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The Sampling Theorem
for Functions with Limited Multi-Band Spectrum I

L. BEZUGLAYA and V. KATSNELSON

In this paper functions f belonging to L2(R) are considered which spectrum is contained in a
‘multi-band’ set E, i.e. in a subset of the real axis which is the union of finite many intervals.
For such functions a generalization of the Whittaker-Kotelnikov-Shannon sampling formula is

given. The considered problem is also related to Riesz bases of exponentials in L2(E). In

the first part of this work we consider sets E consisting of regularly positioned intervals of the
same length.
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1. Introduction. The Whittaker-Kotelnikov-Shannon sampling
theorem

N

The following result is well known (see, for example, (8, item 2.9], [11, Chapter 2], [19,
Chapter 3]):

Let f be a function which belongs to L2(R), i.e. R |f(z)|?dz < oo, and let f be an |

. entire function of ezponential type not ezceeding o:

= én |f(2)|

Bz — 57— S | (1.1)

where o is a given positive number.
Then the funétion ;fi.s‘ uniquely determined by its values f(ka—") at the sequence
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{";—"}kez of points of the real azis. The sequence {f('%)} belongs to €2. Moreover, the
Parseval identity holds:

Il ( ) /|f(a:)|2dx L (1.2)

keZ

The function f can be reconstructed from the sequence {f(’%')}kez of its values by the

interpolation series

kn\ sin o(z — kX)

=Y 1(F) RS (13)
reZ o(z — %

The series converges both in L%(R) and locally uniformly in the complez plane. The

interpolation (1.8) is ‘free’: The sequence {f( ")} kez can be an arbitrary sequence

C = {ck}rez € 22, that is Zkezlckl < 0o . For each sequence {ci};c7 € 2
series ' ’

- i km

- sin o(z — £X) . __ _

fel2) = Dk — (1.4)
.. keZ o(z =)

converges both locally uniformly and in L%(R) and defines an entire function f. of an

ezponential type not exceeding o which satisfies the interpolation condzttons fe( k") =
¢k (k € Z). Moreover, the Parseval identity

/ |fe(2) 2dz = Z w2

keZ

holds.

Thus, every sequence from #2 can appear as the sequence {f (’%’)} of the values of
an entire function f € L?(R) satisfying the condition (1.1):

Each function f € L%(R, dz) is representable in the form
fz) = /R e(N\)e 2 d) (1.5)

The Fourier-Plancherel transform ¢ of f also Belonés to L%(R,d)), and the equality
R le(A)]2dA = ?1; Jr 1f(z)?dz holds. The integral over R in (1.5) is defined as
an improper one, namely as the square mean limit of the integral over (=N, N ) as
N — oo. In its turn, the function ¢ is the inverse Fourier transform of the function f,

ie. p(A) = 21; R f(z)e™*}% dz (in general, this integral is also imp;ope;: li.m.).
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The Wiener-Paley theorem states that a function f € L2(R) is the restriction on
the real axis of an entire function f of exponential type not exceeding ¢ (1 e. f satisfies
the condition (1.1)) if and only if the condition

e(A)=0 for all A € [—o,0] ‘ . (1.6)

holds. This condition can be formulated in terms of the notion ‘spectrum of the func-
tion’. Let ¢ be a measurable function. By definition, a real point Ag belongs to the
support of the function ¢ if, for any £ > 0, the set (Mg — £, A0 +€)N{A: p(A) # 0} has
positive Lebesgue measure. Thus, the condition (1.6) can be expressed in such a way

the support of the function ¢ is contained in the interval [o, o).

Definition: The spectrum of a function f belonging to L2(R) is the support of

its Fourier transform ¢.

If we interpret the variable z as time it is natural to consider the number A in the

Az

exponent e'*? as frequency. In this connection it is natural to call the spectrum of the

function f its frequency spectrum.

The assertion stated above can be formulated also in spectral language:

Let f € L%(R) be a function with spectrum contained in the interval (~o,0). Then
f is uniquely determined by sts values f(k—:-) at the points of the sequence {’;—"}kez,
and f can be recovered from these values by means of the interpolation series (1.8). The
sequence {f( k”)}kez belongs to €2, and the Parseval identity (1.2) holds. An arbitrary
sequence from €2 can appear as the sequence {f( )}keZ

Expansions of entire functions via Lagrange interpolation series (1.3) were consid-
ered by E.T. Whittaker long ago, as long ago as in 1915 (see [30]). (See also J.M.
Whittaker’s book [31].) What concerns early publication on this subject, the paper [12]
by G.H. Hardy should be mentioned. In 1933 V.A. Kotelnikov paid attention to the
fundamental significance of the expansion (1.3) for the transmission information theory.
He has formulated the following fundamental proposition: . "

Let a signal be described by a function f with a bounded frequency spectrum which is
contained in (—0,0] (that is, this signal contains no frequencies higher than 5= cycles per
second). Let us have a certain communication channel. For the possibility of recovering
this signal at the output of this communication channel it is- sufficient to transmit over
this channel only the values f(kA) of this signal at the sampling points A apart, if
A=1Z.

The formula (1.3) and the above statement present the content of two fundamental
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theorems of V.A. Kotelnikov which are contained in his work {20]. In the Russian
scientific literature these statements are combined and called ‘ Theorem of Kotelnikov'.
In the western scientific literature these statements are called  The Sampling Theorem’.
C. Shannon has used the sampling theorem in his work [28] in the communication
theory. H. Nyquist [26] has pointed out the significance of the interval A = T for
the telegraphy. C. Shannon called this interval Nyguist interval corresponding to the
frequency band {—a,0]:

Of course, it is possible also to use the values {f(y + kA1}rez at an arbitrary
periodic sampling sequence with an arbitrary A} : 0 < Ay < A = Z. This is true since
if the spectrum of a function is contained in the interval {—0, o], then, all the more, this

spectrum is contained in the interval {—o1, 0] where 07 > 0.

Ifzp = v+ k% (v a real number, o1 > 0), and f € L%(R) is a function which
spectrum is contained in [—0,0), then the equality

f(z) = flz )sm o1(z — z3)
:EL; 1= xk)

holds for every complez z.

In the Whittaker-Kotelnikov-Shannon Theorem the samplings form an equidistant
sequence of real points. However, it is possible to generalize this result and to get
analogous results for some sampling sequences which are not equidistant ones. . Of
course, in such generalizations the equality (1.2) does not remain true and has to be
replaced by an inequality of the form

m? 3 [f(ap)l? < / f(@)2dz < M S 1zl

- keZ keZ
(For such generalizations, we refer to [16, 18, 24, 32).)

Note, that if aj < o (ie., if [-01,01] C [—b, o)), it is natural to consider the
sequence { ~ ez as thinner than the sequence { *}1ez- In other words, if it is known
that the spectrum of a function f is contained not only in the interval [-o,0] but in
fact in a more narrow interval [—oy, 1], then it is possible to use a thinner sequence
of samplings for recovering this function. Detailed surveys of results concerning the

sampling theorem and its various extensions and applications are presented in (4, 5, 13,
17, 29]..
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2. The sampling theorem for functions with multi-band spec-
trum

The general statement of the question under consideration is as follows. Let E be a
closed subset of the real axis, with positive Lebesgue measure. Let f € L%(R,dz) be
a function whose spectrum is contained in the set E. Which condition must a discrete
sequence {z;} C R satisfy in order to ensure that f can be recovered from the sequence
{f(zx)} of its values? How is it possible to realize such a recovery? It is desirable to
get the solution of this problem in the form of an intérpolation series. It is also ‘desikrable
that such an interpolation would be ‘free’, i.e., that it would be possible to choose an

arbitrary sequence (from ¢2) as the sequence {f(z4)}.

Of course, if E is a subset of the interval [—o,0], then it is possiblé to choose
{zx} = {%’5} as such a sequence. (The sequence {z¢} = {%’5} corresponds to the whole
interval [—0,0].) However, by such a choice of the sequence {z;} the interpolation
is not ‘free’. If the spectrum of f belongs to a proper closed subset E of the interval
[, 0], the sequence {f(k—:-)}kez cannot be an arbitrary square summable one. As the
set E is smaller than the whole interval (—o, 0], it is natural to try to find sequences
{z} which are ‘less dense’ than the sequence {’:,—"} (It is desirable to find sequences
which are simultaneously sufficiently dense for the possibility of the recovery of the
function f from its values {f(z;)} and which are at the same time sufﬁciéntlyj thin for

the interpolation to be free.)

In this article a special case of this problem is considered, namely we will specify
the form of the set E. The set E will be assumed as a finite union of intervals. These

intervals are positioned regulariy and are supposed to have the same length.

Let p and g be integers satisfying 0 < p < ¢. We separate the interval [~0, 0] into ¢
equal intervals. .(Each of these intervals has the length 27") The set E is the union of p
of these q intervals. Thus, the Lebesgue measure mes E of the set E is mes E = 20 s .
(The intervals forming the set E can have common end points and form after confluence

bigger intervals which do not intersect and which length is a multiple of ZT")

1 J A I I i L J
g 1 v 1 T T s 1

-0 B “ o
Figure 1.

Figure 1 cofres_ponds to g =7, p=3, in which case the intervals form a set E without

common end points.

1 J L I l I Il d
r | 4 Ay Y T

Figure 2.
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Figure 2 corresponds to ¢ = 7, p = 4, in which case two of the four intervals have

common end points.

Thus the spectrum of the considered functions consists of many ‘bands’, namely of
those intervals which form the set E. (This is the motivation for the title of this paper.)

Here we get an interpolation formula (the so-called sampling formula) for a function
f € L¥(R, dz), which spectrum is contained in such a multi-band set E. The sequence
{zi} of samplings will be g times thinner than the sequence {%’5} which corresponds
to the whole interval [o,0]. In detail, the sequence consists of groups, each of which

consists of p real points, and these groups are positioned periodically, with period q%’.

Let An (n = 1,2,...,p) be the centers of the intervals I, consisting of the set
E, Apt # Apu for n’ # n". We suppose the points A to be distributed ‘regularly’, that

U ade U (—o+@+1) 7). (21)

1<n<p 0<t<q-1 g

In=[,\,',- AN 5], and E= |J L. = (2.2)
. q q.  1<n<p

Before deriving the sampling formula for a function with spectrum in E we recall
how to get the ‘usual’ sampling formula for a function with spectrum in [~0, g]. So, let

the spectrum of f be contained in [—0, 0], that is
flz) = /[ ]go(/\)e"\:d/\ _ (2.3)
: —0,0 - ) .

where ¢ € L?[o, o]. We expand the exponential function in a Fourier series with respect

to the system {eiks’\}kéz (this system is an orthogonal basis in L%(—a,0)):

e = Z ck(z)ei%’\ , A€ [-o,0].
- keZ R :

The Fourier coefficients ci(z) can be found in a standard way:

; _ kr
20c(x) =/ AT~y , thatis cp(z) = s_mo(a:—k’ra
[—610] v (7(.’1: - 7)
Thus,
. _kmy
ro 3 HEm ) i e o). (2.4)

keZ U(.’E - ’:’_ﬂ’) ’
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Inserting (2.4) into (2.3) and changing the order of summation and integration we get-
' km )

ﬂn=§:ﬁ%§E§F

keZ

p(N)e' e 2 d

[_”:‘7]

Because of f[_‘7 o] cp(/\)ei%’\d/\ = f(’;—") (this is the formula (2.3) for z = %’1), we get
the formula (1.3).

Note that this proof of the samplmg formula is rather different from the genera.lly
known versions. Usually one does not uses the Fourier expansion for the exponentlal
function % but for the function ¢. (See, for example, (5, item 2.9], (8, §2.1], (15,
§3.1].)

Now we start to derive the sampling formula for functions with ‘multi-
band’ spectrum. So, let E be a set of the shape (2.1) - (2.2). We want to find a
system of exponents {ei’\""} which is an orthogonal basis in the space L2(E). Further,

we will expand the exponential function e**% into a Fourier series on E:

e = Z cm(z)e ™ (AeE) | (2.5)
meZ

The following consideration repeats the one used above for obtaining the sampling
formula for functions with one-band spectrum. (If we are able to compute the Fourier
coefficients ¢y, in (2.5).)

Let h; ‘(1 < j £ p) be (unknown at présent) 2T”;pefiodic functions defined on the
real axis: h;(\ + 270 m)=hj(\) (m€Z, AeR, j=1,2,...,p) . Let 71,72,-.-,7n
be real numbers for which it is only assumed that D # 0 where

D=det ™™ (1<j<p 1<n<p).
Without loss of generality we can suppose that y1 < vz < ... < yn. We determine the ;
functions h; from the condition 3~ <;<, hj(,\)e‘7i'\ = ¢irz (,\ € E), that is we solve
the system

{

Y h(Ner = A€y, n=1,2,...,p). (2.6)
1<$5%n .

We suppose that ¢ is odd. In (2.6) there figure up the values of the functions h; on
different intervals. Using periodicity of these functions, we can reduce system (2.6) to
the system in which there figure up the values h; on one and the same ‘supporting’
interval. If ¢'is odd we choose as such supporting interval Iy = ” As the

functions h; are penodlc they are completely determined by their restnctnons on
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any interval with length 7, in particular, on the interval Iy. In view of (2.2), the
points A of the interval I, can be parametrized in the form A = Ay, + pu, 4 € Iy. As Ay, is
a multiple of 2{1‘1 (see (2.1). g is odd). then hj( A, +p) = hj(p) (1 < j < p). Substituting
A = A, + pinto (2.6), we get the identities

Z k. (#)et’hl‘el‘ﬁ/\n — exz\nz‘ iuz (ll IS IOy- 1<n< p) . (27)
1<j<p . A

We consider these equalltles as a system of linear a.]gebralc equations concerning the
‘unknown” vanables h; (;z)e"'f“ with the coefficient matrics le*%i*»||. By assumption,
the determinant D of this matrix does not vanish. Solvmg the system (2.7), we get’

D"(z) fux

bt = Do, (28)
where D := det||e’)"‘“’J f1<n<p and
1<)<p
r ei/\171 L eMYmo }ei/\lz eMTnt1 | eiAYp A
erm L. gllamor pidez gidazagr L. idaw
" Dp(z) = det : . (2.9)
L ei'\_p7l A ei’\p'rn-l ei'\pz ei/\p'h-}‘l‘ cee ei’\p’Yp )

Evidently, Dn(yn) = D and Dyn(vym) =0 1<m< p; m # n). (In the corre-
sponding matrix the m-th and the n-th columns coincide.) From (2.1) it follows that
eip{i/\nvj} = e_zp{i)\n("yj +4q ’;—")} forn=1,2,.7.,p, j=1,2,...,p and for every
integer k (we recall that ¢ is odd now). Thus, for odd ¢ the equa.lities o

Dn{vn + kg g) =D (1<n<p, k integer) (2.10)

D,,(’y,,, + kg —) = (1<m<p, m#n, k integer) (2.11)

hold From (2 8) we have . . o

Dy(z)
D

ha(p) = 4 ei#(t—‘Yn) (Tl = 1,,1,,});# € lp).

Expanding the function h, = hn(i) into a Fourier series with respéct to the system
{ezp(ixg Zu)}iez, Which is an orthogonal basis in L?(Iy), and computing the Fourier
coefficients in standard way, we get the equalities

D(:c) ing(z-'yj—qgk) '1:' - o :
hi(w) = ’ = sk (7 =1,2,...,p 2.12
- kezz HEEE TR G po (212)
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for every u from Iy. Each periodic (its period is equal to the length of Iy) function
hj is a smooth function inside the interval Iy and a piece-wise smooth one on the real
axis. Therefore, the Fourier series (2.12) converges to the function k; boundedly on the
whole real azis (not only on Ij). From (2.6) and (2.12) it follows

Dzsmﬂ(z q;k)
Z > ()

"(2.13)
x @ 5 k1A for A E= U In .
1<n<p
The series in (2.13) converges boundedly for every A € R. (However, the equality in
(2.13) holds only for A € E.) The logic in the previous consideration is rather broken.
We showed that if the exponent e'** is representable on E in the form (2.6), then this
exponent expands into the series (2.13) on E. However, all our reasoning is invertible,

and the equality (2.13) really holds. Analogously, if ¢ is even, we get the equality

. Dj(z) sinz(z—'yJ—qak)
_Z z {D (-1)* %Zz

i<j<p ke % =95 k)

(2.14)

x @S ¥ for NeE= |J In.
1<n<p

In formulas (2.13) and (2.14) z is an arbitrary complex number. Now let f be a
function from the space L2(R), and let the spectrum of f be contained in the set E, that
is f(z) = fE (p(z\)ei’\zdz. Inserting herein instead of the exponent e**Z its expansion
(2.13) or (2.14) on E (the sum of the series (2.13), (2.14) outside of E'is not important
because the function ¢ vanishes outside of E') and changing the order of summation

and ;ntegration, we get the formula
f@)= 32 > Sirla) f(zik) » o @)

1<5<p keZ ST
where : -
'zj,k=qg-k+7j (1<j<p; kel) - (216)
and-

S; k(z) = (~1)kle=

D‘A sin 2 (z —z; o
n ,Igz) 4 (=~ 2j) (217)
; (I —zj’k) . L

Changing the order of summation and integration is permitted since the function ¢
belongs to L2(E) and the series (2.14) converges boundedly.
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The formula (2.15) can be considered as an analogue of the sampling formula (1.3).
The factor (—1)*(9=1) is introduced to treat simultaneously the cases of even and odd
g. We shall prove later that the series in (2.15) converges both in LZ(R) and locally

uniformly in the complex plane.

Let us analyze the formulas (2.15) - (2.17).  The set of points {z ;} is
decomposed into p subsets, or p ‘series’. These series are enumerated by the index j, j =
1,2,...,p. The j-th series consists of the sequence of equidistant points Tiks Tik =7+
L% k, where k runs over the set Z of all integers. The set {S;} of the functions which
figure up in the interpolation series (2.30) is also decomposed into p series enumerated
by the index j, 7 =1,2,...,p. It follows from (2 10) and (2.11) that

1 if j=5 k=¥
Sik(zj k) = . (2.18)
: 0 if (j,k)# (5", %)
In other words, each function S; k vanishes at all the points z;r g of each ‘alien’ series
(which is enumerated by an index j’, ;' # j), and also at all the points z; g of its ‘own’
series different from the point z; k- Thus, the series (2.15) is an interpolation one.

Let us see what is the spectrum of the function S; k- The spectrum of the
sin Z (z-z;,

function —a—%m)k—) is exactly the interval Iy = [- £ 7 q] As it is seen from (2.9),
PR
the function D; has the form

"
DJ'(J:) = Z dn’je' z.
1<n<p
where d,;, ; are some numbers - the algebraic complements of the (n, )-th entries of the

matrix.||e**»% || 1¢ngp. Thus
1<5<p )

Sia(z) = (~DK@=D 37 I ida M (2.19)
14n%p (2= 2jk)

Hence the spectrum of the function S;k is contamed in the set U1<n<p(’\n + Iy). As
AntTp = I, the spectrum of the functlon S k’is contained in the set E. This spectrum
coincides with the set E if all the numbers d;j n are different from zero. Thus, each term

of the series (not only its whole sum) has the spectrum contained in E.

Let us clarify whether the interpolation (2.15) is free. Let {cjx} be an
arbitrary sequence of complex numbers satisfying the condition Zl<,<p EkeZ lc;, k2 <
oo or, what is the same, the condition

Doleialf<oo (G=1,2...,p). T (2:20)
keZ
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Then the series ‘
fez)= 3 3 ciwSik(=) (2.21)
1<j<p keZ
converges locally uniformly in C: from (2.16) - (2.17) it follows that

e2olIm 2|
1S;x(2)2P <A —————  forallz€C
() 1+ |z — 22
where A is a constant independent on z. Hence,
STIS;k(2)? < B e2ollm =1, (2.22)

From the locally uniform convergence of the series (2.21) it follows that f; is an en-
tire function, and from (2.20) and (2.22) it follows that f; is an entire function of an

exponential type not exceeding . From (2.18) and (2.21) the interpolation condition
fezjp)=cjp (1<j<p; keZ) (2.23)

follows. Let us show that f. € L?(R), and that the inequality

/ fele)its < S Gl (2.24)

1<j<prkeZ

holds for every square summable sequence {cj, k}1<J<p keZ» where D = det ||t | ,12;.::
and M is a constant depending only on 6, M = M(o) < oo for ¢ > 0. M does not
depend on the sequence {c;x}. It is sufficient to prove this inequality only for all finite
sequences {c;x}. As fc is an entire function of exponential type not exceeding o, the

mequa.hty of Plancherel-Pélya [27]

/ |fo(2)Pdz < e2luol / \fe(z + ivo)dz

is satisfied for every yo € R. (See also [2, item 6.7] or [32, Chapter 2, Theorem 16].)
Hence, it is enough to prove that the inequality

' /R|fc(1+iyo)|2d-‘5< M(‘””") Y Sigel? 0 (229)

1<5<p keZ

holds for some real yg where M(o,y0) < oo is a constant not dependmg on z. (The
inequality (2.25) with yo # 0 can be proved easier than this one with yg = 0. ) The

function fc is a sum: fe(2) = 301 <j<p fe,j(2) , where

fei(2) =) ¢;kSik(z) - (2.26)

keZ
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It is enough to prove an inequality of type (2.25) for each function f.;, 1 < j < p.
Lemma 2.1: Let {t,} C R be a sequence satisfying the separation condition

t/—tu—6>0 2.27
k/#k/’lk kl ( )

{€x} € C be a finite sequence and yo € R be a non-zero real number. Then
k% =
R

— ¢ —
keZ z =t =
where Ny = N1(yo,6) is a constant not depending on the sequence {1}, N1(yo,6) < oo
foryo #£0, § > 0.

dz < Ni(yo,8) Y 1&kl?, (2.28)
keZ ‘

The operator {€x}rcz — (Zkez ﬁ?—_t'y_o) R is a discrete-continuous ana-
- .
logue of the Hilbert transform (yg is some parameter). The inequality (2.28) shows that

for yo # 0 this operator is a bounded linear one from ¢2 to L(R).

We prove Lemma 2.1 later. Now we show how the inequality (2.25) follows from
the inequality (2.28). The equality (2.19) can be rewritten in the form

Six(z) = (-1)% 1 sm—(z—‘r,)

do o . Sy (2.29)
x| 3 fmigne) L cq.
. JERPVI N LS
(ISnSp D ) z—v;—k - .
From (2.26) and (2.29) it follows that"
. N k (-1)ke ‘
i(z + <= %, €R, 0 2.30
IfC,J(x zyO)l =D ’ Z T - (.71 ‘+k go_ 1Yo ) (I Yo Yo 96 ) ( )

where N = N(yg,0) is a constant not dependmg on the sequence {c;, k} N(yo,0) < 0
for yo # 0, 0 < co. It results from (2. 30) that

S esta +ivo)de < T2 Cs) N
R o :c.._+zy(i :t:_D2 / z z—(7j+k9§ o) T .

The sequence {t;} = {v; + k L} (k € Z, j is a parameter) satisfies the separation
condition (2.27) with § = £Z . From (2.28) (with fk = (- l)ch g and tp = v; + k 17)
we obtain the inequality

Jlfeste+ivla < 2 5 1

keZ
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where M = NN does not depend on the sequence {c;x}. The deduction of the in-
equality (2.24) from the inequality (2.28) is finished.

We shall prove the inequality (2.28) later, after the formulation of the main theorem
of this item. Later, we shall also prove the ‘inverse’ (relative to (2.24)) inequality

m? 30 leul® < /lec(z)l2dz : (2.31)

1<j<pikel

where m is a constant depending only on o, m = m(¢) > 0 for 0 < 0.

. From the inequality (2.24) it follows immediately that (by condition D # 0) the
series (2.21) converges in L2(R) and defines a function f. from L?(R) for every square
summable sequence {cj,k}ls j<pkeZ We mentioned previously that the spectrum of
each term of the series (2.21) is contained in the set E. If the series (2.21) converges in

L%(R), the spectrum of its sum is also contained in the set E.

Thus, we have proved the most of the assertions of the following

Theorem: Let E be a subset of the interval [—a, 0] which has ‘multiband’ structure
(2.1) - (2.2) as described above: E is the union of p reqularly positioned intervals of the
length 270 with the centres An, n=1,2,...,p (see (2.1)), p and q are posilive integers,
p<gq. Lety; (7 =1,2,...,p) be real numbers satisfying the condition D # 0 where
D= det"eu\nh"l«.:,, Let {z;, k}1<1<p kcZ C R be the countable set which is defined

in (2.16) and let S]k (1 < j < p,k € Z) be the functions defined in (2.17). Then:

i) Each function f € L2(R) whose spectrum is contained in E can be recovered from
it..s values {f(z; )} at the sampling points {xj-k}ISjSp,kEZ by means of the interpolation
series (2.15) which converges both in L?(R) and locally uniformly in the complez plane.

The snequalities

' , : : o |
Y el s / e Y ek e

1<j<p;kel . ) 1<j<p;keZ
hold where m and M are values depending only on o and not depending on f:

m=m(o) >0, M = M(o) < 0. (2.33)

ii) . For an arbitrary square summable set {cj‘k}1<j<p,keZ of complex numbers the

series (2.21) converges both in L%(R) and locally uniformly in the complez plane. The

sum f; of this series is a function belonging to L2(R) whose spectrum is contained in
E. The function f. satisfies the interpolation conditions (2.23).
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A part of the assertions of this theorem has been already proved. To finish the proof,
we should prove the inequalities (2.32) and clarify the character of the convergence of

the series.

Lemma 2.2: Let {t;} be a sequence of real numbers satisfying the separation
condition (2.27), and let T be a positive number. Let w be a function from the Hardy
class H? in the upper half-plane. Then the inequality

m? ;;w(tﬁir)ﬂ < /R [w(z)|?dz (2.34)

holds where m is a constant not depending on the function w (m depends only on T and

the constant § occuring the separation condition (2.27)):

m=m(67)>0 for r €(0,00),6§ >0.

Proof: Let p = min(g,r). Let zp =ty +ir, and Cp = {z : |2 — 2| < p}.
Evidently the circles C}, do not intersect and are contained in the stripIl, = {z € C:
0 < Im z < 2p} of the upper half-plane. Therefore, the inequality

X[ wteridedy s [ pute + inasay

holds. As the function |w|? is a subharmonic one, the inequalities
2. 1 2, :
[w(zg)l® < — |w(z)|*dzdy (kez)
. P Cx :
are satisfied. Combining these inequalities, we obtain the inequality

7p? w(z;)|? w(z + iy)|?dzdy . .
# 3 bl < [ jwte +ifasdy (2:39)

As for every function w from the Hardy class H2 the inequality Jr lw(z + iy)|2dz <
JR lw(2)]2dz holds, the inequality -

//n,, [w(z + iy)|2dzdy < 2p_/R lw(z)|?dz ' (2.36)

holds as well. Comparing the inequalities (2.35) and (2.36), we get the inequality (2.34)
with m2 = Fu

Remark: Of course, Lemma 2.2 is a very special case of Carleson’s theorem
concerning the so-called Carleson measures. The Borel measure 4 in the upper half-
plane is called a Carleson measure, if the inequality

L Lol < ¢ [ o)t
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holds for every function w from H? where C < oo is a constant not depending on
w. This theorem is stated, for example, in [9, Chapter 2, Theorem 3.9]. If a real
sequence {t;} satisfies the separation condition (2.27), then the sequence {2} given

by {zx} = {tp +i7,7 > 0} generates a Carleson measure. However, the sequence {z;}

is a very special one, and our proof of Lemma 2.2 is much easier than any other proof

of the general Carleson theorem.

Proof of the left of the inequalities (2.32). Choose some number 7, T > 0,
and fix it. If a function f satisfying the assumptions of the theorem is given, we consider

the function w,

w(z) = f(z —ir)eG=T)  (Im 2> 0) . (2.37)

We consider only the restriction of w on the upper half plane. It follows from the
assumptions on the function f that the function w belongs to the Hardy class H? in
the upper half plane. In accordance with Lemma 2.1 we have the inequality

m Yl +in) < [ o)
k , R
with m; > 0 not depending on w. Taking into account (2.37) we obtain the inequality
m SR < 7 [ 15 = in)ftde (2.38)
k
As f is an entire function of exponential type not exceeding o, the inequality

—in)? < 207 ) 2de ' _
/le(z )2 < /le( )[2d (2.39)

holds. Comparing the inequalities (2.38) and (2.39), we obtain the inequality

ma(r, 6)2} R < et /R|f(z)|2dz .

Foreach j, j = 1,2,...,p, the sequence {z; x } 7 satisfies the separation condition
(2.27) with § = 903. Therefore, for each such j the inequality

)2 407 z 2d1:
;‘zkju(x,,kn.Se /R ()|

holds with a constant g > 0 not depending on f, x = u{o,7). Summing up all these
inequalities over j, we get the inequality

mo 3 Ifel? < /le(xn?dx | (2.40)

1<j<pikel
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with a constant m not dependingon f, m=m(s) >0 foroc < ool

Remark: In the proof of the inequality (2.40) we have not used any special
structure of the spectrum of the function f. We used only that the spectrum of f is
contained in the interval [—o, 0] and hence f is an entire function of exponential type not
exceeding 0. Inequalities of the form (2.40) are well-known. Firstly, such an inequality
has been given by M. Plancherel and G. Pélya (see (27, especially items 27-31]). This
result and its proof are reproduced, for example, in [2, pp. 97-103] and in [32 Chapter
2, item 3, especially Theorem 17 there].

Proof of Lemma 2.1: Perhaps the simplest way to prove the inequality (2.28)
is via using duality reasonings. Let yg > 0. For every finite sequence ¢ = {€k}rez the

function

9¢(z) = 2 E_k - (2:41)

1 —
keZ 2=l —Wo
of the complex variable z belongs to the Hardy class H? in the upper half-plane. As H?

is a Hilbert space, the dual space can be identified with the space H? itself in standard
way. Hence, for every function g € H? the inequality

e

9 , - 2
A{Ig(x)] dzr = sup /];h(x)g(x)d: (2.42)

holds, where supremum is taken over all normalized functions *h € H2: flR |h(z)|2dz =

1. Applying the relation (2.42) to g = g¢ of the form (2.41) we obtain

/‘ I—tk—lyo

According to Cauchy’s 'fotmula.,

2

Zﬁk/() dz|. .

d =
T = sup o tk “ive
keZ

1
h(z) ————— dr =21 h(t + iyp) .
/Ez()zftk_lyo s+ )

R =t

where supremum is taken over all normalized functions k _frorﬂ H?. As

Hence,

. 2
> Erhlty + ivo)

keZ

2
dz = 4n’sup , (2.43)

2
> Ekh(te +iyo)

keZ

> w) > It + iyo)|2) ,

keZ keZ
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we obtain from (2.43) that

€k 2 2 u ; 2
/R‘ij T, e | &S (;m) (shpzkjmuw vo)| ) L (24

According to Lemma 2.2, the inequality

S I + i)l < C6,30) [ Ih(a)P (2.45)
keZ

holds for every h belonging to H? where C(6,yo) depends only on yg and § (from the
separation condition (2.27)). Combining inequalities (2.44) and (2.45) and taking into
account the normalizing condition g |h(x)|2d; = 1 we obtain the inequality (2.28) B

Now we are completing the proof of the theorem of this item. Let the
function f satisfy the condition of the theorem. We have proved that the inequality
(2.40) holds. Thus, the condition

D Y =ikl <o (2.46)

1<j<pkeZ

is satisfied. We have proved that the function f is representable in the form (2.15).
Thus, f has the form fc of (2.21), with ¢; x = f(z; ). Of course, the condition (2.46) is
the same as the condition }°, .7 |cj’;¢|2 < oo (j=1,2,...,p). Forany function f. (with
square summable C = {c;}) we have proved that the series (2.21) converges both in
L%(R) and locally uniformly in C. We have also proved the inequality (2.24). However,
for ¢; x = f(z;x) this inequality goes over into the right inequality (2.32), and the series
(2.21) goes over into the series (2.15). This completes the proof of the theorem B

3. Remarks regarding the theorem of the previous section

In this section some remarks are given in which we supplement and specify results of

the previous section.

Remark 1: In particular, we have proved the following uniqueness theorem: If
f € L?(R), its spectrum is contained in the set E of described structure, the point
set {z; 4} (see (2.16)) satisfies the condition D # 0 (D := det||ci’\"7i||11§,'.§p) and f
vanishes at all the points {z;}, then f = 0. i

. Remark 2: It would be possible starting from a set E with ‘multi-band’ structure,

to construct functions S via formula (2.17) and then, starting from a function f €
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L%(R) with spectrum in E, to construct the series (2.15). From properties (2.18) of
the functions S; ; it follows immediately that the sum of these series coincides with the
original function f at all the points z; k- However, all the same we cannot do without

z

reasoning using the expansion of the exponent ¢**Z into a Fourier series on E since we

do not dispose of any independent proof of the uniqueness theorem.

Remark 3: Let us show, that if A1, A2,..., A, are given real numbers, A\; < Ay <
... < An, then there exist real numbers 71,72, . . . , 7o which satisfy the condition D # 0,
where
D =D, An; Y1, 57n) = det]|e Y [1cn<p -

1<5<p
For any number p > 0, we put v;(p) = p( — 1), 7 = 1,2,...,p . Denote (a(p) =
e*P  n=12..,p. Then ®(p) = D(M1,y.--yAn 5 11(P),- -, n(p)) has the form

r 11 .1
G G2 o (n
®(p) = det
NSt SLEN ot

This is a Vandermonde deﬁerrﬁinant. It can be calculated explicitly:

op)= [ o) —¢i(o)) -

1<j<k<n

If all the numbers (; are pairwise different, this determinant does not vanish. The
coincidence (m(p) = (n(p), m # n, means that e!(Am=Am)e — 1 A5 A # An, |Am—
Anl € 20 9;—1 , the equality ®(p) = 0 is impossible for p sufficiently small, namely, for
0<p< 2 q—g-r . Thus, it is possible to choose numbers 7;,...,7n in such a way that
the condition D(Aq,...,An;71,...,Yn) # 0 is fulfilled. For example, we can choose ¥j

of the form v;(p) = p(j — 1) with p satisfying 0 < p < z q_ET .
For fixed Ay,...,An the function D(Ay,...,An; 71,...,7n) is an entire function of
the variables v1,...,vn. This entire function does not vanish identically. Thus, the

set of ‘forbidden’ real v; (satisfying the condition D(Ay,...,An; 71,...,7m) = 0) is
contained in a real analytic manifold whose real codimension equals one and which is

‘small’ in this sense.

Remark 4: Let the set E have the above-described ‘multi-band’ structure.
The analysis of our reasoning above shows that the system of the exponential functions
{ei’\z‘i'k}ISjSp;kGZ’ with {z;,} defined in (2.16) is a Riesz basis in the space L%(E)
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(necessary information concerning Riesz bases can be found, for example, in (10, 16, 25,
32]). On the contrary, let the system {ei**m} be a Riesz basis in the space L2(E). Let

{¢j} be a biorthogonal system:

/E @i(A) eATmdr =6, (3.1)

Si(z) = /E @i()) e*dr (z €C). (3.2)

The biorthogonality condition (3.1} implies

$j(zm) = &m - N (33)
Let
e =N g(z)e?™ (A€ E) (3.4)
k

be the expansion of the exponential function {e27} ackE into the Fourier series for the
basis {e"***} (z is considered as a parameter), where {ci(z)}; are the corresponding
Fourier coefficients. Multiplying equality (3.4) by the function ;, integrating over E
and taking into account (3.1) and (3.2), we get S; = c;. Now let f € L2(R) with
spectrum contained in E, and let ¢ be its Fourier transform. Multiplying (3.4) by ¢
and integrating over E, we get the equality

fz) = Si=)f(zx) (z€C). (3.5)
. . :

It follows from condition (3.3) that the series (3.5) is an interpolation one. As the

‘system {ei’\"'"} is a Riesz basis, the interpolation (3.5) is free, and. the inequalities
m 1zl < /R f(2)2dz < MY | (ze)l?
k k

hold for every f with spectrum contained in E, where m > 0 and M < oo are constants

not depending on f.

Thus, the sampling theorem for functions with spectrum in E is equivalent (in some

sense) to the problem of constructing a Riesz basis {€***m} in the space L%(E).
p

Remark 5: We established that for a set E of the above-described ‘multi-band’
structure there exist sets of samplings for which the sampling theorem is true. Or, in
other words, in LZ(E) there exist bases of exponents {e**m}. We have constructed a

concrete example of such a set {zm}. This set is the union of n arithmetical progressions
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of real points (with the same spacing). Of course, there exist sets of samplings for which
the sampling theorem is true and which are not representable as a union of arithmetical
progressions. Such sets of samplings can be constructed using varidus theorems on

perturbations of Riesz bases (see, for example, [10]).

Remark 6: If the spectrum of a function f is the interval [—o, o] (or if this
spectrum is contained in [-g,0]), then for a set X of samplings of the form X =
Urez { k"} the sampling theorem is true. A set X of this form has density d(X) = £.
As usual, the density d(X) of some discrete set X is defined as d(X) = limp—oo w,
where nx = nx(r) is the so-called counting function of X - the number of points of
X which are contained in the disc |z| < r. On the other side, the Lebesgue measure
mes(E) of the set E = [—0,0] is equal to 20: mes(E) = 20. So for the set E = [—a, 0]
and for the set X = U, 7{ k”} the relation

mes(E) = 2xd(X) (3.6)

holds. Further, if E has the above-defined multi-band structure (2.1) - (22) a‘rhld‘ if
X =_.U {:tj',k : 1<j <p, k€Z} with {:z}j,k} defined in (2.16), then for these X and E
we have mes(E) = 20 E and d(X)= Z 2 As‘before‘, the equality (3.6) is true. We
established that for any function which specttum is contained in such E and for such
X the samplmg theorem is true (by additional condltlon D#0). '

Generalizing, we can formulate the followmg principle:

If the spectrum of a function f is contained in a compact set E whose Lebesgue
measure mes(E) is positive, a discrete subset X C R has density d(X), and if the
relation (3.6) issatisfied, then f can be recovered from its values at the points of X, and
the inéqualities mZzéX If(z)? <. JR 1f(z)|?dz < MY cx 1f(2)? hold trué (m > 0
and M < co do not depend on f). In other words, this principle states that by condition
(3.6) the set {e"\‘}zex forms a Riesz basis in L%(E).

Of course, it is only a principle but.not a rigorous.result. , The exact formulation

must firstly embrace the separation condition
inflz —~2"|>0"  (2',2" € X with &' # 2 ' (3.7

and secondly, a condition which should express uniformity of distribution of the points

of X Such umforrmty condmon can be formulated in terms of the functlon wy,,

L wh<t>.=2' R a9

z€X z +ih
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where h € R, h #0 is a (not essential) parameter. The function wj can be considered

as some analogue of the Hilbert transform of the counting measure dn;.

'If E = [~0,0), necessary and sufficient conditions are known for the set {¢**} ¢ x
to be a Riesz basis in L2(E) (see {16]). These conditions embrace the condition (3.6)
giving the value for density d(X) of the set X, the separation condition (3.7) and (whet
is most difficult) some condition on the function wy, (see (3.8)).

If the compact set ‘E is not an interval, no general conditions on a set X C R are
known for the appropriate set of exponents to be a Riesz basis in L(E). However, we
think that in any casé such conditions must include a condition like (3.6). If the set E
has the above-described multi-band structure (it is a finite union of regularly positioned
intervals having equal or (what is the same!) commensurable lengths), then there ezists
bases of exponents in L2(E). We are not able to give any general conditions, but we are
‘able at least to construct some family of such bases in L2(E) These bases correspond
to the set X of the foom X = U{z;x : 1 < j < p, k € Z} with {z;} defined
in (2.16). For this set X the density condition (3.6) and the separation condition
(3.7) (remind that all the v; are pairwise different) and the uniformity condition are
satisfied. However, for a multi-band set E only these conditions do not ensure the
basis property. Besides these conditions, we need the additional condition D # 0
(D := det||eirn i ||1<,.<,) (Remember that now we discuss the very special set X =
U{IJk 1<j5 < p, Ic € Z} with {z;;} defined in (2.16).) It is not difficult to get
a more general result about the set E which is the finite union of disjoint intervals
‘having commensurable lengths and general (not necessarily regular) position on the
real axis. However, our method does not work for the set E:which. is the finite union
of disjoint intervals with noncommensurable lengths. 'We do not know now if there
exists a Riesz basis of exponents in L(E) for such a set E. All the more, we do not
know whether there exists a Riesz basis of exponents in LZ(E) in the case that the set
E is some Cantor-like set of positive measure. This will be the subject of our further

investigations. -

Remark 7: In his paper [21] H.J. Landau constructed an example of a discrete
subset X = {zk}keZ of R and a multiband set E such that the system of exponentials
{e"\’*}k z is complete in the space LZ(E) d(X) = 1, and mesE can be a.rbxtra.ry
large. Thus, the condmon (3.6) is not necessary for the completeness of a system of
exponentxa.ls in L2(E) In this exa.mple a set E can be in partlcular a finite union of

regularly posmoned mtervals of the same length.

On the other side, from Theorems 1 and 2 of the paper [22] by H.J. Landau it

follows that condition (3.6) is necessary for the fact that the system of exponentials
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'{ei’\f"'}kéz is a Riesz basis in the space LZ(E) where E is a multiband set. No
additional restrictions concerning lenghts or. positions of intervals the union of which

is the set E are supposed (This formulation is weaker than the more prec1se resu]t in

[22].)

Remark 8: For a multiband set E which is a finite union of regularly positioned
intervals of the same length we constructed a discrete set X = {z+} of sampling points
in the following way: we partition the integers into disjoint subsets, shift each subset
by an amount, aﬁd let {z}} be the set which consist of these points. In papers [1, 3, 6,
7, 14] an other construction of a set X = {z;} of sampling points is used. Let E be a

closed subset of R, and let p be a positive number which satisfy the condition
mes((E +2rkp)NE) = (for all k € Z \ {0}) (3.9)

where E +27kp = {A + 2mkp : Xe E}. Then any function f with Fourier transform p
’vamshmg outside E can be reconstructed from samples taken at a rate ¢, by means of
the formula ] k .

i | =3 f( ) ( - —) | | (3.10)
? keZ P .
where : ) '

sE(e)=L/ ¢\ (T €R). @)

Various aspects of the representation (3.10) - (3. 11) (by the condxtlon (3.9)) are dis-
cussed in [1 3,6, 7, 14).

Remark 9: In Goldman’s book [11] functions f € L2(R) are considered which
spectrum is contained in a set of the form E = [—ws, —w1] U [wy,ws] where 0 < wy <
w2 < 00. In (11, §2.3], an assertion on such functions has been proved called ‘Sampling
Theorem’. However, the interpolation formula obtained in (11] differs from our sampling
formula (2.15) - (2.17). In Goldman'’s interpolation formula there figure up.not only the
values of the function f itself, but also the values of its Hilbert transform. Furthermore,
Goldman’s sampling formula has been established only for functions with two-band
spectrum (with bands of equal length). It is not clear to us how to extend this result
of Goldman to a-more general case. vskip .2cm -

Remark 10: After the initial version of this paper was subrmtted the authors sent
a prepnnt to J.R. Higgins and received as a response a preprmt of the latter’s paper
[15] It turned out that these two papers overlap essentially. However, our treatment is
more generaJ than the ‘harmonic signals’ treated in Section 5 of paper (15).
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