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Schur Algorithm for the Integral Representations
of Lacunary Hankel Forms

P. ALEGRIA

A Schur type algorithm for the lacunary Nehari problem making use of the extensions of certain
isometries is shown. A parametrization of the solution set is also obtained. A constructive method
that provides the solutions by a sequence of Schur type parameters is developed. In the case of the
classical Nehari problem, this algorithm gives the classical Schur parameters for the Carathéodory-
Fejér interpolation problem. Here we propose another way to solve this problem, namely as an
application of the Nehari problem via the problem of the extension of isometries associated to it.
This point of view will lead in a forthcoming paper to the generalization of the results to the matricial

case.
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Introduction

The Carathéodory- Fejér interpolation problem, also called the Schur problem, consists
in characterizing the complex sequences {ay, ..., an} for which there exists a func-
tion ¢ analytic in the unit disc D such that ||ap||°° < 1, and whose first non-negative
Fourier coefficients are given by that sequence, i.e. cp(n) = a,, for 0 < n < N. The
Schur algorithm solves this problem and gives necessary and sufficient conditions for
the existence of solutions by means of a family of parameters (called Schur parame-
ters). These parameters give a complete description of the Taylor coefficients of each
solution, and also provide a parametrization of all the solutions.

The Carathéodory-Fejér problem has derived a wide investigation (see, e.g., [3])
and matricial generalizations. We can mention the works of Dym [9]), Dubovoj,
Fritzsche and Kirstein (8].

The N-reduced Nehari problem, which is equivalent to the Caratheodory Fejer
problem, consists in characterizing the complex sequences {s_ Nyoos ,5—1} for which
there exists a function f € L®(T) such that ||fllec £ 1 and f(n) = 8, for =N <
n < 0, f(n)-O forn < —N.

The next statement, equivalent to Paley lacunary inequality, provides another
interpolation problem, namely the problem to find the set of all functions in L**(T)
whose non-negative Fourier coefficients are given by a lacunary sequence:

If {nix}f2, is a strictly increasing sequence of non- negatlve integers with the
propert.y nk+1 > Ang (A > 1) for all k, then for each square summable sequence
v = {vk}$2, there exists a bounded function g such that [|gllc < C(M)llv|l2, and
G(ne) = vy, for all k, while §(n) = 0, for all other n 2 0.

. Alegria: Univ. del Pais Vasco, E.H.U., Dep. Math., Apartado 644, Bilbao, Spain
ISSN 0232-2064 / $ 2.50 @ Heldermann Verlag Berlin



492 P. ALEGRIA

Nehari [12] discussed an explicit procedure in order to obtain the function g, given
{n«} and {vi}, via the Schur algorithm. This same algorithm is used by Fournier
[10], who obtains bounds for C'(A) in some cases.

Here we are going to state the next Schur type problem for lacunary sequences
related with the previous statement.

The problem. Let {a,}n>0 € €% be a sequence such that a, = 0, if n # nk; we
define the set Z(a) = {® € L=®(T) : ||®|loo < l,a(n) = an,Yn 2 0}. The goal is to

(1) find necessary and sufficient conditions for L(a) # @;

(i) furnish a description of all functions & € £(a), when T(a) # @.

. In order to get a parametrization of all solutions, there are formulas as the ones
obtained in [1] and [2], but here we are going to use a Schur algorithm that allows us
to solve the reduced problem (with only a finite number of coefficients non-zero) and
give the general solution, by a limit process. Here we make a wide use of the theory
of generalized resolvents and the theory of generalized spectral functions of isometric
operators. With this purpose, in Section 1, a description of the generalized resolvents
of an isometric operator and its expansion in Taylor series is given. In Section 2 a
constructive parametrization formula for the generalized resolvent of the class of
associated isometries is obtained. This formula is applied in order to parametrize the
solution set of the generalized Bochner theorem and as a particular case, the Nehari
theorem. At the end of this paper, we will develop an algorithm for constructing
all the solutions. The results of this paper can be generalized to the matricial and
two-parametric cases; we will study these questions in a forthcoming work.

Basic notations used throughout the text follow: Z, = {n € Z : n > 0},2, =
Z\Z,;D ={2€C:|z|] <1}, T =0D, dt is the normalized Lebesgue measure on T;
fln)= f T e'n f(t)dt (respectively fi(n) = f” e'™dy) denotes the Fourier transform
of the function f (resp. of the measure ). For 1 < p < oo, H?(T) = {f € LP(T):

f(n) =0, for n < 0}. For M, N two Hilbert spaces, M VN is the minimal closed
space spanned by M and A, L(M,N) stands for the space of all bounded linear
operators from M to N.

1. Description of the Generalized Resolvents of an Isometric Operator

Let H be a Hilbert space and U : H — M a closed isometric operator with domain D
and range A. The orthogonal complements M = H S D and N = H © A are called
the defect subspaces of U, and the numbers m = dim M,n = dim N are called the
defect indices of U.

DEFINITION 1.1: A unitary operator U:H-Hisa unitary extension of U
if H.is a closed subspace of H and U|1) = U. Moreover, if H =V .7 ur (H),U
called a minimal unitary extension of U.

We identify two unitary extensions U, 'ﬁl — ')?1 and U, : 7:22 — 7‘:{2 if there
exists a unitary isomorphism ¢ : H, — H, which leaves 1nvar1ant the elements of H
and U, = Uz

DEFINITION 1.2: If {E, : 0 <t < 27} is a spectral function of U, a generalized
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spectral function of U is the family of operators {E; : 0 < t < 27} in H defined by
Eih = PyEh, for all h € H, where Py is the orthogonal projection from H onto H.
The generalized resolvent of U is the family of operators {R, : |z| # 1} in H defined
by R.h = Py(I - 2U)"'h , for all h € H.

REMARKS: (a) Thc set of all generalized resolvents {R,} of U can be described

dE

by the formula R, = 0 T"_" where {E;} is the generalized spectral function. (b)

If one of the defect indices of U is not zero, then U has infinitely many spectral
functions and corresponding generalized resolvents.

If we use the notation

Un———PNﬁl U12=PN(7|M

Uy =P

‘HoH o
HeHUl)'(GH UTZ = P;{e'}‘UlM)

it is easy to prove (see [9]) that ¥ : D — L(M, N} defined by 9(z) = Uz + 2Uy1 (1 -

2Uy;) 71Uy is an analytic function and, for each z € B, J(z) is a contractive operator.

REMARK: The function 9 is called the characteristic function associated with U
Brodskii and Shvartsman [4] proved that there exists a bijection between the set of
all (essentially different) minimal unitary extensions and the set of all the contractive
analytic functions 9 : D — L(M N).

LEMMA 1.3 (see [11]): IfU : H — H is a minimal unitary extension of U and ¥
is as above, then N N
(a) 9(2) = PA O = =Py, T) ' e

(b) If@(n) = P-Vij(PﬁeHij)nlM’ then 9(z) = 3,5, z"a(n), |z] < 1.

(¢)(UPp + 9(2)Pu)ln = [P“H(j(f—zpﬁe,‘U)—l] .

(d) PuU(I = 2U) |y = {(UPD +9(2)Pa) [ — 2(UPp + 9(2)Paq)) ™" }

We will use the previous properties in order to get a parametrization of all the
generalized resolvents of U. Furthermore, due to the equality It;;; = I - R}, whenever
|z] # 1,2 # 0, it suffices to establish the formula for all the values z € D.

ProPosITION 1.4: The generalized resolvent of U can be written as
R, = Pu(I = zU) Yy = Py (I = 2(UPp + 0(2)Ppg)] ™ |3 for |2] < 1. (1.1)

Proof: Since U = Pﬂe?{ij + PHD, we can write

1

(I [_ Hen! _*P"U)J

- {[1 — 2Py U(I = 2Pg, U)~')(1 - zPHewU)}_]

= (I = 2P, 0)7" [1 = P01 = 2P, )7
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So ~
Rz = P’;{(I ot ZU)_lly

= Pu(I - 2P5_, 0) [1 — 2 PuU(I - 2P5, D)7 I
-1

Pron )| I
= Pyl — 2(UPp 4+ 9(2)Puy)) ™ [n B

= Py |I - zPyU(I -z

REMARK: A similar result, proved with a different technique, was obtained by
Chumakin [5]: Every generalized resolvent R. of U is representable in the form
R.=[-2(U®®,)]7", for |z|] < 1, where ®, is some operator-valued function of
parameter z, analytic in B, whose values for any z are contractive operators from M

into V.

Now, using formula (1.1), a representation formula for the generalized resolvent
of U by means of its Fourier serics is ohtained.

PropPoOSITION 1.5: If fi(n) = PWU"h( are the Fourier coefficients of the gen-

eralized resolvent of U for |z| < 1 and ;I;(n) are the coefficients of the associated
characteristic function ¥, then R. has the following expansion in Fourier series:

n—2
Ro=I+) :" (fz(n. ~ 1)[UPp + (0)Pu] + Y R(k)D(n — k - 1)PM). (1.2)

n>1 k=0

Proof: By its own definition,

R, =Py(I=:U0)" w=) _ "PplU"n =) _ z"R(n).

n>u n>o0

Furthermore, if we call

A(z) = 2(UPp + 9(2)Pp) = 2UPp + 3 2" d(n)Pp =3 z"A(n),

n>
it results that
R 0 R ifn=0
An)={ UPp +9(0)Ppy ifn=1
I(n — 1)Pyy ifn>1.

If we denote G(z) = (I — .4(3))_1, we can obtain

GU -~ )y =Y

k=0 G(k)(I="A)n - k) = {I ifn=0

0 ifn>0.

For n = 0, C:;(O)(I’—\A)(O) =1;s0 G(0)=1.
Forn =1, G(O)(I = 4)(1) + G(1)(I = 4)(0) = 0, which leads to

~UPp — (0)Pry + G(1) = 0. and G(1) = UPp + 9(0)Ps.
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Forn> 1,3} o é(k)(l/—\A)(n — k) = 0, which leads to

-~ n—1 ~ ——
G(n) = - ZH G(k)(I = A)(n - k)
~ ~ n—2 -~
=G(n - 1)Y(UPp +9(0)Pry) + ZM G(k)d(n — k — 1)Pp.

Then, it results that

~ ~ n—1 ~ ~

G(n) =G(n-1)UPp + Zk_o G(k)YI(n — k = 1)Pyy, forn > 1,
and therefore, for n > 1,

R(n)= Rtn - 1)UPp + Z:'; R(k)Y9(n — k — 1)Paq
R T ne2 (1.3)
= Rn-1) [UPD + 19(0)PM] + ZL:; RkyI(n -k —1)Pu B

2. Characterization of a Class of Isometries through the Resolvent

It 1s well known that in certain moment problems there appear isometric operators
with some conditions. In this section, we will describe the set of all minimal unitary
extensions of these isometries. In the sequel, U : H — H will be an isometric
operator for which there exist two fixed elements ey and e_; such that U™eq € D,
foralln >0, Ute_, € A, for all n <0, and H is generated by {U"ep : n > 0} and
{U"e_, : n < 0}. From these hypotheses, we deduce that both defect indices of U
are less than or equal to one. If we suppose that there is not a unique solution, then
both defect indices are equal to one. In particular, e € A and e_; € D. In [1] we
proved the following

PROPOSITION 2.1: Every minimal unitary extension U :~7?( —HofU:H—H
is uniquely determined (up to unitary equivalences) by (PyR,e_y,eq) with |z| < 1,
where R, = (I — zU)~! is the resolvent of U.

So, the parametrization problem of U can be reduced to the parametrization
problem of Py IR ; now, we can use formula (1.1) and write

R.e_,=PyR.e_, = ([ -:T) e, = Z">UZ"T;'e_, for |2] < 1 (2.1)

where T. = UPp & J(z)Pa and @, = 9(z)Paq is a contractive operator from- M
onto NV.

Let us choose two unitary vectors u,up € H which are orthogonal to D and A,
respectively. Thus, u and wo span the subspaces M and N, respectively, and we
can write ®.(u) = ¢(2)ug where |p(z)| < 1. In particular, if p(z) = A with |A] = 1,
then each @, is a unitary operator. So, T is unitary in H and R, is an orthogonal
resolvent of U generated by the corresponding unitary extension T,. Conversely, if T
is unitary, A can be obtained in that form and it is possible to define &, : M — N.
In conclusion, we have proved the following
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PROPOSITION 2.2: (a) R. is an orthogonal resolvent of U if and only if p(z) = A
with |A| = 1, and the number of minimal unitary extensions of U is determined by the
different values of A such that |A| = 1. (b) In the general case, if R, is a generalized
resolvent of U, there are as many unitary extensions as analytic functions o such
that |p(z)] <1 forjz] < 1.

In order to obtain a formula of the resolvent of U, we proceed as follows: Since
H = M @ D, there exist two vectors vy, wo € D such that

€_} = Cu + Vg, Uy = dou + Wy. (220)

By recurrence, we define the numerical sequences {c,} and {d,} and the vectorial
ones {v,}, {w,}, forn >0 as

L/U,, = Cn+]u + ERES L/"U.’,, = dn+1u + wn+l (n 2 0) (22b)
Also, we construct the polynomial sequence {Pg},>0 as

Py(X) = co, P,.<A)—c,,+Zd,, sAPc_ (M) ifn > 1. (2.3)
k=1

The two next theorems allow us to express the resolvent of U as a function of the
sequence {P,} and therefore. to obtain in a constructive form the parametrization of
all their unitary extensions.

THEOREM 2.3: If R, is the orthogonal resolvent of U with |z] < 1, {P,} is the
sequence defined in (2.3), and {v,}, {wn} are given by (2.2a) and (2.2b), then

(Reerie) = 3 (S, WP in-sen) ) + 3 e omea) - (24)

where A € T.

Proof: At first, knowing that T, = UPp & ¢, and ®.u = Aug with |A] =1, it
is easy to prove by induction that

Tle_, = u-*-z APy (Mwu—k + vy, foralln > 1.

Then, if we apply (2.1). it results

(Rye_1,€0) = {6y, ¢o) +Z ( (u, ep) +Z’\P“1 w"_k,eo)+(v,,,eo))
n>1

which gives (2.4) because (u,¢y) = 0, and (e_),¢¢) = (vg,e0) W

THEOREM 2.4: Under the conditions and hypotheses of the previous theorem,
if R, is a generalized resolvent of U with |z| < 1, then

(R.e_1,e0) = Z (Zs’( )Pi 1 ( ))(wn—kve())) +ZZ‘"(vm€o) (2.5)

n>1 n>0
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where ¢ € H* and ||p]|lec < 1.

Proof: It is the same as the one of Theorem 2.3 but taking into account Propo-
sition 2.2 B

Now, we will obtain another parametrization formula for the generalized resolvent
of U by the associated contractive analytic function, using formula (1.3)..Lastly, we
will see that both formulas are equivalent ‘when we can write the relation between
the polynomials { Px} and the Fourier coefficients R(]) of R,.

PROPOSITION 2.5: If R, is the generalized resolvent of U with |z]| < 1, then

(R:e_l,e0)=z v,,,eo +Z (Zs’)c, 1 n—J)UO,eo)) . (2.6)

n2>0 n>1
where ¢ € H* and ||¢]|x S 1.

Proof (Sketch): At first, we can prove by induction that, for 1 <m < n,

ﬁ(n)e_, = ﬁ(n —mMlUvp,_y + Z;n:l cj Z:;; ﬁ(k)@(n —k—ju

Afterwards, for m = n,

~ . n n-—j
(R(n)e—le€0> = (L"Un—l»co) + Z}:] Cj=1 Zk:O

n -~ .
= (v,.€0) + Z}=1 ¢ (R(n — 7)puo, €q).

(R(k)D(n — k — j)u,eq)

So

(Ree_1,€5) = (e, €0) +Z">l (vn,eo +Z Lwei-1(R(n - J)uo,eo))
= (vq, &g) +Z">l (vn,eo +Z | PCi= 1R(n—])uo,eo)>

which leads to the desired result B

" PROPOSITION 2.6: The polynomial family {Pi} dnd the Fourier coefficients
R(]) of the generalized resolvent of U are related by the formula

n

Zk=l Pk_,.(g)(w,,_k,eo) = Z,‘— _c,-_l(R(n — J)uo,€0), forn 2> 1. (2.7

=1
Proof: If we define the polynomial sequence

n=-1

Qul9) = do. Qu(9) = du + 3 depQusr(9) i n 2 1,

k=0

then we-can easily obtain the following relation between {P,} and {Q,}:

n=1

P,,(&,D) = Z CkQQu—k—l(‘r’) + ¢, for all n Z 0.

k=0
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So, the expression on the left-hand side of (2.7) can be written as- -

3
n k-2

> Py (¢)(wnk, &) = ch 1{Wn—k, €0) +ZZc,ka - 2(so)<wn-k,eo>.
k=1 .

k=2 j=0

.o

OAnl the other hanci, it can be prpvea by_ induction ;hat, for 1 <m <k,
D ) ‘-—m . m—1 )
RE)uo = (UP0 + HOPw " (@l +10m + 37 6Qs(0hom-io1 )
Thus, if m = k, then

By = Qu(o)u +1UA + Z ‘PQJ )wk-j-l'.

So o
(R(k o ea) = (o, co>+Z | 9Q)(@)(wi—s-1,€0) K 2 1

Thus, the expression on the right-hand side of (2.7) can be written as

Z:zl cj_;(ﬁ(n = J)uo. €0) = Z cj—1{wn-—j, €o)

1=1

n-1 n—j—1
Z, . Z i-19Qk(®)(Wn_k-j-1,¢€0).

Interchanging the order of the last sum we arrive at the result B

.CoNCLUSION.. From (2.7)-we can deduce that the parametrizations (2.5) and
(2.6) are the same. ' ' :

3. Liftings of a Weakly Positive Measure Matrix

Formula (2.5) leads to a parametrization of all thé'positive liftings of a weakly positive
measure matrix. For this purpose, we establish a close connection between the unitary
extensions of an isometric, operator and the positive liftings of a measure matrix. At
first, we brmg out some preliminary definitions.

DEFINITION 3.1: (a) A 2 x 2 Hermitian ma’trix M = (poB)a,p=12, whose el-
ements are finite complex measures on T, is said to be positive, (pqg) = 0, if the
numerical matrix (pqg(A)) is positive deﬁmte for every Borel set A of T. This

is equivalent to M(fi, f2) = Zaﬂ 12f0 fofadias > 0, for all (f1,f2) € P x P,
where P = {f T-C: f(t) = ZI_VNj(n)e,‘( t),eq(t) = €™} is the space of the
trigonometric polynomials in T.

(b) We say that the matrix M = (uqg) is weakly positive; and write (gag) > 0,
if M(f1,f2) >0, for all (fi,fa) € Py x Py, where P, = {f € P: f(n) =0for n < 0}
and P, = {f € P: f(n) = 0-for n > 0} are the subspaces of P of the analytic and
the conjugate analytic polynomials, respectively.
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. DEFINITION 3.2: A sesquilinear form B : P x P — C is said to be a Toepbtz
form if B(7f,7g) = Bo(f,g), for all (f,¢g) € P x P, where 7f(t) = e f(t). If Bis
a Toeplitz form and By = B|p, xp,, then By is called a Hankel form and one has
Bo(7f,9) = Bo(f,77'g), for all (f,¢) € Pr x Pa.

If B,, B, are Toep]xtz forms and By is a Hankel form, we say that By is weakly
bounded by (B;, Bz) and write By < (B, Bz) if

By1,B; > 0,|Bo( f,9)|* < Bi(f, f)B2(g.,9), for all (f,g) € Py x Py.

If By < (B,,B,), we define the matrix (Bag)a,p=1.2 where B,, = B, (o =
1,2), Bia = By, By = Bj and say that a form B :P x P — C given by B(f,g) =
Bos(f.g), for (f,g) € Pa x Ps, is a generalized Toeplitz form.

The next theorem has been stated by Cotlar and Sadosky in different ways (see
[6]) and has provided several extensions of classical results.

THEOREM 3.3 (Generalized Bochner Theorem): If B is a generalized Toeplztz
form, then there exists (pq3) > 0. such that

2
B(f,g)=/ f(gDdsan(t), for (f.g) € Po x Pp (0,8 =1,2 (3.1)
0

When (3.1) is satisfied, we say that B is the associated form to M = (pag). Another
form of expressing this theorem is in terms of a lifting property: : :

THEOREM 3.4'(Lifting of weakly positive measure matrix): Given the matrix
M = (pop) > 0, there exists M' = (u),5) > 0 such that

M(f1, f2) = M'(f1, f2), for all (f1, f2) € Py x P (3.2)

" From (3.2) and a theorem of F. and M. Riesz, we can deduce that there exists
he HY(T) such that

f1y = fo, dﬂn =duz + Rat. d/m = dugy + hdt, phy = p2s. (3.3)

Now, the problem of parametrizing all the positive liftings of M can be related to
the problem of palamem/mg Lhe umtan extension of a certain isometric operator,
as follows:

Assume that B is the form associated to A > 0. It defines in P an inner product
by (en,ex) = Blen.,€x), for each (n, k) € Z x Z. Thus, we obtain a Hilbert space
‘H such that P is a deuse subspace.- Let H_; and Ho denote the closed subspaces
of H spanned by {ex : k # —1} and {ex : k # 0}, respectively, and define the
right shift operator U in H by Uex = ey4), whose domain and range are D = H_,

cand A = Hyp. It is immediate that U satisfies the conditions of Section 2 because
Uteg =e, if n>0and U"e_y =€,y if n <0.

PROPOSITION 3.5: There is a bijection between the set of all positive liftings of
M and the set of all minimal unitary extensions U of the isometry U.
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Proof: Since (en,ex) = B(en,er) = poplen—k)if (n, k) € Ly xZg (a,f =1,2),
we can deduce that pq, and ypy are uniquely determined by U:

. [(ekeo) = (Urep,e0)  if k>0
pnlen) = { (eo e~k) = (€0, U %eo) if k<0

N (8_1,6_k_1>=(€_1,U_k6_1) lkaO
paaler) - {<¢k_l,e_1) =(U*e_j,ecy)  if k<0

However, p,2 is defined only in P, and py; in Pp:
pi2(ex) = ('ﬁogé k) = (eo, U™ e_ ) = (U teg,e_y) if k> 0,
| Ko 6,\)—(61\,80) (U**Ye_\,e0) if k < 0. o
In order to complcte the lifting, it is enough to determine pn(ek) for k > 0.
If we associate to each extension U defined in H(H C H) 1ts spectral measure
{E, :te(0,27]} by U Ut = /7" '“dE(, then the next numerical measure matnx}c}an
be defined: ’

( (E(D)eo,e0)  (E(A)eg,e) >
(E(A)e—y, e0) (E(A)e—lyc—l) .

This matrix is positive, that is |(E(L\)e et € ( A)eo,eo)(E(A)e_l,e_l)', be-
cause E(A) are orthogonal projections. Taking into account that

2m . 2w .
pnler) = / C'k'd:llu, and g (ex) = (Ukco,eo) = / e’“dz(E:C’o,eo),
0 ~Jo

we can assert that (E(A)eo,eo) = p;1(AQ). Analogously, (E’(A)e_l,e_l) = pa(A)
and (E(A)e_,,¢q) extends to py (A). So, we can say that ph, (&) = (E(A)e-y,ep).

Then, parametrizing uj, (ex) for k > 0 is equivalent to parametrizing (U*+'e_,, eo)
fork>0 1 .

Applying the resolvent formula,

- 2 o 2m ]
e = [ B [ it
0 0

1 - ze't 1 — zeft’

we can see that the Stieltjes transform of uf,, defined by the expression on the right-
hand side-of the pxevious formula, leads to the parametrization of U. Therefore, the

parametnization of uj, is given by (2.4)if R, is an orthogonal resolvent, and by (2.5)
Af R. is a generalized resolvent.

"~ As we have seen in'(3.3), dub, = duq) +h(t)dt where h € H(T). So, the transform
of /zf“ will be equal to the transform of p,; plus the transform of h. According to

2T h(t)dt B h(u)du _ -1 h(u)du
/0 1 —zeit /:r —iu(l - z/u) TA u—z ~h(=),
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the Stieltjes transform of h is h itself by the Cauchy integral formula. Letting in
(2.5) ¢ =0, we obtain a particular positive lifting of ), called v, whose transform
will be (Re_,,e0) = 2on>0 2" (Un,€0) for |2| < 1. Moreover, from (3.3) there.is an
absolutely continuous function hg such that dv = duz, + ho(t)dt. As duj, — dv =
(h — ho)(t)dt, their transforms are

h—ho=3 (X, ePer(@)akeo)) el <1 (34)

In brief, we-can state the following result.

THEOREM 3.6: Let M = (pop)a,p=1,2 be a weakly positive measure matrix on
¥ with more than one positive lifting. The parametrization of all the positive liftings
of M comes from the sequerices {c,},{d.} and the polynomial family {P,} defined
in (2.2) and (2.3) by the matrix M' = (u,z) which has the form expressed in (3.3)
where h is indicated in (3.4).

4. Schur AIgoﬁthm for the Nehari Problem

Here we are going to obtain an alternative algorithm for the Nehari problem, as
an application of the procedure developed in previous sections, which.allows a clear
geometrical interpretation. We start remembering some previous deﬁnmons and
facts. '

DEFINITION 4.1: A complex function ¢ defined in the unit circle D belongs to
the Schur class S if ¢ is analytic and [||lc £ 1. We also say that a finite or infinite

sequence {sg, s, ...} is a Schur sequence if there exists a functlon @pin the Schur class
such that @(n) = s,, for n= 0,1,.

As it is well known, the classical Carathéodory-Fejér problem consists in finding
necessary and sufficient conditions for a prescribed sequence {s0, 51 ...} of complex
numbers to be a Schur sequence. The Schur algorithm solves this problem ‘the main
features of this algorithin are the next ones (13]: :

Every solution can be uniquely parametrized by a complex sequence- {a,,},,>o with
lon] < 1. More precisely, this sequence is either finite with |o,| < 1, for 0 < n < N,
and |ony| = 1 or infinite with |o,| < 1, for n € N. Furthermore, Schur constructed
an algorithm for computing these parameters. Taking into'account that an irifinite
sequence {so, ..., 5n,...} 1s a Schur sequence if and only if {sg, ..., 55} also is‘a-Schur
sequence for all N, we can associate to each problem the so-called- N-reduced Schur
problem, which consists in finding ¢ in the Schur class such that @(n) = s,, for 0 <
n < N. So, the solution of the non-reduced problem can be obtained by a limit
procces. Although the reduced problem has no unique solution in general, the non-
reduced problem has always a unique solution. In particular, we can point that if
there exists N such that [on| = 1, the solution is unique and rational and has a
degree less than or equal to N.

On the other hand, the Nehari moment problem (see [12]) consists in ﬁndmg a
function f € L*(T)such that ||f||°° < 1 whose negatlve Fourier coefﬁcxents are'given

by {sn}n<0y 1el, Sp = f(n f —m‘f( )dt n <.0.
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Let us now state the conditions for the existence of solution in the Nehari problem.

THEOREM 4.2 (Nehari): A necessary and sufficient condition for the existence
of solution to the Nehari problem is

-2
- <2 Y o0l 1
‘Zm<u ano om nambn - m<o |a"‘| n>0 | nl ’ (4 )

for all finitely supported sequences {¢p}, {bn}-

The Nehari theorem is a particular case of the Generalized Bochner Theorem 3.3
where

" Bulfig) = Bulf,¢) = / fdt, and Byi(f,9)= 3 Y sm-nf(m)3(n).

m<0n>0

A special case of the Nehari problem (in which only a finite number of coefficients
is non-zero) is equivalent to one reduced Schur problem, as we see in the following:
Given {s¢,s1,....5n }, if there is a solution ¢ € S of the N-reduced Schur problem,
then the function ¥(t) = ¢ "N +1!,({) is a solution of the Nehari problem where
the coefficients are zero for n < —N — 1. Thus, we can associate to each Schur
sequence a generalized Toeplitz form B and the solutions are obtained by the method
developed in Section 3. A parametrization formula can be constructed through the
Stieltjes transform. Next we are going to build an algorithm in order to solve the
Carathéodory-Fejér problem and to determine the Schur parameters in a recurrent
form. At first, we state the 1-reduced problem as a Nehari problem.

"The Case N = 1. Given the sequence {s,}n<o Where s, = 0ifn < -1, find a
function ¢ € L>®(T) such that ||¢]lec € 1 and s, = @(n), for all n < 0. This wants
to say that z¢(z) will be analytic with the first coefficient prescribed. The problem
can also be stated as follows:

* Given the function f(z).= s_;z7!, find h € H(T) such that [|f + Aljec < 1.
_Giving f is equivalent to giving Lhe weakly positive measure matrix (/_tag)a’g 1,2
on T where gy = poy = dt,dus (t) = f(t)dt, u12 = H,,, and the problem consists in
ﬁndlng a positive matrix (pgz)a p=1.2 such that pyy = uyy = dt, s (n) = fai(n), if
n < 0. Owing to the Lifting Theorem 3.4, there must exist a function h € HI(T) such
that dub,(t) = dpai(t) + h(t)dt. Thus, the parametrization problem is a particular
case of the general problem where the measures are arbitrary. We can provide the
solution through the Stieltjes transform of the measure or, equivalently, through the
generalized resolvent of the associated isometric operator. Next, the solution of this
problem is obtained.

The form B is now

o, fm=-1n=0

. 3 fm=0n=-1
B(C,,,,(t,,)= $-1 .
1 fm=n
0 otherwise. -

If we call Co—(\/1—|0_1| then u = '(e ] —~ S- leo)anduo——l-(eo—s 1€-1)

are the unitary elements which span H & 'H_, and H S M, respectlvely Moreover,
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(u,e—1) = co and (ug,eq) = co. Since ey = cou + s_169 = Cou +'vp and ug =
—S_1u+coeo = —S_ u+wo, it is easy to see that the sequences {ca}n>0 and {dn}a30
defined in (2.2) are {co,0,0,...} and {—5-1,0,0,...}, respectively, and the sequences
{vn}n>o,{wn}n>o have the next particular form Un = S—1€n,Wn = Co€n,n 2 0.
Therefore, (v, e9) = s—) 6k and {ws, eg) = Codro-
Moreover, the polynomial family (2.3) verifies the recurrence law
Py(X) = ¢g, and Pp(A) = dogAP,_1(A), n >0, R
and we car write the next explicit form for the sequence: Pn()) = (doA)"co,n 2 0.
Inserting this into (2.5), we obtain s oo

(Riey,eo) = 3 27(=520)" ™ [9(2)]" (1 = s-1f2) + 51

n>1 . . .
= s+ Y (=5 T (] = Y 2 (=Ea) T ) s P
n>1 n>1 -
= o (14 X G )
n>1
+26(2) Y 2" =1)"T ‘(-_1" g
: n>1
=[so1 +28(2)] Y [-75- 19(z
n>0
_ ,_.+ tP(z)
l+-~-1~¢’7(~).

In order to obtain an expression for the function h in (3.4), we can write either

g : rem . .
or(er) = (T eCpsea) = [ OV d(Bres eo)
0

or puh,(ex) = fo eftdul (). Then dugy,(t) = €' d(Ele 1,60) If we apply the formula
of the resolvent:

- 2n o . 21 =it gt
<Rze;_l,eo>=/ doera) | [T
’ Jo 0

1 — zett 1—2et 0

As-dyb, = dug, + h(t)dt = f(£)dt + h(t)dt,

= 2r it t)dt 27 g-it ()t |
(R.e_1,e0) =/ ___f(_+/ A
0, 0

1— zett 1 — ze't

_ U uf(u)du ‘ uh(u)du- '
= A (1w T A’ “tu(l - 2/3)

_ -1 uf(u)du -1 uh(u)du
T /T u—2'+ 1[[ u—z
—z(flzy+ h(2)). o

1.
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‘Combining the previous formulas, we obtain

¢(z) (1 = [s-1]?)

1+35_120(2) - (42)

R(z) =D "S- B (1= s ) =

n>1

Observe that this result is the same as the one obtained in the first step of the classical
Schur algorithm.

The above construction allows us to give conditions for the existence and umc1ty
of solutions. Thus, if |s—;| < 1, there exists a solution; moreover, f(z) = s_,z7! will
be the unique solution only if [s_;| = 1.

The General Case. Now the problem is to find the set of all functions ¢ €
L>®(T) such that {|pllec S1land $(3) =0, j < =N, §(-r)=s_,, 1 <r < N. At
this end. only 1l-reduced problems will be solved, by building a parameter sequence
associated to the problem oy = o(sy,s%-1,...,5_-n),k==N,-N+1,...,-1

Step 1. Find o € L>(T) such that ||¢|lec €1, and $(j) = 0,7 < =N,3(=N) =

s_n. A slight modification of the formula (4.2) provides the set of all solutions. So
»(2) = Y- Z (1= lson DA (=S Hf-n()]" ™Y (4.3)

where f_n belongs to the unit ball of H*. The general solution ¢(z) depends only
on a sole parameter o_nN = s_n.

Step r (2 < r < N). Find p € L*(T) such that |||l < 1, and @(j) =
0,j < =N, 3(=N) = s_n,3(=N+1) = s_na1s.. ., (=N +7—1) = s_n4r—1. This
problem is equivalent to finding, among the functions o which are solutions of the step
r—1, those ones that satisfy (=N +7—1) = s_y4,-;. Now, the value (- N+r—1)
depends only on f_N+,._2(0). Hwecall o_nyroy = f_N+,_2(0), the problem can be
restated as: Find all the functions f_n4,_2 € H> such that ||f_nir—2]lec <1 and

f-n4r=2(0) = o_x4,-1. So. the general solution is also like (4.2):

fongr—2(3) = 0ongi

+ anl(l - l”—N+r—1|)2(—7—N+P—1)"_1[f—N+r—1(2_)]"2" , (4.4)
where f_N+,_,\ belong to the unit ball of H>.

In each step, a necessary and sufficient condition for the existence of solutions is
|o_~N4r—1f < 1: moreover. if |0 _n4,-| = 1, we have unicity. From an idea contained
in the mentioned paper of Nehari [12], if the whole sequence {s,}n<o is given, the
general solution for the problem can be obtained by means of a limit process.

5. Schur Algorithm for the Lacunary Nehari Problem

The method developed in Section 4 can he applied with some changes to solve the
interpolation problem stated in the introduction where the given sequence is lacunary.
We will study conditions for the existence and unicity as well as the parametrization
of the solution set. by means of a Schur algorithm.
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DEFINITION 5.1: A sequence of positive integers {ni} x>0 is said to be A-lacunary
if"—:f—' > A > 1, forall .

The next boundary theorem due to Paley [13] establishes that every lacunary
sequence of coefficients of an H'(T) function belongs to 2.

THEOREM 5.2 (Paley lacunary inequality): Let {ni}x»o be a A-lacunary se-
quence. There exists C = C()) such that if f(t) = 3 5, cne'™ belongs to H(T),

1/2
then (Zkgo lcnk |2> S c f077' If(t)ldt

Rudin (14] observed that Paley’s theorem has an equivalent dual formulation, as
follows.

THEOREM 5.3 (Rudin): If {nt}«>0 is a A-lacunary sequence and {vi} € €2, then
there exists g € L*°(T) such that -

S~y { vk ifn=ny L > d <
g = {28 D= (02 0) and llgllee < Clloll.

The Paley theoren, proved by Fournier [10] in a constructive way, can also be
proved as a consequence of the next theorem and from the Generalized Bochner
Theorem (see [6,7] and the references quoted there).

THEOREM 5.4: Given a A-lacunary sequence {ni}i>o, there exists C = C(})
such that if f(t) = 3 5, cae'™ belongs to H*(T) and ¢, = 0 when n # nu, then the

matrix i
(C”f(t)nzdt F(t)dt )
f(t)dt Cllf(t)l|2dt

is weakly positive.

Proof (Sketch): At first, we consider A = 2; thus, ng41 > 2ng. We must prove
that, if fi(t) =3, 5pane'™ and fo(t) = 3,50 bne™ """ are analytic and anti-analytic
polynomials, respectively, then

< s ([ Ifl(t‘)lzdt)m (/ Ifz(t)lzdt)]/z-

The expression on the left-hand side is equal to ‘Zk Cny (Z:‘;o_l a,%,,,‘_i)l and we

‘/fl(tﬁz(t)dt

decompose it in two summands; at this end, we call my = [52‘] Applying the
Schwarz inequality twice. we can obtain that

< 11fll (/lmtn?dz)m (/ Ifz(t)l’dt)m-
<ust ([ 1ncora) " ( / nopa)

Z Chuy (i (t,‘.l;,“, —i>

k 1=0
In the same way,

ne—1
ZC"*< Z aizn.-.')
. .

i=my+1
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In the case where A-# 2, some terms repeat themselves a fixed number of times;.the
last result will be multiplied by a constant C. So

<cine ([ |f1(t>|2dt>l/2 (/ |fz<t>|fét)m .

In order to solve the problem stated in the introduction, we consider a A-lacunary
sequence {nt} and a sequence {a,,}nzo € €2 such that a, = 0, if n # ng.

'/f,m?z(t)f(t)dt

NoraTioN: For each M > 0, we choose a positive integer py such that ppry, >

pm and ,
o 1/2 1
( > |an|2) <& (5.1)

n>pa

For each natural p, we define f,(x) = ZO(n(p anen(z). Then,

7 _ Jan ifn<p,
f"(")‘{o if n>p.

Analogously to £(a), we define the set

Sar(a) = {@ €L®: ||®lle <1,8(n) = M For(n),Vn > o}.

- M +1

LEMMA 5.5: If &y € ‘_:M(a) for all M there exists a sub-sequence {My} such
that, if ® = lxm $ ., then € E(a)

Proof. As|®ml|lc <1, the sequence is bounded; so, there is a weakly conver-

gent sub-sequence {®m, }. Let d(a) = llm ®ar,(z). For every n > 0,

d(n) = /‘Cb(t)e._,,(t)dt = kl_iligo/q’Mk(t)C_n(t)dt

M;
11m <I>Mk(n) = hm a“M +l = an.

This implies that ® € () B

LEMMA 5.6: If & € £(a), then for every M > 0, there exists ®p € Zp(a) such
that ||® —®um|| < 2/M. In other words, there exists a sub-sequence {®u, } convergent
in norm to ¢.

_JO0 ifn<pum . A
Proof. Let b, = {a,, ifn > pay Thus, {b,} satisfies also that b, = 0, if
n # ng and, by (5.1),

(Cotl) " < (5 tanl) < L
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By the Rudin theorem, there exists ¥ € L°°(T) such that 1¥]|oo < Cog = + and

= 0 f0<n<pm . =M (& _0), i '
B(n) = {an s o If we define ®p = M+1(q) }IQ, it results that

- M : 1 M
o —{maen H0sn<pa g9 °°<(1+—>——=1.
mln) {0 ifn>pum and [|®arlleo < M/ M+1

So, ®p € L pm(a) and

1 M 1 1 2 2
19 - Satllo = “ w”

< = < —
SR vl Iy vy S il VI U V.

THEOREM 5.7: $(a) # O if and only if Sp(a) # O, for all M.

Proof. (a)If £(a) # @, let & € £(«¢). By Lemma 5.6, for every M > 0, there
exists Ppr € Tps(a) and ¢ = klim ® g, (x); where {® g, } is some sub-sequence of

{®@m)}. (b) If there exists &y € Zm(a), for all M, we can choose a convergent
sub-sequence {®n, }. If ®(z) = klim a1, (2), by Lemma 5.5, ® € Z(a) B
k — o0

CONCLUSION. In order to show that £(a) # @, it is enough to see that Ep(a) #
@, for all M, and in order to parametrize £(a), it is enough to parametrize each
Tum(a), for all M. By definition, the problem of parametrizing £am(a) can be con-
verted into a Schur reduced problem; so an algorithm can be constructed and a
sequence of parameters which generate the general solution can be obtained. As for
each Tp(a), the given coefficients depend on M, the Schur parameters sequence will '
have an almost triangular form, like this:

1 1
Tila) oy ...0p
2_2 2
Tala) 0y0;...0,,
M _M M M
S!\’!(a) gy 0,y ...UIM...UPM

The differences between these results and those from the Schur algorithm are
that for each M, the set of solutions is different, because the value of the coefficients
changes and the set Sas(«) is not included in £ar431(a). The constructive method
developed in Section 4 will give all solutions of the previous problem, generating for
each M > 0 a set of Schur parameters; the existence and unicity of the solutions will
depend on their values. At first, we state the problem like a Nehari problemf

Given the sequence {sg,...,Spp,0,...} where s = MLHak (0 <k <pwm) finda

function ® € L°(T) such that ||®|| £ 1 and s,, = 6(n), for alln > 0.

If we define ¥(z) = :7'® (L), we have

3 _ ) S—n—1 if =ppy —1<n< =1
b(n) = {0 ifn<—ppy—1 )
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The problem of finding ¥ is now a (par + 1)-special Nehari problem. A constructive
method for getting all solutions can be obtained as an application of the general

method developed in Section 3.
The constructive algorithm is:
Step 1. Find a function ¥ € L*(T) such that |¥lec < 1 \Il(—pM -1) =

s,,M,‘I/(]) = 0,7 < =pm — 1. The solution, as the one obtained in ‘Section 4, is

z”“'“\ll(z)

Spas T+ Z . (1 - lspm |2) (_Epu )n_l zn(q/pu(z))n
— Spm + zq}pu( )
l+.3pu~\ppm( )

where ¥p,, € H* is an arbitrary function and ||¥,,, || < 1. We define 0,,, = s,,, as
the first parameter associated to the problem.

Step k (2 < k < pay+1). Find a function ¥ € L®(T) such that

A__' _ Si-1 )f.j_p( )_l‘+21’p(M)+1
Il < 1.9(=) = {0 ifj>p(M)+1.

Here, the solution is

2 1
ZPM+I¢'(Z) = opu + Z PM' (=0 PM)n z"
n>1 . -
PM . ) ) n
(X oy Ypu-ker(2)24)
J=par—k+2 . .

where W, i) € H™ is an arbitrary function such that ||¥,,, _x4,|| < 1, and
Opr—k+1 depends on {spu —ky.oos Spar+1}-
Definitely, we obtain the next final result.

THEOREM 5.8: The set ps(a) can be parametrized by

PAg n
pm+1 = n—1 2" M= M
z ¥(z) = Tppr + Z(l - |0pn:| ~Gprr) (E 0j12° I+ Po(2)2P )
n>1 1=1
where Wy € H™> is au arbitrary function such that ||¥o| < 1, and {Uk}k =g is a
sequence of paJameLezs obtained in a recurrent form from the sequence {sx}p¥
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