii
Functions Associated with a Matrix-valued Cara-
théodory Function with Finite Entropy

Let us begin this section with some technical preparations.

Lemma 5: Let Q € C,,(ID). If

% / log [det (ReQ)] dX > —oc0, (33)
T

then Q is necessarily nondegenerate.
Proof: Combine Corol‘laryb3 in 11, Part II] and Lemma 4 B

Functions 2 € Cn(ID) which satisfy inequality (33) are called m x m Carathéodory
functions of finite entropy. In the following we will only consider Carathéodory functions
of that type.

- Note that the proof of the following proposition is essentially based on results on the
asymptotic behaviour of orthogonal matrix polynomials.

Proposition 7: Let Q be an m x m Carathéodory function which satisfies condition
(33), and let (8) be the Taylor series representation of . For n € Ny, let the matriz
polynomials n, and ¢, be defined by (22), (28), (29) and (26). Then:

(a) For all P € D,

lim 7.(z) = 0 aend lim ¢(2) = 0. ' (34)

(b) Foreachz € D, there ezf{st the lirﬁits 1(2):= limg oo 7a(2) and (2) = limp—o 6a(2).
(¢) The matrices 7(0) and 5(0) are positive Hermitian.

(d) For'all z € D, det p(z) = det ¢(z) # 0.
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(e) The matriz-valued functions ®g : ID —» C™*™ and ¥y : ID —» C™*™ given by

®o(z) = [s(2)] Ve(0) and Wo(z) := v/7(0) [n(2)]” (35)
are outer functions in [H?(ID)j™*™.

(f) The function ® is the normalized outer left spectral factor of (Re ), wherea,s.‘llo is
the normalized outer right spectral factor of (ReQ).

J

Proof: From Lemma 5 we know that © is nondegenerate. Let F be the F.-Riesz-
Herglotz measure associated with 2. In view of (22) and Remark 6, we have

T. = Re (s,.(ch’,ch’,...,cW)) .

Furthermore, we know from Lemma 4 that Re {2 is the Radon-Nikodym derivative of the
absolutely continuous part of F in the Lebesgue decomposition of F with respect to A.
Thus, parts (b) - (f) follow immediately from results due to DELSARTE, GENIN and
KAMP [6, Theorems 17, 18 and 20]. It remains to prove part (a). By v1rt.ue of Lemma
3.6.3 in [8] and formula (88) in [6], we have

[Wo(2)] ™" ([Wo(2) )" = (1= 12%) D_ éa(2) [sa(0)] ™" [al2)]"

for all z € ID. This implies limp—co(én(2)v/5a(0)  )(én(2)/&n(0) )* = 0, and hence
limp oo (",,.(z)\/c,.(O)_1 = 0. Thus, we can conclude from parts (b) and (d) that the
second relation in (34) holds true. The first one follows analogously i

Note if f is a matrix-valued Schur function, then several results on polynomial approx-
imation of appropriate outer spectral factors of (/ — f f*) and (I — f* f) are scattered in -
the literature {(see DUBOVOJ [7], GEORGIOU and KHARGONEKAR [14] and, for the *
operator case, BAKONYI [3).-

Now we are able to derive the announced factorizations of the canonical normalized
Weyl-Carathéodory limit semi-radius functions associated with a matrix-valued Carathéo-
dory function having finite entropy.

Theorem 7: Let 2 be an m x m Carathéodory function which satisfies condition (33).
Let £# and R be the canonical normalized left and the canonical right Weyl-Carathéodory
limit semi-radius functions, respectively, associated with Q.

(a) Let ® be an arbitrary largest left minorant of (Re ). Then ®®* = £#.
(b) Let ¥ be an arbitrary largest right minorant of (ReQl). Then ¥*¥ = R.
Proof: Lemma 5 shows that Q is nondegenerate. By virtue of part (f) of Proposition

7, ¥ (respectively, Wo) given in (35) is a left (respectively, right) spectral factor of (Ref}.
For all positive integers n, we see from Lemma 3.6.33 in (8] that 7,(0) = r;' > 0 and
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¢a(0) = I7' > 0. Using Proposition 7 we get then limpy_o 1, = B(0)]7Y, limp—eo !
[$(0)]7!, and hence

n —

Jim (63(2) basa(z) = el ()] o in(2)) = <2V RO <(2) > 0.
In view of (35) this implies limn_o £#(2) = ®o(2)®5(z) for every choice of z € ID.
Analogously, we obtain lim,_.c Ra(2) = W5(2)Wo(z) for each z € ID. Theorem 2 shows
that there are m x m unitary matrices U and V such that & = &,/ and ¥ = VW¥,. Thus,
the assertion immediately follows B

Now we will sketch the way how Theorem 7 can be used to refound the factorizations
of the limit semi-radii of the Weyl matrix balls associated with a matrix-valued Schur
function, which the authors obtained in [12, Part IV].

Assume that fis a p x ¢ Schur function which satisfies

1 N
Z/logdet(l—ii‘_)d/\>—-oo.
T

Then there are outer functions ¢ € [H?(ID)]?*? and ¢ € [H?(ID)}**9 such that
I-ff" =9 and I—ff=14"¢p A-aeonT
(see Theorem 2). Let

fz) =) Av*, zeD,
k=0

be the Taylor series representation of f. For every nonnegative integer n, then the symbol
Spxg[Ao, Ay, ..., Aq] stands for the set of all g € Spxq(ID) with first n+ 1 Taylor coefficients
Ao, Ay, ..., A, in the Taylor series representation of g around the origin. Then for each
z € D, the set {g(2) : g € S,xq[Ao, A1, ..., An]} turns out to be a matrix ball

5 (Mala)s o V222, VARG

where £#(z) and R,(z) are positive Hermitian matrices with det L¥#(z) = det R,(2)
(see, e.g., (8, Theorem 5.5.1, Lemma 5.6.3]). For each z € D, the sequences (L¥#(2))2,
and (Rn(2)), are monotonously nonincreasing and hence convergent to some nonneg-
ative Hermitian matrices £#(z) and R(z), respectively. Part (d) of Theorem 18 in [12,
Part 1V] yields that

L*(z) = ¢(2)¢"(2) and R(z) = $7(2)9(2)

for all z € ID. This result proves to be a speciaj case of Theorem 7. One has only to
consider the particular (p + q) x (p + ¢) Carathéodory function 2 given by

Q(z) := (10" _221{(2)> , z€D.

Using the notations given above one obtains £# = diag (£#,1,) and ® = diag (I, R).
We omit the lengthy, but straightforward computations.
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