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On the Largest Minorànts Associated with a' Matrix -Valued


Caratheodory Function and Spectral Factorization' 

B. FRITZSCHE and B. KIRSTEIN 

We will study various aspects of largest minorants associated with matrix-valued Carathéodory functions 
in the context of spectral factorization. The first main aim is to derive explicit interrelations between 
the largest minorants associated with a Cayley-linked pair consisting of a matrtxvalued Carathéodory 
function and a matrix-valued Schur function. The second goal is to derive corresponding factorizaions 
for the normalized limit semi-radius functions associated with a matrix-valued Carathéodory function 
having finite entropy.  
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0. Introduction 
The classes of left 'and right maximal matrix-valued functions originate in prediction 

theory of multivariate stationary sequences. 'WIENER and MASANI [261 created the 
notion of the generating function of a multivariaté stationary 'sequence. This matrix-
valued function turned out to be an essential *object in prediction ''theory. MASANI 
[19J, [20] studied the analytic properties of these generating functions.. In particular, 
he recognized that such functions are so-called left maximal functions belonging to the 
matricial -Hardy class, which can be conceived as an immédiaterriatricial generalization of 
scalar outer functions belonging-to the ordinary Hardy class. The importance of maximal 
functions is essentially caused by' their role as largest minOrants of- a Lebesgue-integrable 
nonnegative Hermitian matrix-valued functiob on the unit circle (see MASANI [19], [20], 
SZ.-NAGYand FOIAS [25], SUCIU and VALUSESCU [24], CONSTANTINESCU [5] and 
BAKONYI [31)..	- -	 -	-	 -	 - 

In view of famous theorems due to F. Ries* z-Herglotz and 'Kolmogotov, - there is-an 
essentially unique correspondence between multivariate stationary sequences and matrix-
valued Carathéodory functions. In this paper, we will study certain properties of largest 
minorants associated with matrix-valued Carathéodory functions. Parts of this paper con-
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tain a continuation of the authors' former studies on the Weyl matrix balls associated with 
nondegenerate matrix-valued Carathéodory functions (see [11, Parts IV and V], [13]). For 
prediction theoretical interpretations of these Weyl matrix balls, we refer the reader to 
the papers [11]. 

Factorizations of the normalized limit semi-radius functions generated by a sequence 
of nested Weyl matrix balls were first studied by DUBOVOJ [7] in connection with non-
degenerate matrix-valued Schur functions. Using a theorem due to BRODSKII [4] he 
represented such a nondegenerate Schur function f as the characteristic operator function 
of an appropriately chosen unitary colligation A. With the aid of this A Dubovoj defined 
certain matrix-valued functions and 0 and formulated the assertion that	and 
are exactly the normalized left and right semi-radius functions associated with the given 
f . However, his proof given in [7] was not correct. Influenced by DUBOVOJ's paper 
[7], KATSNELSON [16) studied the normalized limit semi-radius functions occurring in 
the matricial version of KREIN's [18] continuation problem for positive definite functions 
given on a finite interval of the real axis. Katsnelson's approach is based on two essential 
components, namely on the classical work of HELSON and LOWDENSLAGER [15] on 
prediction theory of stationary sequences and on fundamental results in weighted approx-
imation (see ACHIESER [1], MERGELJAN [21]). In particular, Katsnelson recognized 
that the normalized limit semi-radius functions generated by the sequence of (nested) 
Weyl matrix balls occurring in the matrix version of Krein's problem can be written as 
4)4 and tIi W where 4) and Ji are outer matrix-valued functions in the upper half plane. 

Inspired by DUBOVOJ's [7) and KATSNELSON's [16] investigations the authors [11, 
Part IV] turned their attention to the normalized left and right limit semi-radius functions 
associated with a matrix-valued Schur funètion having finite entropy. Using results due to 
DELSARTE, GENIN and KAMP [6] on the asymptotic behaviour of matrix polynomials 
orthogonal with respect to a given nonnegative Hermitian-valued Borel measure on the 
unit circle, we recovered Dubovoj's factorization theorem. Moreover, we recognized that 
these factorizations are realized by outer matrix-valued functions in the unit disc. It 
should be mentioned that, during his stay in Leipzig in 1990, Dubovoj informed the 
authors that he found a correct proof of his original result. His proof is based on his joint 
paper [9] with RAMADAN K. MOHAMMED, where BRODSKII's [4] generalization of 
the known SZ.-NAGY-FOIAS model for contractions [25] is extensively used. 

One of the main aims of this paper is to derive corresponding factorizations for the nor-
malized limit semi-radius functions associated with a matrix-valued Carathéodory func-
tion having finite entropy. Our approach relies heavily on the asymptotic behaviour of 
matrix polynomials orthogonal with respect to the F.- Riesz- Herglotz measure associated 
with the considered matrix-valued Carathéodory function. 

Another main goal of this paper is the study of further aspects of spectral factoriza-
tion. More precisely, we will derive explicit interrelations between the largest minorants 
associated with a Cayley-linked pair consisting of a matrix-valued Carathéodory function 
and a matrix-valued Schur function. Moreover, we will discuss connections between the 
largest minorants associated with a nonsingular matrix-valued Carathéodory function 
and its inverse fr'. Hereby, we will essentially use the maximum modulus. principle . for 
the Smirnov class.
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1. Preliminaries 

Let us begin with some notations and preliminaries. Throughout this paper, let in, 
p and q be positive integers. We will use IN 0 and C to denote the set of all nonnegative 
integers and the set of all complex numbers, whereas ID, 1' and Co stand for the open 
unit disc, the unit circle and the extended complex plane, respectively: 

ID := {z E C: Izi < 1}, T := {z E C: Izi = 1}, Co := Cu {oo} 

The linear Lebesgue-Borel measure on T will be designated by A. 
If x is a nonempty set, then XpXq denotes the set of all p x q matrices each entry of 

which belongs to X . The symbol °)(Q stands for the null matrix that belongs to 
whereas I,, designates the identity matrix which belongs to	In cases where the size 

of the null matrix (respectively, the identity matrix) is clear, we will omit the indexes. 
If A and B are p x p Hermitian matrices, the Löwner semi-ordering A B means that 
A - B is nonnegative Hermitian. If A - B is positive Hermitian, then we will also write 
A > B to indicate this fact. If A E C", then the symbol 11 A 11 designates its norm as 
an operator from C" into C" when both of these spaces are equipped with the standard 
inner product. If A belongs to CPXP, then the Hermitian matrices 

Re A .:= (A+A) and ImA:= - (A — A) 

are called the real part of A and the imaginary part of A, respectively. If A E C"" 
satisfies ReA 0, then it is readily checked that det (I + A) 0 0. 

If B stands for the complex linear space of all Borel measurable functions I : T — 
then

3= If  : ({( E T :f(()	= o} 

is a linear subspace of B. If f e B, then we will use (1) to indicate the element of 
the quotient space /3 which is generated by f. Obviously, (1) = (g) if and only if 
1(C) = g(() for .\-almost all ( E T. 

Let Zpxq be the a-algebra of Borelian subsets of C" < ". If (A, 21,y) is a measure space 
and if t E (0,00), then let .ct(A,21,p;C) be the set of all 21— B 11 -measurable functions 
1: A — C such that IfV is integrable with respect to the measure z, whereas C°°(A, 21, z; C) 
stands for the set of all essentially bounded 21 — 93 11 measurable functions f : A -+ C. 
It is well-known that [zt(A, 21, p ; C)]"xq coincides with the set of all 21 - -measurable 
functions f : A - Cl x for which (trff)tt2 is integrable with respect to u. 

Lemma 1: Let (A, 21,y) a measure space, and let W E [(A,2(jt;€)IPxP. 

(a) If g : A - C"'" is an 21 ¶Spxgmeasurable function which satisfies gg*	W IL - a. e. 
on A, then g belongs to [i2(A,21,p;(C)]Px. 

(b) If h : A -* CqXP is an 21 - 'B-measurable function which satisfies hh	W p - 
a. e. on A, then h belongs to [c2(A,,p;C)]Px. 

The proof of Lemma 1 is straightforward. We omit the details.
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2. Some Facts on Various Classes of Meromorphic 
Matrix-valued Functions 

First we will summarize some basic facts on particular classes of meromorphic func-
tions. A detailed treatment of this subject can be found, e.g., in NEVANLINNA [22] and 
DUREN [10]. 

Suppose that G is a simply connected domain of Co. Then let JtfM(G) be the Nevan-
linna class of all functions which are merornorphic in C and which can be represented as 
quotient of two bounded holomorphic functions in G. Observe that .AfM(C) turns out to 
be a division algebra over C. If g E .,VM(ID), then a well-known theorem due to Fatou 
implies that there exist a Borelian subset Zo of the unit circle '1' with .X( 0) 0 and a 
Borel measurable function g: 'F — C such that 

' I'mo g(rz) = g(z) 

for all z E T\ 0. In the following, we will continue to use the symbol g to denote the 
boundary function of a function g which belongs to NM(ID). The subalgebra of all 
g E AIM(G) which are holomorphic in C will be designated by .iV(C). The class A/(ID) 
can be characterized as the set of all functions g which are hdlomorphic in ID and which 
satisfy

sup	I log Ig(rz)I (dz) < + 00 
rC(0,1) 27r j 

T 

where log+ x	max (log x,0) for each x E [0,00). 
If a function g. :.  ID — C admits a representation 

1	Iz+ -1
g(w) =	

1 
. exp 

	—	log k(z) .\(dz) , to E ID, 
L	T	 J 

with some a e 1E'and some Borel measurable function Ic : 'F — [0,00) which satisfies 

2r	
I log k I d < + 00, 

then g belongs to.Af(ID). Such functions are called outer functions in .Af(ID). If  E N(ID) 
is outer, then I g i = k a.e. on 'F 

For each g E A1(ID), the inequality 

-- (log g(z)I(dz)	urn ± flog' g(rz)(dz)	 (1) 27r j	 r—.I-- 0 27r 
T	 T 

is satisfied. By the Smirnov class X+ (ID) we will mean the set of all g e A((ID) for which 
equality holds truein (1). The class .AI+(ID) proves to be a subalgebra of .iV(ID). If g 
is outer in .A1(ID), then g necessarily belongs to .,V+(ID). If t e (0,00), then the symbol 
H t (ID) will be used to denote the Hardy class of all holomorphic functions g : ID —* C 
which fulfill

sup if g(rz)I t A(dz) < + 00, 
rE[0,1) 27r

T
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whereas H(ID) designates the set of all holomorphic and bounded functions g: ID - C. 
Observe that

H3 (ID) C H t (ID) c N+ (ID) c iV(ID) c AIM(ID),	 (2) 

where 0 < t < s 
In our following considerations, the next theorem (see, e.g., [10, Theorem 2.11]) will 

play a key role. It can be conceived as a maximum modulus principle for the Smirnov 
class. Hereby and in the following, let B be the u-algebra of all Borel subsets of T. 

Theorem 1: Let p E (0,00], and let f E jV4 (lD) be such that I belongs to 
£"('f,'s,.A/2ir;C). Then f belongs IoHP(ID). 

For the convenience of the reader, now we are going to recall some facts on outer 
functions which belong to the matricial Smirnov class. A function 4) E [A1+(JD)]mxm 
is called outer (in [H+(ID)]mxm) if det 4) is outer in jV(ID). An outer function 4) E 
[Af+ (ll))] m x m is called normalized if 4)(0) is nonnegative Hermitian. The following useful 
properties of matrix-valued outer functions can be taken, e.g., from AROV [2]. 

Remark 1: 4) E [H+(ID)]m)<m is outer if and only if 4) admits the representation 
4) =	with some outer functions 0 1 E [H 0O (lD)] mX and	,E H(ID). 

Remark 2: (a) If 4) is an outer function in [g()]mxm then det 4)(z) 54 0 for all 
z E ID, and 4)1 is an outer function in [JV+(lD)]mxm. 

(b) If 4) E [N(ID)]m satisfies det 4)(z) 0 0 for all z E ID and if (D - ' 	to

[H+(ID)]mxm, then both 4) and 4) are outer functions in [H+(ID)]mxm. 

Remark 3: If both 4) and '1' are outer functions in [.Af+(ID)Im<m, then the product 
4)W is also an outer function in [jV+(ID)]mxm. 

Remark 4: 4) e [H2 (ID)l mXm is outer if and only if det 4) is outer in H21m(lD). 

Remark 5: Let o E (1,), and let 4) be an rn x m matrix-valued function which 
is holomorphic in K(0; ) := {z E C : Izi < } and which satisfies det 4)(z) 0 
for all z. E K(0; e). Then the restriction Rstr.4) of 4) onto ID is an outer function in 
[JJoo(ffl)]mXm 

A function 4) E [H 2 (ID)] m < m is called left maximal if, for each E E [H2(ID)]mxm 
with (EE) = (4)4)), the inequality E(0) E(0) 4)(0) 4)(0) holds true. Analogously, a 
function 'I' E [H 2 (ID)] mXm is said to be right maximal if, for each E e [H2(ID)]mXm with 

the inequality (0) (0) 'P(0) T(0) holds true. A left (respectively, 
right) maximal function is called normalized if it has a nonnegative Hermitian value at 
z = 0. Every left maximal function 4) and every right maximal function 'I' in [H2(ID)]mxm 
satisfy rank 4)(z) = rank 4)(0) and rank 11(z) = rank '11 (0) for all z E ID (see, e.g., MASANI 
[20]).	 S 

Lemma 2 (see, e.g., MASANI [20]): Let 4) E [R Z (ID)] mXm . Thenthe following three 
statements are equivalent: 

(i) 4) is left maximal and rank 4)(0) = rn.
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(ii) 4) is right maximal and rank 4)(0) 

(iii) 4) is outer. 

Let cxm be the set of all nonnegative Hermitian in x m matrices, and let 
W : 'F -i C <m be Lebesgue integrable. A function E E [H2(ll))]mXm is called a left 
(respectively, right) minorant of (W) if 

E*	W .X—a.e. on 'F	(respectively, EE	W .\—a.e. on 'F) .	(3) 

A function E E [H2 (lD)}mXm is said to be a largest left minorant (respectively, a largest 
right minorant) of (W) if the following two conditions are satisfied: 

(i) Inequality (3) is fulfilled. 

(ii) If EE is an arbitrary left (respectively, right) minorant of (W), then --'(0) =.(0) 
E(0) E* (0) (respectively,	(0) (0)	E(0) E(0)). 

A function E E [H2 (ID)] mXm is called a left (respectively, right) spectral factor of (W) if 
EE = W .\ - a.e. on 'F (respectively, I* E = W .\ - a.e. on 'F). 

The following theorem, which shows the existence of largest minorants, was proved 
by MASANI [19] in the context of prediction theory. Later SZ.-NAGY and FOIAS[25] 
developed an operatorial version. 

Theorem 2: Let W : 'I' - C m be Lebesgue integrable. Then: 

(a) There exists a unique largest normalized left minorant 4)0 of (W). This function 4) 
is left maximal. 

(b) If (D is a largest left minorant of (W), then 4) = 4) 0 U . with some unitary matrix U. 
•	In particular, 4) is left maximal. 

(c) There exists a unique largest normalized right minorant 'ho of (W). This function 
• To is right maximal; 

(d) If 'I' is a largest right minorant of (W), then 'It	VW 0 with some unitary matrix 
V. In particular, 'I' is right maximal. 

(e) If fT log (det W)dA> — 00, then (Do and 'I's are an outer left spectral factor of (W) 
and an outer right spectral factor of (W), respectively. 

3 . Some Interrelations between Matrix-valued 
Functions Belonging to the Classes of Schur 
and Carathéodory 

An important subclass of [H00(lD)]PxQ is the so-called Schur class S,,,<,,(lD). It con-
sists of all p x q matrix-valued functions defined on ID which are both holomorphic and 
contractive in ID. If we speak of a p x q Schur function f, then we mean that f belongs 
to Spxq(ID). 

Lemma 3: Let f E Smxm(ID).
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(a) There are at most rn numbers 77 E T such that det ( ii i + f) has a zero in'ID. 

(b) If 77 E T is such that det [rI + f(zo)] = 0 for some z0 E ID, then det (ii i + f) 
identically vanishes in ID. 

(c) If 77 E T is such that det [ii l +f( zo)] 54 O for some zo E ID, then det (iI+f) nowhere 
vanishes in ID. 

Proof: Apply Lemma 2.1.6 in [8] U 

A function ci: ID —* Crnx is called m x m Carathéodory function if ci is holomorphic 
and has nonnegative Hermitian real part Reci(z) for all z E ID. We will write Cm(ID) for 
the set of all rn x m Carathéodory functions. There are several interesting interrelations 
between matricial Schur functions and matricial Carathéodory functions. It will be useful 
to recall some of them. 

Proposition 1: The following statements hold true: 

(a) Let Il belong to C, (ID). Then det(I + ci) does not vanish in D. The function 
f := (1 — ci)(I + ci)' belongs to Cm(ID) and fulfills 

I + f = 2 (I+ci' .	 (4) 

In particular, det (I + f) has no zeros in D. Moreover, 

ci = (I — f) (1+ f)' = (I+f) (I — f)	 (5) 

and
rank [Re ci(z)] = rank [I f(z) 1(z)] = rank [I — f(0) 1(0)1	(6) 

for all z E ID. 

(b) Let f E Smxm(R)), and let 17 E I be such that det [771 + f(zo)] 54 0 for some z0 E ID. 
Then ci := (iII — 1) (ijl + f)' belongs to Cm(ll)). Furthermore, 

f = 77 (I — ci) (I + ci ) - ' = 17 (I + ci ) - ' (I - ci) 

A proof of Proposition 1 can be found in [8, Propositions 2.1.2, 2.1.3 and part (f) of 
Lemma 1.3.121. 

The following result, which is taken from AROV [2], provides an interesting connection 
between Schur functions and outer functions. 

Proposition 2: Let f E Smxm be such that det(I + f) does not* identically vanish. 
Then I + f is an outer function in [H(ID)]rnxrn. 

Corollary 1: Let f E Smm be such that det(I+f) does not identically vanish. Then 
(I + f) is an outer function in Smx,n(ID). 

Proof: Use Proposition 2, Remarks 3 and 5 and the inequality 

('+f) II	(II '11+11111)	1. U
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Corollary 2: Cm(ID) ç [g(iD)]mxTn 

Proof: Let ci E Cm(ID), and let I := (I - ci) (I + ci)-'. According to part (a) of 
Proposition I and Proposition 2, I + f is an outer function in [H00(ID)]mxm. Part (b) 
of Remark 2 yields that (I + f)' E [./V+(ID)]mxm. Since I - f obviously belongs to 
[H 00 (ll))] mxm , the fact that./V+ (ID) is a subalgebra of AI(ID) implies that (I-f) (1+f)' 
belongs to [jV+(lD)]mxm. By virtue of part (a) of Proposition 1, we have the identity 
ci = (I - f)(I + f)' . Thus, ci E [g()]mXm I 

Observe that, as a consequence of Corollary 2, every in x m Carathéodory function 
has boundary values 0 )-a.e. on T. 

Proposition 3: Let ci E Cm(ID). Then: 

(a) (I + ci)' is an outer function in Smxm(ID). 

(b) f	(I - Il) (I + ci)-' is an outer function in [H00(ID)}mXm if and only if I - ci is 
an outer function in [.,V+(ID)]mxm. 

Proof: (a) Using properties of the Cayley transformation (see, e.g., Lemma 1.3.12 in 
[8]) we obtain that f is an in x m Schur function which fulfills (I + ci)' = ( I + f) . In 
particular, det (1 +f) does not identically vanish. Since f belongs to Smxrn(il)), Corollary 
1 shows that (I + ci)-' is an outer function in Smxm(ID). 
(b) From part (a) and Remark 2 we see that I + ci is an outer function in [iV+(il))]I7<m. 
Remark 3 yields the asserted equivalence  

Proposition 4: Let ci E Cm(ll)), and let f := (I - ci) (I + ci). Then the following 
statements are equivalent: 

(i) ci is an outer function in [.,Af(ID)]rnXm 

(ii) det ci does not identically vanish in D. 

(iii) det (I - f) does not identically vanish in ID. 

(iv) I - f is an outer function in [H00(ll))]mxm. 

Proof: Part (b) of Proposition 1 shows that f is an m x in Schur function for which 
I + f does not vanish in ID. Thus, we see the equivalences as follows: 
'(i) = (ii)' : Use Remark 2. 
'(ii) = (iii)' : Apply part (a) of Proposition, 1. 
'(iii) = (iv)": The function -f is obviously an in x in Schur function. 
Hence, condition (iii) and Proposition 2 imply (iv). 
'(iv) = (i)': Proposition 2 and Remark 2 yield that '+1 and (I+f)' are outer functions 
in [H+(ID)I->-. Therefore, we get from part (a) of Proposition 1 and Remark 3 that (i) 
holds true  

Proposition 5: Let ci E Cm(ID) be such that det ci does not identically vanish. Then: 

(a) The function det ci does not vanish in II), and ci' belongs to Cm(ID).
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(b) is an outer function in [./V+(ID)]mxm 

(c) Ref	=	'. Rel.(1') = (1') Re1fl' )-a.e. on T. 

Proof: By virtue of Proposition 4 and Remark 2, det S1 nowhere vanishes in D. Thus, 
1'. belongs to Cm(ID) (see, e.g., [8, Lemma 2.1.10]). To verify part (b) it remains to apply 
part (a), Corollary 2 and part (b) of Remark 2. The identities stated in (c) are obvious I 

4. On Connections between the Largest Minorants 
Associated with a Cayley-linked Pair Consisting 
of a Carathéodory Function and a Schur Function 

First we will turn our attention to crossconnections between matrix-valued Carathéo-
dory functions and nonnegative Hermitian-valued Borel measures on the unit circle. 

Remark 6: Let Q be an m x in Carathéodory function. Then the matricial version 
of the famous classical theorem of F. Riesz and Herglotz (see, e.g., [8, Theorem 2.2.2]) 
shows that there is a unique in x m nonnegative Hermitian-valued Borel measure on the 
unit circle T such that

(w)I z+w 
=	F(dz) + iImf(0)	 (7) z — w 

r 

for all w E ID. This measure F is called the F. Riesz-Herglotz measure associated with 
the matrix-valued Carathéodory function Q. If 

=rkZk, z E ID,	 (8) 

is the Taylor series representation of fl, then the Fourier coefficients 

C (
kF) :=	z F(dz), k E IN0 ,	 ( 9) 

of F satisfy
— Re F0 and C	F+ , k E 'No.	 (10) - 

Lemma 4: Let Il E Cm(ID), and let Fbc the * F. Riesz-Herglotz measure associated with 
ft Then Re is the Radon-Nthodym derivative of the absolutely continuous part F of  
in the Lebesgue decomposition of F with respect to the normalized linear Lebesgue-Borel 
measure )/2ir on T. In particular, 

Re 	E V (T,,3/27r; c) .	 (11)
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Proof: For z E T and r 8 [0, 1), we get from (7) that 

	

____ 	
- 

Re [ci(rz)]	Re 
f	1 + rz\ F(d) 

= J 1 r2 
V - r12 F(de).
	(12) =

- rzj 

	

T	 T 

Let W be the Radon-Nikodym derivative of Fa with respect to A/27r. From [10, Theorem 
1.2] and (12) we see thus that

P 1-r2 
W(z) = tim J ]z - rj2 F(d) =	Re [1l(rz)] = 2(z) r-1-O 

1	 T 

holds true for )-almost all z E 'II'. The proof is finished U 

The next theorem will prove to be essential for our following considerations. 


	

Theorem 3: Let ci E Cm(ll)), and!	(I - ft)(I + ci)'. 

(a) Let c1 be a largest left minorant of (Re ci). Then the in x m Schur function 
2 (1 + Q) - ' 40 is a largest left minorant of(I-ff). Ifci(0) = I, then b(0) = 

(b) Let p be an arbitrary largest left minorant of (I - ff') . Then $	(I + f)' is 
a largest left minorani of (Re ci). 

(c) Let 'I' be a largest right minorant of (Re !l). Then the in x m Schur function 
2'' (1+11) - ' is a largest right minorant of (I-f f) . If 11(0) = I, then '11 (0) = 

(d) Let /i be an arbitrary largest right minorant of (I - ff) . Then 'I' := (I + f)1 
is a largest right minorant of (Re Il). 

Proof: By virtue of Proposition 1, the in x in Schur function f satisfies (4) and (5). 
Moreover, we see that det (I + f) does not vanish in ID. Proposition 2 yields that I + f is 
an outer function in [H 00 (ll))] mxm . Hence, Lemma 2 implies that I + f is left maximal. 
Moreover, part (a) of Remark 2 shows 

(I + 1) -1 e [A/ (llJ) l rnxrn .	 ( 13) 

From Lemma 4 we see that (11) holds true. 
(a) In view of (4), we see W = ( I +f) & Thus, as a product of functions which belong to 

[H°°(ID)]m°' and [H2(ID)]mxm, respectively the function W also belongs to [H2(ID)]mxm. 
Since 4 is a left minorant of Re Q, we have 4) VRe 	,\-a.e. on T. Thus, 

* = 4(I+ [(I+) -'] * 

4 (I+2)	Re 	[(I+)- ']	-a.e. on T. 

Using properties of the Cayley transformation (see [8, part (i) of Lemma 1.3.12]), it follows 
oo I - Jf )-a.e. on T. Thus, p is a left minorant of (I - ff) . Now let 11 be 
an arbitrary left minorant of (I - ff) . Then 17 belongs to [H 2 (ID)] mXm c [J4(1D)]mXm 
and satisfies	 -- - 

	

7777	1-ff =1 .\-a.e.onT.
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Theorem 1 yields then ij E Smxm(ID). As a product of two functions which belong to 
the Smirnov class, the function E := (I + f)i also belongs to [Af+ (lD)] mxm . Using 
properties of the Cayley transform (see part (g) of Theorem 1.3.12 in [8]), we get 

(1+	7717' 
[(J+fy1] 

(I+f)' ( J +ff)' [(I+fy 	= Reil	—a.e. on T.	(14) 

From (11) and Lemma 1 we see then E e [r2(T,,.\/2ir; C)] rnxrn . Thus, Theorem 1 
provides that E belongs to the Hardy space [H 2 (ID)I m1m . Since 'I' is a largest left minorant 
of (Re1), we obtain from (14) that E(0) E(0)	(0) I(0) holds true. Then it follows 

77 (0) 'i( 0) = [ I + 1(0)] E(0) E(0) V+ f(0)] 
= [ 1 +1(0 )] c(0)(0) [ I +f(0)] = (P(0)(0) 

Therefore, cp is a largest left minorant of (I - ff) . If (0) = I, then p(0) = 
2 [I +	0)j1(0) = 4(0).	 --

(b) By assumption W belongs to [H2(ID)]m>(m and satisfies 

= I - ff	,\—a.e. on T.	 (15)


Moreover, if 77 e [H2(ID)]mxm is an arbitrary left minorant of (I - ff*) then 

77( 0 ) 77(0 )	(0)(0).	 (16) 

In view of (13), the function 4. is a product of functions which belong to the Smirnov 
class. Hence, 1 belongs to [A(+(ID)]mxm. Using Lemma 1.3.12 in [8] and (15), we get 

= (I+f'p [(i+f) '] 

= (I + jJ (I— f f) [(I +	= Re1	—a.e. on T.	(17) 

From (11) and Lemma 1, then we can conclude that 4 belongs to [r 2 (T, B, .X/27r; 
Theorem 1 thus implies 4 E [H 2 (D)] mXm . Therefore, 4 is a left minorant of (Re Q). Now 
let E e [H2(lD)]mXm be an arbitrary left minorant of (Re Q). Then ij 	( I + f)E belongs

to [H 2 (ID)] mXm and satisfies 

= (I-i-L).('--L)*	(I+f)Ref(!+f)	.X—a.e.onT.	(18) 

The last identity in (17) thus yields iji	I - f  \-a.e. on 1', i.e. i is a left minorant 
of(I—ff). Since  is a largest left minorant of (1—ff), then weobtain77(0)77(0) 

(0) (0). Propdsition 1 shows det [I + f(0)] 54 0. Thus it follows 

E(0) E(0) = [I + f(0)1-' i(0)i(0) ([I + f(0)]) 

[I + f( 0 )] 1 '( 0 ) p ( 0 ) ([I + f(0)]) = 4(0)(0) 

This completes the proof of part (b). Parts (c) and (d) can be analogously verified U 

= 

7



482 B. FRITZSCHE and B. KIRSTEIN 

In the operator case, the paper 51 of CONSTANTINECSU contains investigations 
on largest minorants associated with a semispectral measure F. In particular, using ap-
propriate operator functions taken from the Naimark dilation of F, Theorem 4.1 and 
Corollary 4.4 in [5] describe some distinguished interrelations between the largest mino-
rants associated with expressions comparable with (Re g) and (I - ff) . Now we will 
establish relations between the largest minorants associated with a Carathéodory function 
11 and its inverse l', respectively. 

Theorem 4: Let Il E C, (ID)be such that det ci does not identically vanish. 

(a) Let 4' be a largest left minorant of (Re Il). Then 4'	ci'4' is a largest left 
minorant of (Re ci'). If Q(0) = I, then 4'(0) = 

(b) Let 'I' be a largest right minorant of (Re Q). Then 'I's := 'ci	is a largest right 
minorant of (Re fl). If Z(0) = 1, then 'P 1 (0) = '11(0). 

Proof: By virtue of Proposition 4, Ii is an outer function in [A4(ID)j` . Remark 
2 shows then that I is an outer function in [g(ff-))]mxm Since 4' E [HI (D)]- x- C 
[N+ ( JD)] m the function 4',, as a product of functions which belong to the Smirnov 
class, is a member of [1(+(ID)]mxm. Since 4' is a largest left minorant of (Re fl), part (b) 
of Proposition 5 yields 

=	 r ['.Ref.(f1) = Re 1l	—a.e.onT.	(19) 

Part (a) of Proposition 5 shows that f1' belongs to Cm(ID). Hence, Lemma 4 pro-
vides Re' E £1(T,,)/2ir;C). Thus, Lemma 1 and inequality (19) imply that 
0 1. E £2 (T, , .A/27r; C). From Theorem 1 we then obtain that 4' belongs to [H2(ID)]mXm. 
Therefore, 4', is a left minorant of Now let E 1 be an arbitrary left minorant 
of (Ref1'). Because of Corollary 2, the m x in Carathéodory function Ii belongs to 
[H+(ID)]mxm. Since E 1 E [11 2 (l1))l mXm , we obtain that E := liE 1 belongs to [.AI+(ID)]mxm. 
Consequently, it follows from part (b) of Proposition 5 that 

EE=E,E i flli . Rell' . 11=Rell ..\—a.e.onT.	(20) 

By virtue of Lemma 4, Re  belongs to £'(T, ¶B, A/27r; (13). Thus, Lemma 1 and inequality 
(20) show that E belongs to £2(T,,\/27r;C). Then we see from Theorem 1 that E 
belongs to [J1 2 (ID)] mxm , i.e. E is a left minorant of (Reil). Since 4' is a largest left 
minorant of (Rell), we get E(0)E(0) 4'(0)4'(0) and, therefore, 

[cl(o)' E(o)E(o) ([ll(0)]1)* 

= [11(0)]	4'(0)4(Q) ([1l(o)]') = 4'(o)4';(0) .	(i) 

Consequently, 0 1 is a largest left minorant of	If 11(0) = I, then 4'(0) = 4'(0)

immediately follows. Thus, part (a) is proved. Part (b) can be verified analogously U 

Theorem 3 leads us to the following interesting factorizations of maximal functions. 

Proposition 6: The following statements hold trite: 

(a) Let 4' E 1H2(lD)]mxm be left maximal. Then there are an outer function c € 
[N+ (ID)j mxm and a left maximal function € S<(ID) such that 4' = c.
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(b) Let 'i'. E [H(lD)]mXm be right maximal. Then there are an outer function 77 E

[A(+(lD)]mx and a right maximal function ?,b E Smxm(ID) such that 'I' = 017. 

Proof: By the formula
F(B):=-f44)d), 

where B is any Borel subset of T, a nonnegative Hermitian Borel measure F on T is 
obviously given. By virtue of the matricial version of Herglotz' Theorem (see, e.g., [6, 
Theorem 2.2.2]) the function !: ID — mxm defined by 

fl(z):= f.±±F(dc) ZEID, 

belongs to Cm(ID). From Remark 6 and Lemma 4 we obtain (Rep) = ($5 • ) . Since 
4) is left maximal, 4) is a largest left minorant of (Reg). Proposition 1 yields that 
f := (1—c)(1+fl)-1 belongs toSmm(ID) and that det(I+f) does not vanish in ID. Then 
we see from Proposition 2 that (1+1) is an outer function which belongs to [H00(ID)]mXm. 
Thus, Remark 2 provides that c := (I + f)' is an outer function in FAI+(ID)] mxm . By 
virtue of part (a) of Theorem 3, the in x in Schur function := 2(1 + Q)`40 is a largest 
left minorant of (I —	)• Proposition 1 yields that the identity (4) holds true. Hence, 
4)	(I ± f)= cp. Part (b) can be checked similarly U 

Observe that, for the operatorial case, a phenomenon of similar type as described in 
Proposition 6 was obtained by SUCIU and VALUSESCU [24, Theorem 81. 

5. On the Weyl Matrix Balls Associated with a Non-
degenerate Matrix-valued Carathéodory Function 

Let r be a nonnegative integer or T = oo. A sequence (Pk) =0 of in x in complex 
matrices is called in x m Carathéodory sequence (respectively, nondegenerate m x m 
Carat héodory sequence) if, for every integer n with 0 in r, the block Toeplitz matrix 

	

:= Re [S(r0,r1,...,r)]	 (22)


where

r0 0	0	... 0 
r 1	r'0	0	... 0 

s(r0,1'1,...,r) :=	F2 E'	l'	0	,	 (23) 

Ffl Fn.1	... 

is nonnegative Hermitian (respectively, positive Hermitan). If (F). 1 is a given sequence 
of m x m complex matrices, then the power series 

11(z)	Fk Z k , z E ID,	 (24)
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defines an in x in Caratheodory function ci if and only if ( Fk) 0 is an m x in Carathéodory 
sequence (see, e.g., [8, Theorems 2.2.1 and 2.2.21). An in x in Carathéodory function ci is 
said to be nondegenerate if the sequence ( fk)0 of its Taylor coefficients (in the Taylor 
series representation of ci around the origin) is a nondegenerate m x m Carathéodory 
sequence. 

Now we assume that n is a nonnegative integer and that ( Fk)...0 is a sequence of com-
plex in x in matrices. We will use the notation Cm[ FO, 17 1, ..., f,] to denote the set of all 
ci E Cm(ID) for which (Fk).. 0 is exactly the sequence of the first n + 1 Taylor coefficients 
in the Taylor series representation of ci around the origin. The set Cm[Fo, F 1 , ..., fJ is 
nonempty if and only if (Fk)0 is an m x m Carathéodory sequence (see, e.g., [11, Part I, 
Section 4 ]) . If ( FA,), is a nondegenerate Carathéodory sequence, then Crn[Fø, F i , ..., 
can be described by certain linear fractional transformations (see, e.g., [11, Part V, The-
orem 281). Furthermore, in this case, one can show that, for each z E ID, the set 

	

{ci(z) : ci E Cm [F0 , F 1 ,...,f]}	 (25) 

can be represented as a so-called matrix ball. If M E	A e CPXP and B e	then 
the set

.(M;A,B)	{x	X = M + AKB, IKE IKpxq} 
where lKp x q denotes the set of all p x q contractive matrices, is called the (closed) matrix 
ball with center M, left semi-radius A and right semi-radius B. (In [23] SMULJAN gave 
a summary of properties of matrix and operator balls.) In order to state the explicit 
representation of the set (25) as matrix ball, we need some preparations. 

Suppose that ( Fk) 0 is a nondegenerate m x in Carathéodory sequence. Then the 
matrices F0 , e	S(f0 , F 1 , ..., F,) and T := Re 6. are nonsingular. Set 

'n 	 , y, 

	
rn

{Re FO	 , n.=0 
Re f0 -	z , n >0 

{
Re f0	 , n=0 
Re f0 -	 , n>0, 

and
Tn	(e') Te' 

>	> Lemma 28 In [11, Part V] shows that In = 0 and r = 0. Furthermore, we define the 
matrix polynomials , c,, 77n and c by 

77n ( Z )	en, (z)T, 1 e', (0), c,(z) :=	m (0) T,' enm(z) ,	( 26) 

	

en, (z)ç' e m (0) , c,.'(z) :=	m (0)T' Enm(Z) ,	( 27) 
z E C, where enm C	cmX(n41)m and 6nm : C - C(+1)mxm are given by 

	

enm(z) := (Jm,ZJm,Z21m,...,Zthlm)	 (28) 

and
Enm(Z)	1-41	-n-i (Z 1m,Z	I,n,...,21m,Jm) ,	z E C.	 (29)
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If xo, x 1 , ..., xn are complex p x q matrices, and if the p x q matrix polynomial X is given 
by

X(z)	xkz' , z E C 

then the reciprocal matrix polynomial X of X with respect to the unit circle 'F and the 
formal degree n is the q x p matrix polynomial which is defined by 

k(z):=>x_kzk, zEC. 

In this sense, let ,, (respectively,	be the reciprocal matrix polynomial of i 
(respectively,	with respect to 'F and the formal degree n. One can check that 

the matrices

P(z) := c,(z)lc(z) - 1z1 2 (i(z)) r(z)	 (30) 
and

Q(z) := 77n(z)rn77(z) - IzI2cr,(z)ln ( r, ( z))	 (31). 
are positive Hermitian for all z E ID (see [11, Part V, Theorem 29]). The functions 
!1n:ID4Cmxm,C:ID4Cmxm and 9n:ID_4Cmxm given by 

Yl,(z) :=	[77.(z) (r') r	(z) + 1z1 2	z) F' I,, (çn(z))] [Q(z)] 

:= [P(z)]'	and 91(z) := [Q(z)]' 

are called the Weyl-Carathéodory center function, the canonical normalized left Weyl-
Carathéodorij semi-radius function and the canonical right Weyl-Carathéodory semi-
radius function, respectively, associated with the nondegenerate rn x m Carathe'odory se-
quence ( Fk ) 0 . One can show that the inequalities 

Ren(z)	0, C(z) > 0 and gin (z) > 0	 (32) 

hold true for every choice of z in ID (see, e.g., [13, Lemma 6]). 
Now we are able to state the announced representation of the set. (25) as matrix ball. 

A proof of this result can be found in [11, Part V, Theorem 29]. 

Theorem 5: Let n E IN0 , and let (r, ) n be a nondegenerate m x rn Caratheodory 
sequ'ence. Further, let Mn, £ and 91,-, be the Weyl-Carathéodory center function, the 
canonical normalized left and the canonical right Weyl-Carathéodory semi-radius func- 
tions, respectively, associated with _(fk)....o. For each z € ID, the set (25) coincides with 
the matrix ball .m(z); jZjn11 J2(z), 291,(z)). 

Now we turn our attention to the limit behaviour of the Weyl matrix balls associated 
with a nondegenerate m x m Carathéodory function. 

Theorem 6 (see [11, Theorem 4]): Let 11 be a nondegenerate rn x m Carathéodory 
function, and let (8) be the Taylor series representation of ft For n E No, let 9A1,, 
£ and 91, be the Weyl-Carathéodory center function, the canonical normalized left and 
the canonical right Weyl-Carathéodory semi-radius functions, respectively, associated with 
(rk ) .. 0 . Then:
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(a) For each z € ID, limn_. c, !m(z) = 11(z). 

(b) For each z E ID, the sequences (;# ( z)) 0 and ((z)) 0 are monotonously nonin- 
creasing and convergent. The corresponding limits £#(z) and !R(z) are nonnegative 
Hermitian for all z E ID. 

Observe that parts of Theorems 5 and 6 are already contained in KOVALISHINA's 
paper [17]. 

The functions £ : ID - cmxm and 91: ID - C" m given in part (h) of Theorem 6 
are called the canonical normalized left and the canonical right Weyl-Carathéodory limit 
semi-radius functions, respectively, associated with the nondegenerate in x in Caratheodory 
function Q. 

6. Factorizations of the Normalized Limit Semi-radii 
Functions Associated with a Matrix-valued Cara-
théodory Function with Finite Entropy 

Let us begin this section with some technical preparations. 

Lemma 5: Let Il € Cm(lD). If 

--- I log [det (Re Q)] d > -oo	 (33) 27r
T 

then ci is necessarily nondegenerate. 

Proof: Combine Corollary 3 in [11, Part II] and Lemma 4 U 

Functions ci € C,,,(ID) which satisfy inequality (33) are called in x in Carathéodory 
functions of finite entropy. In the following we will only consider Carathéodory functions 
of that type. 

Note that the proof of the following proposition is essentially based on results on the 
asymptotic behaviour of orthogonal matrix polynomials. 

Proposition 7: Let ci be an in x in Carathéodory function which satisfies condition 
(33), and let (8) be the Taylor series representation of Q. For n E No, let the matrix 
polynomials ii,, and,;, be defined by (22), (28), (29) and (26). Then: 

(a) For all z E ID,
lim i(z) = 0 and	lim c(z) = 0 .	 ( 34) 

(b) For each  € ID, there exist the limits ij(z) := limflK 1)fl (z) andc(z):= lini.c(z). 

(c) The matrices i(0) and c(0) are positive Hermitian. 

(d) For al1z € ID, det 77 (z)	det c(z)'54 0.
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(e) The matrix-valued functions t : ID - cmxm and To ID - cmxm given by 

[c(z)]	and 'Po(z) := J05 [i(z)]'	(35) 

are outer functions in [HZ(ID)]mXm 

(f) The function 4 is the normalized outer left spectral factor of (Re ci), whereas To is 
the normalized outer right spectral factor of (Re j). 

Proof: From Lemma 5 we know that ci is nondegenerate. Let F be the F.-Riesz-
llerglotz measure associated with Q. In view of (22) and Remark 6, we have 

T5 = Re (S(Cr,C)...,C)) 

Furthermore, we know from Lemma 4 that Re  is the Radon-Nikodym derivative of the 
absolutely continuous part of F in the Lebesgue decomposition of F with respect to ). 
Thus, parts (b) - (f) follow immediately from results due to DELSARTE, GENIN and 
KAMP [6, Theorems 17, 18 and 20]. It remains to prove part (a). By virtue of Lemma 
3.6.3 in [8] and formula (88) in [6], we have 

[ o(z)]' ([()]- 1 y = ( 1— 1z1 2 )	(z) [cn(0)]' [(z)] 

for all z E ID. This implies limp.	 Ii)	 = 0, and hence 
lim5.(z)s/ö 1 = 0. Thus, we can conclude from parts (b) and (d) that the 
second relation in (34) holds true. The first one follows analogously U 

Note if f is a matrix-valued Schur function, then several results on polynomial approx-
imation of appropriate outer spectral factors of (I - L1) and (I - f L) are scattered in 
the literature (see DUBOVOJ [7], GEORGIOU and KHARGONEKAR [14] and, for the 
operator case, BAKONYI [31). 

Now we are able to derive the announced factorizations of the canonical normalized 
Weyl-Carathéodory limit semi-radius functions associated with a matrix-valued Carathéo-
dory function having finite entropy. 

Theorem 7: Let ci be an rn x in Carathéodory function which satisfies condition (33). 
Let £# and R be the canonical normalized left and the canonical right Weyl-Carathéodory 
limit semi-radius functions, respectively, associated with fl. 

(a) Let be an arbitrary largest left minorant of (Reg). Then $ = 

(b) Let 'I' be. an arbitrary largest right minorant of (Re Il). Then 'I'"I' = 91. 

Proof: Lemma 5 shows that ci is nondegenerate. By virtue of part (f) of Proposition 
7, o (respectively, ''o) given in (35) is a left (respectively, right) spectral factor of (Re-Q. 
For all positive integers n, we see from Lemma 3.6.33 in [8] that ,(0) = r;' > 0 and
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c(0) =	> 0. Using Proposition 7 we get then lim.. 00 r, = [(0)J-', lim_. In =

[c(0)j', and hence 

	

lirn (c,(z) I, c,(z) - 1z1 2 [(z)] r	= c(z) [c(0)]' 1; (Z) > 0 

In view of (35) this implies lim_ 00 C(z) = 4 0 (z)4;(z) for every choice of	e ID. 
Analogously, we obtain lin, 91,(z) = W(z)To(z) for each z E ID. Theorem 2 shows 
that there are in x in unitary matrices U and V such that = 0 U and W = VW 0 . Thus, 
the assertion immediately follows U 

Now we will sketch the way how Theorem 7 can be used to refound the factorizations 
of the limit semi-radii of the Weyl matrix balls associated with a matrix-valued Schur 
function, which the authors obtained in [12, Part IV]. 

Assume that f is a p x q Schur function which satisfies 

I flogdet(J_ff)d >
2lr 

T 

Then there are outer functions i E [H2(ID)]PXP and V, E [H2(ID)jcxQ such that 

l—ff=	and I— ff =b ,b )—a.e.onT 

(see Theorem 2). Let

f(z)=>Akzk, zEID, 

be the Taylor series representation of f . For every nonnegative integer n, then the symbol 
Sp xq[ Ao, A 1 ,..., A] stands for theset of all g E Spxq(ID) with first n + 1 Taylor coefficients 
A0 , A 1 , ..., A. in the Taylor series representation of g around the origin. Then for each 
z E ID, the set {g(z) : g E Spxq[Ao, A,,..., A]} turns out to be a matrix ball 

(Mn(Z); zI' 
where £(z) and R(z) are positive Hermitian matrices with det r(z) '= det 1Z(z) 
(see, e.g., [8, Theorem 5.5.1, Lemma 5.6.3]). For each z E ID, the sequences 
and (1Z(z)) 0 are monotonously nonincreasing and hence convergent to some nonneg-
ative Hermitian matrices £#(z) and R.(z), respectively. Part (d) of Theorem 18 in [12, 
Part IV] yields that

= i()p(z) and R(z) = 

for all z E ID. This result proves to be a special case of Theorem 7. One has only to 
consider the particular (p + q) x (p + q) Carathéodory function 11 given by 

I i — 2zf(z) 
0	'q	)	

zEID. 

Using the notations given above one obtains £# = diag (L#, I) and 91 = diag (Jr , R.). 
We omit the lengthy, but straightforward computations.
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