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The Sampling Theorem


for Functions with Limited Multi-Band Spectrum I 

L. BEZUGLAYA and V. KATSNELSON 

In this paper functions f belonging to L2 (R) are considered which spectrum is contained in a 
'multi-band' set E, i.e. in a subset of the real axis which is the union of finite many intervals. 
For such functions a generalization of the Whittaker-Kotelnikov-Shannon sampling formula is 
given. The considered problem is also related to Riesz bases of exponentials in L2 (E). In 
the first part of this work we consider sets E consisting of regularly positioned intervals of the 
same length. 
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1. Introduction. The Whitt aker-Kotelnikov- Shannon sampling 
theorem 

The following result is well known (see, for example, [8, item 2.9], [11, Chapter 21, [19, 
Chapter 3]): 

Let f be a function which belongs to L2 (R), i.e. fR If( x )I 2dx < oo, and let f be an 
entire function of exponential type not exceeding : 

£n f(z)I 
iIzI__.00	IzI	

<ci,	 (1.1) 
- 

where 'ci is a given positive number. 

Then the function f is uniquely determined by its values f() at the sequence 
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k,r {}kEZ of points of the real axis. The sequence {f()} belongs to £2. Moreover, the 
or 

Pars eval identity holds:

If (1,,) 2	J . 2	 (1.2) 

The function f can be reconstructed from the sequence {f()}kEZ of its values by the 
interpolation series

f(z)=

	

	
f(L,, ) sino(z_kE)

(1.3)
 o(z — ) keZ 

The series converges both in L 2 (R) and locally uniformly in the complex plane. The 
interpolation (1.8) is 'free': The sequence {f()}kEz can be an arbitrary sequence 

C = { ck}k E Z E £2 , that is EkEZ I ckI 2 < oo . For each sequence { ck}k E Z E £2 the 
series  

fc(z)=ck (1.4) 

converges both locally uniformly and in L 2 (R) and defines an entire function .f of an 
exponential type not exceeding o, which satisfies the interpolation conditions f() = 
ck (k E Z). Moreover, the Parseval identity 

JR If(x ) I 2dx =
kEZ 

holds.	 - 

Thus, every sequence from £2 can appear as the sequence {f()} of the values of 
an entire function f E L2 (R) satisfying the condition (1.1): 

Each function f E L2 (R, dx) is representable in the form 

1(x) = IR V	 (1.5) 

The Fourier-Plancherel transform V of f also belongs to L2 (R, dA), and the equality 
JR k(A)12d = JR If(x ) I 2dx holds. The integral over R in (1.5) is defined as 
an improper one, namely as the square mean limit of the integral over (—N, N) as 
N —p 00. In its turn, the function W is the inverse Fourier transform of the function f, 
i.e. '() = JR f(x)e_' dx (in general, this integral is also improper: l.i.m.).
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The Wiener-Paley theorem states that a function f E L2 (R) is the restriction on 
the real axis of an entire function f of exponential type not exceeding a (i.e. I satisfies 
the condition (1.1)) if and only if the condition 

(A)	0	for all A E [—a, o]	 (1.6) 

holds. This condition can be formulated in terms of the notion 'spectrum of the func-
tion'. Let be a measurable function. By definition, a real point A O belongs to the 
support of the function V if, for any e > 0, the set (AO - e, A O + e) fl {A : (A) 54 0) has 
positive Lebesgue measure. Thus, the condition (1.6) can be expressed in such a way: 
the support of the function V is contained in the interval	a]. 

Definition: The spectrum of a function f belonging to L2 (R) is the support of 
its Fourier transform w. 

If we interpret the variable x as time it is natural to consider the number A in the 
exponent e iAX as frequency. In this connection it is natural to call the spectrum of the 
function I its frequency spectrum. 

The assertion stated above can be formulated also in spectral language: 

Let f E L2 (R) be a function with spectrum contained in the interval [ —a, a]. Then 
f is uniquely determined by its valuesf() at the points of the sequence 
and f can be recovered from these values by means of the interpolation series (1.8). The 
sequence {f()} kE z belongs to £2, and the Parseval identity (1.2) holds. An arbitrary 
sequence from £2 can appear as the sequence {f())kEz• 

Expansions of entire functions via Lagrange interpolation series (1.3) were consid-
ered by E.T. Whittaker long ago, as long ago as in 1915 (see [30]). (See also J.M. 
Whittaker's book [311.) What concerns early publication on this subject, the paper [12] 
by G.H. Hardy should be mentioned. In 1933 V.A. Kotelnikov paid attention to the 
fundamental significance of the expansion (1.3) for the transmission information theory. 
He has formulated the following fundamental proposition: 

Let a signal be described by a function f with a bounded frequency spectrum which is 
contained in [—a, a] (that is, this signal contains no frequencies higher than' cycles per 
second). Let us have a certain communication channel. For the possibility of recovering 
this signal at the output of this communication channel it is sufficient to transmit over 
this channel only the values f(k) of this signal at the sampling pointsA apart, if 

-

The formula (1.3) and the above statement present the content of two fundamental
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theorems of V.A. Kotelnikov which are contained in his work [20]. In the Russian 
scientific literature these statements are combined and called 'Theorem of Kotelr&ikov'. 
In the western scientific literature these statements are called 'The Sampling Theorem'. 
C. Shannon has used the sampling theorem in his work [28] in the communication 
theory. H. Nyquist [26] has pointed out the significance of the interval L = for 
the telegraphy. C. Shannon called this interval Nyquisi interval corresponding to the 
frequency band [—a, a]. 

Of course, it is possible also to use the values {f(-y + kA,I kr ,Z at an arbitrary 
periodic sampling sequence with an arbitrary 0 < Al = M. This is true since 
if the spectrum of a function is contained in the interval [—a, a], then, all the more, this 
spectrum is contained in the interval [—o, al l where a > a. 

If xk = + k- ('y a real number, a l > a), and I E L2 (R) is  function which al 

spectrum is contained in [—a, a], then the equality 

Ax) = >f(xk) sin 
al(x — xk) 

hold,, for every complex x. 

In the Whittaker-Kotelnikov-Shannon Theorem the samplings form an equidistant 
sequence of real points. However, it is possible to generalize this result and to get 
analogous results for some sampling sequences which are not equidistant ones. Of 
course, in such generalizations the equality (1.2) does not remain true and has to be 
replaced by an inequality of the form 

M2 E If(xk)12 ^ 15R l f(X)12dx <M 1: jf(xk)12 

kEZ	 kEZ 

(For such generalizations, we refer to [16, 18, 24, 32].) 

Note, that if a 1 < a (i.e., if [—ai ,ai ] C [—a,a]), it is natural to consider the 
sequence {}kEZ as thinner than the sequence {}kEZ In other words, if it is known Crl
that the spectrum of a function f is contained not only in the interval [—a, a] but in 
fact in a more narrow interval [—a 1 , a1 ], then it is possible to use a thinner sequence 
of samplings for recovering this function. Detailed surveys of results concerning the 
sampling theorem and its various extensions and applications are presented in [4, 5, 13, 
17, 29]..
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2. The sampling theorem for functions with multi-band spec-
trum 

The general statement of the question under consideration is as follows. Let • E be a 
closed subset of the real axis, with positive Lebesgue measure. Let f E L2 (R, dx) be 
a function whose spectrum is contained in the set E. Which condition must a discrete 
sequence {xk} C R satisfy in order to ensure that I can be recovered from the sequence 
{f(xk)} of its values? How is it possible to realize such a recovery? It is desirable to 
get the solution of this problem in the form of an interpolation series. It is also desirable 
that such an interpolation would be 'free', i.e., that it would be possible to choose an 
arbitrary sequence (from £2) as the sequence {f(xk)}. 

Of course, if E is a subset of the interval [—ac], then it is possible to choose 

{ xj} = {k} as such a sequence. (The sequence {xk} = {} corresponds to the whole 
interval [—a, c].) However, by such a choice of the sequence {xk} the interpolation 
is not 'free'. If the spectrum of f belongs to a proper closed subset E of the interval 
[—al aJ, the sequence {f())kEz cannot be an arbitrary square summable one. As the 
set E is smaller than the whole interval (—c•, a], it is natural to try to find sequences 
{xk } which are 'less dense' than the sequence{ }. (It is desirable to find sequences 
which are simultaneously sufficiently dense for the possibility of the recovery of the 
function f from its \'alues {f(xk)} and which are at the same time sufficiently thin for 
the interpolation to be free.) 

In this article a special case of this problem is considered, namely we will specify 
the form of the set E. The set E will be assumed as a finite union of intervals. These 
intervals are positioned regularly and are supposed to have the same length. 

Let p and q be integers satisfying 0 . < p  < q. We separate the interval [—a, a] into q 
equal intervals. (Each of these intervals has the length	.) The set E is the union of p

of these q intervals. Thus, the Lebesgue measure rnes E of the set E is mes E = 2a 
(The intervals forming the set E can have common end points and form after confluence 
bigger intervals which do not intersect and which length is a multiple of 

-
Figure 1. 

Figure 1 corresponds to q = 7, p = 3, in which case the intervals form a set E without 
common end points.

I	I	•I 

-	 a

Figure 2.
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Figure 2 corresponds to q = 7, p = 4, in which case two of the four intervals have 
common end points. 

Thus the spectrum of the considered functions consists of many 'bands', namely of 
those intervals which form the set E. (This is the motivation for the title of this paper.) 

Here we get an interpolation formula (the so-called sampling formula) for a function 
I E L2 (R, dx), which spectrum is contained in such a multi-band set E. The sequence 
{xk} of samplings will betimes thinner than the sequence {} which corresponds 
t the whole interval [a, a]. In detail, the sequence consists of groups, each of which 
consists of p real points, and these groups are positioned periodically, with period q. 

Let A (n = 1,2,... , p) be the centers of the intervals In consisting of the set 
E, A1 for n' n". We suppose the points An to be distributed 'regularly', that 
is

U {} c U {—a + (2 + 1)  
1<n<p	O<l<q-1	 q 

Thus,

	

In 
=	-	

, ) +	, and E = U In .	 (2.2) q	
1<n<p 

Before deriving the sampling formula for a function with spectrum in E we recall 
how to get the 'usual' sampling formula for a function with spectrum in [—a, cr]. So, let 
the spectrum of f be contained in [—a, a], that is 

1(x) = f	(e'd	 (2.3) 

where W E L2 [cr, o]. We expand the exponential function in a Fourier series with respect 
to the system {e hJc } k E Z (this system is an orthogonal basis in L2(—a,a)): 

=()i\ ,
	.\ E [ — a, al 

kEZ 

The Fourier coefficients ck(x) can be found in a standard way: 

	

2ack(x) = j	, that is 
ck(x) = sin cr(x - 

a(x—) 

Thus,
7r sin a(x - k) iA	E [ — a, a] .	 (2.4) =	 C 

	

iAz	
a(x - £ C



The Sampling Theorem for Functions	517 

Inserting (2.4) into (2.3) and changing the order of summation and integration we get 

AX) => 
sina(x —) 

kEZ	- )	
)edA. 

Because of f1 	( eXd)l = f() (this is the formula (2.3) for x =	), we get

the formula (1.3). 

Note that this proof of the sampling formula is rather different from the generally 
known versions. Usually one does not uses the Fourier expansion for the exponential 
function e' but for the function w. ( See, for example, [5, item 2.91, [8, §2.11, [15, 

Now we start to derive the sampling formula for functions with 'multi-
band' spectrum. So, let E be a set of the shape (2.1) - (2.2). We want to find a 
system of exponents {em } which is an orthogonal basis in the space L2 (E). Further, 
we will expand the exponential function ez into a Fourier series on 

CiAX =	cm(x)e'"'	(A e E)	 (2.5)

mEZ 

The following consideration repeats the one used above for obtaining the sampling 
formula for functions with one-band spectrum. (If we are able to compute the Fourier 
coefficients Cm in (2.5).) 

Let h, (1 <	p) be (unknown at present) -periodic functions defined on the 
real axis: h,(.\+	m)hj(A) (rnZ, AEIR, j=1,2,...,p). Let-y1,-y2,...,70

be real numbers for which it is only assumed that D 54 0 where 

D=detIIe' i " IJ	(1<j:5p, l<n<p). 

Without loss of generality we can suppose that y < 72 < ... < Yn . We determine the 
functions h3 from the condition ><j< h( .\)etYi A = (.\ E E), that is we solve 
the system

hj(A)ei =e	(A E I,, n= 1, 2,. ,p)	 (26) 

We suppose that q is odd. In (2.6) there figure up the values of the functions hj on 
different intervals. Using periodicity of these functions, we can reduce system (2.6) to 
the system in which there figure up the values h, on one and the same 'supporting' 
interval. If q is odd, we choose as such supporting interval I = [—, ]. As the 
functions hj are ! --periodic they are completely determined by their restrictions on
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any interval with length	, in particular, on the interval I. In view of (2.2), the

points A of the interval I can be parametrized in the form A = A + p, p E Jo . As A is 
a multiple of	(see (2.1). q is odd). then h(A +p)	h 1 (p) (1	j	p). Substituting

A = A + p into (2.6), we get the identities 

>	 = e'e	(p E Is,. 1 < n p) .	(2.7) 

We consider these equalities as a system of linear algebraic equations concerning the 
'unknown' variables h(p)e'YP with the coefficient matrics Ile II. By assumption, 
the determinant D of this matrix does not vanish. Solving the system (2.7), we get 

hn(p)e'" = D(x) e ip.,	 (2.8) 

where D	detIIet)'.' II ' !5n<p and 
1 5i <P 

e iA 1 -Y1	 ezxI1	ei.Yn+1 

e1X2)1	...	e* \21	e22	C'\2+1	... 
D(x) = det	 .	(2.9) 

	

*)¼pX	e')'PYn+l	e"'PP 

Evidently, D(7) = D and Dn(ym) = 0 (1 < m	in	n). (In the corre-




sponding matrix the in-th and the n-th columns coincide.) From (2.1) it follows that 
exp{iA-y,} = exp{iAn(7 +q	)} for n = 1,2,..,p, j = 1,2,...,p and for every 

integer k (we recall that q is odd now). Thus, for odd q the equalities 

D(y + kq ) = D	(1 < n p, k integer)	 (2.10) 

Dn(7m + kq ) = 0	(1 in p, in 56 ii, k integer)	(2.11)


hold. From (2.8) we have 

h(p) = D(x)	
( = 1,... , p; p E Is). 

Expanding the function h = h(p) into a Fourier series with respect to the system 
{exp(icq )}kEZ' which is an orthogonal basis in L2 (Io), and computing the Fourier 
coefficients in standard way, we get the equalities 

b(x)	sin	(x -	- q	k) iqk (j = 1,2,... , p)	(2.12) 
kZ	

(x—yj-q k)
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for every p from I. Each periodic ( its period is equal to the length of I) function 
h3 is a smooth function inside the interval 10 and a piece-wise smooth one on the real 
axis. Therefore, the Fourier series (2.12) converges to the function h, boundedly on the 
whole real axis (not only on Ia). From (2.6) and (2.12) it follows	 - 

i\z -	' 'ç D,(z) sin (x - 7j - q k) 
e	Ld L_i

 

	

D 21 x ——	k 

	

l<i<PkEZ	q	7j
(2.13) 

	

i(q k+ y, )A for A E E =	In 
1<n<p 

The series in (2.13) converges boundedly for every A E R. (However, the equality in 
(2.13) holds only for A E E. The logic in the previous consideration is rather broken. 
We showed that if the exponent e' is representable on E in the form (2.6), then this 
exponent expands into the series (2.13) on E. However, all our reasoning is invertible, 
and the equality (2.13) really holds. Analogously, if q is even, we get the equality 

=	Dj(x) (1)k sin	(x _'	k) eiAX

'—<i!5P k€Z	 q- - q
(2.14) 

k+y,)A for A E E = U 1n 
1<n<p 

In formulas (2.13) and (2.14) x is an arbitrary complex number. Now let f be a 
function from the space L2 (R), and let the spectrum off be contained in the set . E, that 
is f(r) = fE (A)edx. Inserting herein instead of the exponent e12 its expansion 
(2.13) or (2.14) on E (the sum of the series (2.13), (2.14) outside of Eis not important 
because the function çp vanishes outside of E) and changing the order of summation 
and integration, we get the formula 

Ax ) =

	

	E S(x) f(x , k) ,	 (2.15)

1 JP kEZ  

where	 .5	 - 

= q	k + yj	(1 <j - p; k E Z)	 (2.16) 

and	 S 

S,k(x) = (_1)k(q_1) D,(x) sin	(x — xj, k)	 . 

Changing the order of summation and integration is permitted since the function 
belongs to L2 (E) and the series (2.14) converges boundedly.
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The formula (2.15) can be considered as an analogue of the sampling formula (1.3). 
The factor (_1)k(q-1) is introduced to treat simultaneously the cases of even and odd 
q. We shall prove later that the series in (2.15) converges both in L 2 (R) and locally 
uniformly in the complex plane. 

Let us analyze the formulas (2.15) - (2.17). The set of points {xk} is 
decomposed into p subsets, or p 'series'. These series are enumerated by the index j,j = 
1, 2,. .. , p. The ,-th series consists of the sequence of equidistant points xj,k, xj,k = 7 + 

k, where k runs over the set Z of all integers. The set {S k } of the functions which 
figure up in the interpolation series (2.30) is also decomposed into p series enumerated 
by the index j, j = 1,2,... ' p. It follows from (2.10) and (2.11) that 

	

11 if j = j', k =	
(2.18) S,k(xl,kl) 

=	0 if (j, k)	(j', V) 

In other words, each function 53,k vanishes at all the points xj ! ,kl of each 'alien' series 
(which is enumerated by an index J', J" j), and also at all the points Xjkl of its 'own' 
series different from the point x j k. Thus, the series (2.15) is an interpolation one. 

Let us see what is the spectrum of the function 53,k • The spectrum of the 

	

function	 is exactly the interval 10 	[— E , ]. As it is seen from (2.9),

the function D) has the form

I3,(x) =	i: dn,jeiA-' 
1<n<p 

where d ,, are some numbers - the algebraic complements of the (n,j)-th éntries'of the 
matrix. IIe* ) "i ll '<^<. Thus 

1<-j<P

-	 UI 

	

..	
k d	SZflXX 

Sj,k(X) 	(_1)k(9-1)	
L 

e'	
—	.	(2.19) 

q 

Hence, the spectrum of the function Sj,k is contained in the set U 1 <<(A + Is). As 
An + 10 = I,, the spectrum of the function S,,kis contained in the set E. This spectrum 
coincides with the set E if all the numbers d, , are different from zero. Thus, each term 
of the series (not only its whole sum) has the spectrum contained in E. 

Let us clarify whether the interpolation (2.15) is free. Let {c ,k) be an 
arbitrary sequence of complex numbers satisfying the condition F-I<— i —<p EkEZ lcj kl 2 < 
oo or, what is the same, the condition 

•	
1c3,k12 <00	(j = 1,2,... ,p) .	 (2.20) 

kZ
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Then the series
MX) =	 (2.21) 

1<j<p kEZ 

converges locally uniformly in C: from (2.16) - (2.17) it follows that 

2o I Im zi 

	

Is k(.)12 < A 
1 + - Xj,k12	

for all z E C 

where A is a constant independent on z. Hence, 

E IS, ,k (z)1 2 ( B e20,,, fl.	 (2.22)

j,k 

From the locally uniform convergence of the series (2.21) it follows that fc is an en-
tire function, and from (2.20) and (2.22) it follows that f is an entire function of an 
exponential type not exceeding a. From (2.18) and (2.21) the interpolation condition 

fc(x, ,k) = Cj,k	(1 < j :5 p	k E Z)	 (2.23)


follows. Let us show that Ic € L2 (R), and that the inequality 

IR f(x ) I 2dx	i	 (2.24) 
l<j <p keZ 

holds for every square summable sequence 1c2 k}i<	kEZ' where D = detIIe* 1i II - -<  
and M is a constant depending only on a, M = M(a) < oo for a > 0. M does not 
depend on the sequence {c,k). It is sufficient to prove this inequality only for all finite 
sequences {c,k}. As Ic is an entire function of exponential type not exceeding a, the 
inequality of Plancherel-Pólya [27] 

IR IfC()I	< e1101 IR Ifc(x + iyo)I2dx 

is satisfied for every yo € R. (See also [2, item 6.71 or [32, Chapter 2, Theorem 16].) 
Hence, it is enough to prove that the inequality 

JRfc+iyo12dx	
M2(a,yo) (2.25) 

5i <_P kEZ 

holds for some real yo where M(a, Yo) < co is a constant not depending on z. (The 
inequality (2.25) with yo 54 0 can be proved easier than this one with y = 0.) The 
function Ic is a sum: fc(z) =	 ,where 

f(z) := E c ,kS ,k(z) .	 (2.26) 
keZ
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It is enough to prove an inequality of type (2.25) for each function fj, 1 j p. 

Lemma 2.1: Let { tk} C R be a sequence satisfying the separation condition 

inf Itkl - tk lu l = S > 0 ,	 (2.27)

k'ok" 

( CO E C be a finite sequence and yo E R be a non-zero real number. Then 

2 

IR

	

	
dx <N(yo,S)	1kI2	(2.28)
X—tk—iyO 

kEZ k€Z 

where N1 = N1 (yo,8) is a constant not depending on the sequence {k},N1(yO,S) < 00 

for Yo 54 0, 5 > 0. 

The operator {ek}kEZ - (z z__iyo)ZER is a discrete-continuous ana- 
logue of the Hubert transform (Yo is some parameter). The inequality (2.28) shows that 
for Yo 36 0 this operator is a bounded linear one from £2 to L2(R). 

We prove Lemma 2.1 later. Now we show how the inequality (2.25) follows from 
the inequality (2.28). The equality (2.19) can be rewritten in the form 

S,k(x) = (_1)Icq q . - sin - (z - or	q 

d	 (2.29) 
x (1!5n:5p	ez)	

- 7j— k	
(x E C). 

From (2.26) and (2.29) it follows that 

f 
N I	 Cj,k (_1)kq	

(x, Yo ER, yo 0)	(2.30) ,5(x+iyo)I D	x—(-y+•k L —iy0) 
kEZ 

where N = N(yo,a) is a constant not depending on the sequence {c3 k}, N(y0 ,) < 00 

for yo 54 0, a < 00' . 'It results from (2.30) that

1)kq	2

dx JR	 . hfc,j(x.+0)1dx_; J	

C k(- 

R	z—(-+k	—yo)I kEZ 

The sequence { tk}	{-y + k	} (k E Z, j is a parameter) satisfies the separation 
condition (2.27) with S =.	. From (2.28) (with ek = (_1)kc, and tk = 1j + k 
we obtain the inequality

M2 
fR 

Ifc,j (x + iyo)I 2dx ^ --
kEZ
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where M = NN1 does not depend on the sequence {c, , k} . The deduction of the in-
equality (2.24) from the inequality (2.28) is finished. 

We shall prove the inequality (2.28) later, alter the formulation of the main theorem 
of this item. Later, we shall also prove the 'inverse' (relative to (2.24)) inequality 

m2	>:	Ic,,k1 2 <' I If(x)I2dx	 (2.31) 
JII 

<i^p;kEZ 

where in is a constant depending only on a, m = m(a) > 0 for a <oo. 

From the inequality (2.24) it follows immediately that (by condition D 0 0) the 
series (2.21) converges in L2 (R) and defines a function fc from L2 (R) for every square 
summable sequence {cjk}1<j<pkEz. We mentioned previously that the spectrum of 
each term of the series (2.21) is contained in the set E. If the series (2.21) converges in 
L2 (R), the spectrum of its sum is also contained in the set E. 

Thus, we have proved the most of theassertions of the following 

Theorem: Let E be a subset of the interval [—a, a] which has 'multiband' structure 
(2.1) - (2.2) as described above: E is the union of p regularly positioned intervals of the 
length 2o, with the centres .X, n = 1,2,...,p (see (2.1)), p and q are positive integers, 
p < q. Let Yj (j	1, 2,. .. ,p) be real numbers satisfying the condition D 9k 0 where 
D	dettIe''si 1 1	Let { xj,k}1<j<pkEz C R be the countable set which is defined 

in (2.16) and let Sj,k (1 <_	p, k E Z) be the functions defined in (2.17). Then: 

i) Each function f E L2 (R) whose spectrum is contained in E can be recovered from 
its values {f(x3,k)} at the sampling points {xj,k}1.(j<p,kEz by means of the interpolation 
series (2.15) which converges both in L 2 (R) and locally uniformly in the complex plane. 
The inequalities	 S. 

m2 f(x)	
JR

j,k hf	^	-	>	If 	(2.32) 
1<j<p;kEZ	 1<j<p;kEZ 

hold where rn and M are values depending only on a and not depending on f: 

M = m(a) > 0,	M = M(a) <i.	(2.33) 

ii). For an arbitrary square summable set (c k}1<,.( kEZ of complex numbers the 
series (2.21) converges both in L 2 (R) and locally uniformly'in the complex plane. The 
sum fc of this series is a function belonging to L 2 (R) whose spectrum is contained in 
E. The function fc satisfies the interpolation conditions (2.28).
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A part of the assertions of this theorem has been already proved. To finish the proof, 
we should prove the inequalities (2.32) and clarify the character of the convergence of 
the series. 

Lemma 2.2: Let {tk} be a sequence of real numbers satisfying the separation 
condition (2.27), and let r be a positive number. Let w be a function from the Hardy 
class H2 in the upper half-plane. Then the inequality 

M2	iw(tk + ir)i2 
IR 

w (x) 1 2dx	 (2.34) 

holds where m is a constant not depending on the function w (m depends only on r and 
the constant S occuring the separation condition (2.27)): 

M = m(S,r) >0	for r E (0,),S >0. 

Proof: Let p = min(,r). Let zk = tk + ir, and Ck = {z : iz - ZkI < p}. 
Evidently the circles Ck do not intersect and are contained in the strip II,, = {z E C 
0 < Im z <2p} of the upper half-plane. Therefore, the inequality JJ Iw(x+ iy )I2dxdy !^ fin iw(x + iy)12dxdy 

holds. As the function IwI2 is a subharmonic one, the inequalities 

Iw(zk )1 2 < .J_ JJ w(z)i 2 dxdy	(k Z) 1rp2	Ck 

are satisfied. Combining these inequalities, we obtain the inequality 

7rp2 w(zk)12 ( ff
i 

iw(x + iy)I 2 dxdy.	 (2.35) 
P 

As for every function w from the Hardy class H2 the inequality JR Iw(x + iy)I2dx ( 
JR I w (x )I 2dx holds, the inequality 

If w(x + iy)I 2drdy < 2p fR i w(x )1 2dx	 (2.36) 

holds as well. Comparing the inequalities (2.35) and (2.36), we get the inequality (2.34) 
with m2= 

Remark: Of course, Lemma 2.2 is a very special case of Carleson's theorem 
concerning the so-called Carleson measures. The Borel measure z in the upper half-
plane is called a Carleson measure, if the inequality IJIM z>° 

w( z )1 2 1i( dz) 5Cf w(x)I2dx
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holds for every function w from H2 where C < 00 is a constant not depending on 
w. This theorem is stated, for example, in [9, Chapter 2, Theorem 3.91. If a real 
sequence {tk} satisfies the separation condition (2.27), then the sequence {zk} given 
by {zk} = (tk +ir,r >0) generates a Carleson measure. However, the sequence {zk) 
is a very special one, and our proof of Lemma 2.2 is much easier than any other proof 
of the general Carleson theorem. 

Proof of the left of the inequalities (2.32). Choose some number r, r > 0, 
and fix it. If a function f satisfying the assumptions of the theorem is given, we consider 
the function w,

W(Z) = f(z - ir)e_") (IM z > 0) .	 (2.37) 

We consider only the restriction of w on the upper half plane. It follows from the 
assumptions on the function I that the function w belongs to the Hardy class H2 in 
the upper half plane. In accordance with Lemma 2.1 we have the inequality 

MI > w(4 + ir )1 2	I w(x)I2dx 
k	 JR 

with rn > 0 not depending on w. Taking into account (2.37) we obtain the inequality 

MI	 If(k)I 2 ^ e	
fR 
 

if (X - ir )I2dx.	 (2.38) 
k 

As f is an entire function of exponential type not exceeding a, the inequality 

fIf(x - 
i7-)12 <2O IR 

If( x )I 2dx	 (2.39) 

holds. Comparing the inequalities (2.38) and (2.39), we obtain the inequality 

m(r,6)>If(tk )I 2	e	 If(x)I2dx IR. k  

For each j, j = 1,2,... ,p, the sequence {xjk}kEZ satisfies the separation condition 
(2.27) with S = 2• Therefore, for each such j the inequality 

If(xj,)I 2. ^ e° fR If(z)I2dx 
 k 

holds with a constant p > 0 not depending on f, p = p(a, r). Summing up all these 
inequalities over j, we get the inequality 

rn

	

	 If(z3,k)12
	

jR 
If(x )l 2dx	 (2.40) 

1<i:5p;kEZ



526 L. BEZUGLAVA ar,d V. KATSNELSON 

with a constant in not depending on f, in = m(a) > 0 for a < oo U 

Remark: In the proof of the inequality (2.40) we have not used any special 
structure of the spectrum of the function f . We used only that the spectrum of f is 
contained in the interval [—a, a] and hence I is an entire function of exponential type not 
exceeding a. Inequalities of the form (2.40) are well-known. Firstly, such an inequality 
has been given by M. Plancherel and G. Pólya (see [27, especially items 27-31)). This 
result and its proof are reproduced, for example, in [2, pp. 97-103] and in [32, Chapter 
2, item 3, especially Theorem 17 there]. 

Proof of Lemma 2.1: Perhaps the simplest way to prove the inequality (2.28) 
is via using duality reasonings. Let yo > 0. For every finite sequence e = {k}kEZ the 
function

g(z) =	 (2.41) -	
iyo  

of the complex variable z belongs to the Hardy class H2 in the upper half-plane. As H2 
is a Hilbert space, the dual space can be identified with the space H2 itself in standard 
way. Hence, for every function g E H2 the inequality 

f
g(x)12 

R 
	dx = supJ h(x)dx	 (2.42)


holds, where supremum is taken over all normalized functions h E H2: fR I h(x )1 2dx = 
1. Applying the relation (2.42) to g g of the form (2.41) we obtain 

1 1 2	 2 
dx=supE	

X i 
k	h(x)	 dx 

kEZ x — t k — zyo l. 
kEZ IR	ik yO

 

According to Cauchy's formula, 

I
h (x)	

1	
dx = 2i h(ik + iy0). 

R	Xtj.jyO 

Hence,
22 
dx = 42suj	khtk + iyO)  (2.43) 

kEZ 
X - - R	

kEZ 

where supremum is taken over all normalized functions h from H2 . As 

ek h(tk + iyo)	

(kEZ  
II2) (kEZ Ih(tk + iYo)12)

kEZ
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we obtain from (2.43) that 

J 
I E	^

k	
2
dz< 

- tk - ill0 
I	- 

(1: I k I 2) (sup > Ih(tk + iYO )1 2) .	(2.44) 

According to Lemma 2.2, the inequality 

h(t +iyo)I2	C(o)J Ih(x)I 2 dx	 (2.45) 
kEZ 

holds for every h belonging to H2 where C( *5,yo) depends only on yo and S (from the 
separation condition (2.27)). Combining inequalities (2.44) and (2.45) and taking into 
account the normalizing condition fR Ih(x)I 2 dx = 1 we obtain the inequality (2.28) I 

Now we are completing the proof of the theorem of this item. Let the 
function f satisfy the condition of the theorem. We have proved that the inequality 
(2.40) holds. Thus, the condition

f(x)2 <00	 (2.46) 
1<i<PkEZ 

is satisfied. We have proved that the function f is representable in the form (2.15). 
Thus, f has the form IC of (2.21), with ci ,k = f(x3 ,k) . Of course, the condition (2.46) is 
the same as the condition E kEZ 1c3 ,k1 2 < 00 (j = 1,2,... ,p). For any function Ic (with 
square summable C = {ck}) we have proved that the series (2.21) converges both in 
L2 (R) and locally uniformly in C. We have also proved the inequality (2.24). However, 
for Cj,k = f(x,k) this inequality goes over into the right inequality (2.32), and the series 
(2.21) goes over into the series (2.15). This completes the proof of the theorem U 

3. Remarks regarding the theorem of the previous section 
In this section some remarks are given in which we supplement and specify results of 
the previous section. 

Remark 1: In particular, we have proved the following uniqueness theorem: If 
I e L2 (IR), its spectrum is contained in the set E of described structure, the point 
set {xJ,k} (see (2.16)) satisfies the condition D 0 0 (D := detIIe t "%7i II	and I 

1Rjzp 
vanishes at all the points {x, , k), then f	0. 

Remark 2: It would be possible starting from a set E with 'multi-band' structure, 
to construct functions S,,k via formula (2.17) and then, starting from a function I e
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L2 (R) with spectrum in E, to construct the series (2.15). From properties (2.18) of 
the functions S3,k it follows immediately that the sum of these series coincides with the 
original function f at all the points xi k. However, all the same we cannot do without 
reasoning using the expansion of the exponent e' Ax into a Fourier series on E since we 
do not dispose of any independent proof of the uniqueness theorem. 

Remark 3: Let us show, that if A, A2 ,.. . , A, are given real numbers, A l < A < 
<An, then there exist real numbers 71, 72,• ,	which satisfy the condition D 0 0,


where
D = D(A 1 ,... ,A; 7i, . .	:= detIje'"IIi<<p 

I!5j<p 

For any number p > 0, we put 7j (p) = p(j —1) , j = 1,2,... ,p . Denote (,(p) = 
n	1 7 2 7 ... ,p . Then (p) = D(A 1 ,... ,A ; 71(p),... ,7n(p)) has the form 

1	1	...	1 

(i	(2	...	(n 
(p ) = det

	

rP 1 ,P- 1	rP1 "1	"2 

This is a Vandermonde determinant. It . can be calculated explicitly: 

I(p)= fi ((k(P)—(j(P)). 
1<j(k<n 

If all the numbers (k are pairwise different, this determinant does not vanish. The 
coincidence (m(P) = (n(p), in 54 n, means that ei(Amm)p 1. As Am A, JAm - 
AI 2ci 1 , the equality (p) = 0 is impossible for p sufficiently small, namely, for 
o < p < E,, .2.. Thus, it is possible to choose numbers 71, . . , -tn in such a way that 
the condition D(A 1 ,... ,A;7 1 ,... ,y) 54 0 is fulfilled. For example, we can choose 7j 
of the form y3 (p) = p(j - 1) with p satisfying 0 < p < 

For fixed A 1 ,... , An the function D(A 1 ,. .	yj,. . . , 7,) is an entire function of 
the variables , -y. This entire function does not vanish identically. Thus, the 
set of 'forbidden' real 7j (satisfying the condition D(A 1 ,... , A; -y,. . . , -y,) = 0) is 
contained in a real analytic manifold whose real codimension equals one and which is 
'small' in this sense. 

Remark 4: Let the set E have the above-described 'multi-band' structure. 
The analysis of our reasoning above shows that the system of the exponential functions 
{ eii,k } l <j < p ; kE Z, with {zj,k} defined in (2.16) is a Riesz basis in the space L2(E)
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(necessary information concerning Riesz bases can be found, for example, in [10, 16, 25, 
32]). On the contrary, let the system {C1m } be a Riesz basis in the space L2 (E). Let 
(j) be a biorthogonal system: 

JE 
( A ) e'-\x-d,\ = 6j,m.	(3.1) 

Put
S(x) = JE Vi (A) edA (x E C).	 (3.2) 

The biorthogonality condition (3.1) implies 

Sj (zm)tj,m .	 ( 3.3) 

Let

	

=	c(x)eA	(A € E)	 (3.4) 
k 

be the expansion of the exponential function {e}EE into the Fourier series for the 
basis (e' .,\'*} (x is considered as a parameter), where {ck(x)}k are the corresponding 
Fourier coefficients. Multiplying equality (3.4) by the function Wj, integrating over E 

and taking into account (3.1) and (3.2), we get Si = c. Now let I € L2 (R) with 
spectrum contained in E, and let W be its Fourier transform. Multiplying (3.4) by 
and integrating over E, we get the equality 

1(x) = > 5k(x)f(xk)	(x € C) .	 (3.5) 
k 

It follows from condition (3.3) that the series (3.5) is an interpolation one. As the 
system {em } is a Riesz basis, the interpolation (3.5) is free, and. the inequalities 

	

rn If(x k)I 2	 Mf(x2 
k 

hold for every f with spectrum contained in E, where m > 0 and M < oo are constants 
not depending on f. 

Thus, the sampling theorem for functions with spectrum in E is equivalent (in some 

sense) to the problem of constructing a Riesz basis {ei)xm in the space L2(E). 

Remark 5: We established that for a set E of the above-described 'multi-band' 
structure there exist sets of samplings for which the sampling theorem is true. Or, in 
other words, in L2 (E) there exist bases of exponents {e2-). We have constructed a 
concrete example of such a set {xm }. This set is the union of n arithmetical progressions
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of real points (with the same spacing). Of course, there exist sets of samplings for which 
the sampling theorem is true and which are not representable as a union of arithmetical 
progressions. Such sets of samplings can be constructed using various theorems on 
perturbations of Riesz bases (see, for example, [10]). 

Remark 6:	If the spectrum of a function f is the interval [—ci, o] (or if this

spectrum is contained in [—a, a]), then for a set X of samplings of the form X = 
ukEz{ --- } the sampling theorem is true. A set X of this form has density d(X) = 
As usual, the density d(X) of some discrete set X is defined as d(X) = limr....al, 
where nX = nx(r) is the so-called counting function of X - the number of points of 
X which are contained in the disc IzI 5 r. On the other side, the Lebesgue measure 
mes(E) of the set E = [ — a, a] is equal to 2o: mes(E) = 2o. So, for the set E = [—o,oj 
and for the set X = UkE z{ k } the relation 

mes(E) = 27rd(X)	 (3.6) 

holds. Further, if E has the above-defined multi-band structure (2.1) - (2.2) and if 
X = U {xk: 1 < i p, k E Z} with {x, , k} defined in (2.16), then for these X and E 
we have mes(E) = 2a P and d(X) = P . As before', the equality (3.6) is true. We 
established that for any function which spectrum is contained in such E and for such 
X the sampling theorem is true (by additional condition D 54 0). 

Generalizing, we can formulate the following principle: 

If the spectrum of a function f is contained in a compact set E whose Lebesgue 
measure mes(E) is positive, a discrete subset X C R has density d(X), and if the 
relation (3.6)'issatisfied, then f can be recovered from its values at the points of X, and 
the inequalities m >zE f(x')1 2	J if(x )1 2dx	M >zEX f(x)1 2 hold true 'm > 0 
and M < cc do not depend on f) . In other words, this principle states that by condition 
(3.6) the set { & } xEX form., a Riesz basis in L2(E). 

• , Of course, it is only aprinci pie but-not a rigorous. result. The exact formulation 
must firstly embrace the separation condition 

infix' - x"i > 0	(x',x" E X with x' x")	 (3.7) 

and secondly, a condition which should express uniformity of distribution of the points 
of X Such 'uniformity' condition can be formulated in terms of the function wh, 

Wh(t)=
	t—x+ih • (

i ER)	•	'	'(3.8) 
zEX
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where h E 1l, h 0. 0 is a (not essential) parameter. The function wh can be considered 
as some analogue of the Hubert transform of the counting measure dn.,. 

If E = [ — a, a), necessary and sufficient conditions are known for the set 
to be a Riesz basis in L2 (E) (see [16]). These conditions embrace the condition (3.6) 
giving the value for density d(X) of the set X, the separation condition (3.7) and (what 
is most difficult) some condition on the function wh (see (3.8)). 

If the compact set 'E is not an interval, no general conditions on a set X C R are 
known for the appropriate set of exponents to be a Riesz basis in L2 (E). However, we 
think that in any case such conditions must include a condition like (3.6). If the set E 
has the above-described multi-band structure (it is a finite union of regularly positioned 
intervals having equal or (what is the same!) commensurable lengths), then there exists 
bases of exponents in L2 (E). We are not able to give any general conditions, but we are 
able at least to construct some family of such bases in L2 (E). These bases correspond 
to the set X of the form X = U{x3, k : 1 j :5 p, k E Z} with {x,k} defined 
in (2.16). For this set X the density condition (3.6) and the separation condition 
(3.7) (remind that all the fj are pairwise different) and the uniformity condition are 
satisfied. However, for a multi-band set E only these conditions do not ensure the 
basis property. Besides these conditions, we need the additional condition D	0

(D := detIIei\i II ',5,5). (Remember that now we discuss the very special set X = 

u{x , k : 1 < p, k E Z} with {x, , k} defined in (2.16).) It is not difficult to get 
a more general result about the set E which is the finite union of disjoint intervals 
'having commensurable lengths and general (not necessarily regular) position on the 
real axis. However, our method does not work for the set E;which is the finite union 
of disjoint intervals with noncommerisurable lengths. 'We do not know now if there 
exists a Riesz basis of exponents in L2 (E) for such a set E. All the more, we do not 
know whether there exists a Riesz basis of exponents in L2 (E) in the case that the set 
E is some Cantor-like set of positive measure. This will be the subject of our further 
investigations 

Remark 7: In his paper [21] H.J. Landau constructed an example of a discrete 
subset X = { x k}k E Z of R and a multiband set . E such that the system of exponentials 
JeiAX is cmplete in the space L2 (E), d(X) = 1, and mesE can be arbitrary 
large. Thus, the condition (3.6) is not necessary for the completeness of a system of 
exponentials in L2 (E). In this example a set 	can be in particular a finite union of 

regularly positioned intervals of the same length. 

On the other side, from Theorems 1 and 2 of the paper [22) by H.J. Landau it 
follows that condition (3.6) is necessary for the fact that the system of exponentials
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{eik } kEz is a Riesz basis in the space L2(E) where E is a multiband set. No 
additional restrictions concerning lenghts or positions of intervals the union of which 
is the set E are supposed. (This formulation is weaker than the more precise result in 
[22].)

Remark 8: For a multiband set E which is 'a finite union of regularly positioned 
intervals of the same length we constructed a discrete set X = {zk} of sampling points 
in the following way: we partition the integers into disjoint subsets, shift each subset 
by an amount, and let {xk}be the set which consist of these points. In papers [1, 3, 6, 
7, 14] an other construction of a set X {xk} of sampling points is used.. Let E be a 
closed subset of IR, and let p be a positive number which satisfy the condition 

mes((E +2irkp) fl E) 0	(for all k E Z \ 10})	 (39) 
where E + 27rkp = {A + 27rkp:\ E E}. Then any function f with Fourier transform p 
vanishing outside E can be reconstructed from samples taken at a rate cp, by means of 
the formula

	k) -	 f(t)	i2 I	SE (t -	 (3.10) 

where	 - 
SE(t) = mesE L e' t dA	(T E R).	 (3.11) 

Various aspects of the representation (3.10) - (3.11) (by the condition (3.9)) are dis-
cussed in [1, 3, 6, 7, 14]. 

Remark 9: In Goldman's book [11] functions I E L2 (R) are considered which 
spectrum is contained in a set of the form E = [-2,	j] U ['1,c.'2] 'where 0 < w 1 < 
W2 < . In [11, §2.3], an assertion on such functions has been' proved called 'Sampling 
Theorem'. However, the interpolation formula obtained in [11] differs from our sampling 
formula (2.15) - (2.17). In Goldman's interpolation formula there figure upiiot only the 
values of the function f itself, but also the values of its Hilbert transform. Furthermore, 
Goldman's sampling formula has been established only for functions with two-band 
spectrum (with bands of equal length). It is not clear to us how to extend this result 
of Goldman to a more general case. vskip .2cm 

Remark 10: After the initial version of this paper was submitted, the authors sent 
a preprint to J.R. Higgins and received as a response a preprint of the latter's paper 
[15]. It turned out that these two papers overlap essentially. However, our treatment is 
more general than the 'harmonic signals' treated in Section 5 of paper [15].
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