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Fractal Interpolation Functions from R” intoR™ .
and their Projections

D.P. HARDIN and P.R. MASSOPUST

We construct fractal interpolation functiohs from R® — R™, and consider the projections of their graphs
onto R™ x R. Since these projections still depend continuously on all the variables we refer to them as
hidden variable fractal interpolation surfaces. The hidden variable fractal interpolation surfaces carry
additional free parameters and are thus more general than, for instance, the fractal surfaces defined
earlier by the authors. These free parameters may prove useful in approximation-theoretic considerations.
A formula for the box dimension of a hidden variable fractal interpolation surface is -presented.. This
dimension parameter could be used to distinguish different textures on natural surfaces.
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1 Introduction

In this paper we use the theory of iterated function systems to construct fractal interpolation
functions from R® — R™ and consider the projections of their graphs onto R™ x R. These
projections depend continuously on ail the variables, and following (3], are called hidden variable
fractal interpolation surfaces.

The fractal surfaces constructed and investigated in 4] and [5] can be used for interpolation
and approximation purposes, in particular, for image compression and pattern recognition. The
existence of a free parameter in theiconstruction of such fractal surfaces allows for some freedom
in the description of the underlying model. The new hidden variable fractal interpolation surfaces
carry m? — 1 additional free parameters which could be used to better model or approximate
natural surfaces, exhibiting a highly complex fine structure. D o

The dimension of a function is a measure for its smoothness and related to the approximation
order in many applications. For instance, it is a well-known fact that a function f € Lip®,
0 < a < 1, has box dimension € 2 - a. We derive a formula for the box dimension of the graphs
of hidden variable fractal interpolation surfaces. This dimension parameter can also serve as a
means to distinguish or describe different textures on natural surfaces. . o

The organization of this paper is as follows: In Section 2 we briefly introduce and review the
theory of iterated function systems, fractal functions and fractal surfaces.- Section 3 is devoted
to the construction of fractal functions from simplices in R® into R™. In Section 4 we prove a
result about the oscillation of such a fractal function. Section 5 introduces the hidden variable
fractal interpolation surfaces, and there we prove the main theorem giving the box dimension
of the graph of a hidden variable fractal interpolation surface. Examples of them close out this
section. In the Appendix we give the proof of a rather technical lemma needed to prove Theorem
6 in Section 5. :
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2 Preliminaries

In this section we briefly review some of the relevant results from the theory of 1terated function
systems, fractal functions, and fractal surfaces.

2.1 Iterated function systems and fractal interpolation functions

Let X = (X,d) be a compact metric space or a closed subset of R*, n € N, with metric d. Denote
by H(X) the set of all non-empty compact subsets of X. It is easy to show that (H(X),h)
becomes a complete metric space when endowed with the metric h: H(X) x H(X) —» R}

h(A, B) = max{sup{d(z, B) : z € A}, sup{d(A,y):y € B}}.

This metric is called the Hausdorff metric on H(X). Let w = {w; : X - X :i=1,...,N}
be a collection of continuous functions on X. The pair (X,w) is called an xtemted funchon
system on X (see [2]). If the maps w; are contractive, then (X, w) is called Ayperbolic. If we
define a set-valued map W : H(X) — H(X) by W(A) = y; w.(A), for all A € H(X), then W
is 2 contraction on H(.X'), thus possessing a unique fixed point A*, called the attractor of the
iterated function system (X, w). This fixed point satisfies

N
AT =W(AT) = [Jwi(A4%).

=1

For a more detailed and elaborate presentation of iterated function systems we refer the reader
to [1,2].
One can associate a code space with an iterated function system in the followmg way: Let

A" be the attractor of an iterated function system (X,w). Define £* = = {1,...,N}N
Note that * endowed with the Fréchet metric |-, -] : £° x £* — IRO, -

s lim — ]ml

li, jl = Z SER

with i = (tm)men, J = (Jm)men, is 2 compact metric space, homeomorphic to the classical
Cantor set on N symbols. L is called the code space for the iterated function system (X,w)
and its elements are called codes. We will denote the codes by small bold-faced latin characters
such as i, j, etc. If i = (4,42, im,---) € T°, then i(m) = (i112--- i, ) is called a finite code of
length m. The set of all finite codes is denoted by . If l(m) is a finite code, we will write 5
for fiy o fiy0...0 f;,. (function composition) and aj = a;,a;, ...a;, for products of real numbers
indexed by the components of i.

Toeachi€ I* we can associate a point S(i) € A" via §(i) = wj(A),and themap § : &* — 4*
is surjective (however, $ is not injective, in general). Thus, we will identify points-on A* with
pomts in £*. Note that, if i(m) is the initial segment of i € £, then lim,—, Wim)(A) =4,

Now let X =[0,1] x R and let I:= {1,..., N}. Consider a set of N + 1 interpolation points
’T= {(zj, y;):0=2zp<--- < zy =1, JJ-EIP j €3 ={0} UI}. Define maps w; : X — X by

_ 0 T » (l‘_l
wn= (G 2) () (2)
where 0 < |s;| < 1 is given, and a;, ¢, d;, e; are’ determined by the conditions w,(O Yo) =

(I. 1y Yi- 1) and wl(11 yN) = (3-,!/') .Vle’d'“g

@i =2i =Ty, G = Yi — Yi-,
d; = 2y, €i-1 = Yi—1 — SiYo-
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Let D be the metric on R? defined by D((z,y), (£,7)) := |z — Z| + Bly — §|, where B is chosen
so that 0 < 8 < min;{(1 - a;)/(1 + |ci|)}- Then it is easy to verify that w; is a contraction in
the metric D. Hence (X, w) is a hyperbolic iterated function system possessing a unique fixed
point G.

We next show that G is the graph of a continuous function f~:[0,1) — R that interpolates
T. For this purpose, let C([O 1]) denote the Banach space of all continuous functions satisfying
f(z;)=y;,j€J. Let u; : [0,1] » R and v; : [0,1] X R — R be given by

ui(z) = ez + d; and vi(z,y) = ciz + s,y + e,
for i € I. For f'e C([0,1]) we define
| B()(@) = u(a M@ ST @), for 2 € [z, mil

Let s := max{|si| : ¢ € I}. It is straight-forward to show that & maps C([O 1]) into itself, and is
contractive in the sup-norm with contractivity s. By the Banach Fixed-Point Theorem, ¢ has a
unique fixed point f* € C([0,1]). It is easy to verify that W(graph f*) = graph (f*) é;nd hence
G =graph (f*). Following [1] we call f* a fractal interpolation function. In the next subsection
we show how a modification of the above construction can be used to obtain fractal surfaces
defined on triangular regions of R?.

2.2 Fractal interpolation surfaces

Let D be a closed non-degenerate triangular region in R? and let $ = {q1,...,qm} be m(m > 3)
distinct points in D such that {q,q2,q3} are the vertices of D. Given real numbers z;,...,2m
we wish to construct a function f* such that f*(q;) = z, i = 1,...,m, and whose graph is
self-affine. We decompose D into N non-degenerate subtnangles O1,...,ON whoéé interiors are
non- mtersectmg We assume that the set of vertices of {0;}¥, equals'S. Let k : {1, N} x
{1,2,3} — {1,---,m} be such that {q; ;)}3_, gives the vertices of o;. ‘

Leti€ {1,...,N}. Since D and o, are non-degenerate there exists a unique invertible affine
map u; : R? — IR7 satisfying .

uilg;) = grig), =123 . ' (1)
Let si be given such that |s;| < 1 and v; : R® — R be defined by '

vi(z,y,2) = @iz + biy + 8,z + ¢, , (2
where a;,b; and ¢; are uniquely determined by
vi( @5, 2) = 2u(ij) J=123. ' ' (3)

Let C(D) be the Banach space of all real-valued continuous functions defined on D endowed
with the sup-norm. Define a mapping & : C(D) — RP by

o(f)(2) = w(e (@), SN, forzeon (@)

We next find conditions so that & takes C(D) into an appropriate subspace of itself. With the
above definitions for u; and v; we have ®(f)|,;, € C(o;) and ®(f)(gk(i.;)) = 2i(i,;)» Whenever
f € C(D) and f(q;) = zj, j = 1,2,3. If 0; and o are adjacent triangles with common edge
T;Q;7, it remains to be determined whether ®(f) is well-defined along 7;7;7, that is, whether &( f)
satisfies the “join-up” condition:

vi(u7'(z), f(u7}(2)) = v.(u"(l) fuz'(2))), forallz €y - (5)

Equation (5) is satisfied if, for instance, the boundary data {(g;,2;) : ¢; € D} is assumed to
be coplanar (see [8]) or if the graph associated with the triangulation {0;}¥, has chromatic
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number 3 (recall that the chromatic number of a graph is the least number of symbols required
to label the vertices of the graph in sucha way that any two adjacent vertices, i.e., vertices that
are joined by an edge, have distinct labels, see [4]).

Now let P be a non-vertical plane in R®, and let Cp(D) denote the collectlon of all continuous
functions f : D — R such that (z, f(z)) € P, for all z € D. Let CB(D) denote the set of all
continuous functions f: D — R such that f(¢;) = z;, ¢ €D, j=1,...,m.

Theorem 1. Suppose the points {(g;,2;) : ¢; € @D} are contained in a plane P C R3. Let ® be
defined as in (4) where u; and v; are defined as in (1), (2) and (3). Then & : Cp(D) — Cp(D)
is well-defined and contractive in the sup-norm. The unique fized point of ® is the graph of a
continuous function f*: D — R satisfying f*(g;) = zj,j=1,---,m.

Let D be a polygonal region, {a,-}fil a triangulation of D consisting of 2-simplices o; with
non-intersecting interiors whose union is D, and Q = {qi,...,qm} be a set of vertices of {o;}}¥;.
Let {rx}}, be M simplices each of which is a union of some subset of {o;}}¥,. Order Q such
that {q;,...,gn} C Q are all the vertices of {rk}{f’:l. We call €: {1,---,m} - {1,---,n} a
o-labelling associated with {ri}} | and {0}, if {qy;)> 9¢(;7) 9e;7)} are the vertices of some
& whenever {q;,q;/,q;»} are-the vertices of some o;. Let u; and v; be the unique affine maps
satisfying '
ui(qe;)) = ¢;  and  vilge), 2¢(5)) = 25- (6)

Thus ui(7x) = oy, for some 7.

Theorem 2. Let £ be a o-labelling associated with the triangulations {o;}IL, and {r}M,. Let
u; and v; be the unique affine maps defined by (6) with s; = 5,0 < |s] < 1. Let & be defined
as in (). Then & : Cp(D) — Cg(D) is well-defined and contractive in the sup-norm with
contractivity s. The unique fized point of ® is the graph of a continuous function f*:D - R,
satisfying f*(q;) = zj,3 = 1,--+,m |

The interested reader is referred to (4, 8] for thé proof of Theorems 1 and 2.

The function f* is called a fractal interpolation function and its graph a fractal interpolation
surface. For a more detailed discussion of these fractal surfaces and their properties we again
refer to [4] or [8).

2.3 Dimension

We recall that the boz dimension (sometimes also called the fractal-dimension or capacity)-of a
bounded set § C R" is defined as

d= lim BN

B, Toge provided this limit exists, - )]

where N (§) = min{card C. : C, is a cover of § consxstmg of n- dlmensmna.l €- ba.lls}
Recall that a similitude f : R® - R"is a mappmg satisfying

@) = £ = sz - =l

for all z,z’ € R™ and some scalmg factor s € R. It was shown in [6] that such a mappmg Sis
of the form

S=$O+tuq

where O is an orthonormal transformation on R and t, : R —» R"®, £ — z + v, the translation
by v € R".



Fractal Interpolation Functions 539

Theorem 3. Let u; and v; be defined as in (1) and (2), respectively. Suppose u; is a similitude
on R? with scaling factor a;,i = 1,...,N. If {(¢;,2;) : 7 = 1,...,m} is not coplanar and
SN Isilai > 1, then the boz dimension d of graph (f*) is the unique positive solution of

N

I lsilad ™t = 15 ' @)

i=1
otherwise d = 2.

Proof. See [4] or (8] (this theorem is a special case of Theorem 5.1 in [4) and generalizes Theorem
5 in [8] to a certain extent)®

3 The construction of fractal interpolation surfaces in rR™*™

In this section we construct fractal functions which map a polyhedron D C R™ into R™. This
construction is given in a general setting.

Let D be a polyhedron made up of finitely many n- s;mpllces 0; CR*, t=1,...,N. Denote
by @ the set of all vertices g; € D, j =1,...,M. Let {(g;,2;) € D xR™ :j = l ..,M}bea
given set of interpolation or data points. Let 7, be an n-simplicial complex in D that is a union

of some of the o;’s, k = 1,..., K. After relabelling — if necessary — we write qi,...,qz for
the vertices of 7x. A function €: {1,...,M} — {1,---,L} is called a labelling map if whenever
@irs---+Qjngs are the vertices of some o;, then ge,), .- -2 Qe(504,) 7€ the vertices of some 7.

Now we are ready to set up the maps that will define the fractal function. Let u; : R® — R"
be the unique affine map such that

ui(qe;y) = q;»  forall g; € oy, .9

i=1,---,N. The maps u; can be represented as
) A~z + D;, (10)

where A; € M,.m, the algebra of all n x n matrices over R, and D e R". Let B € M, and
suppose that the spectral radius s of B is less than one. Note that there exists a norm || - ||
on R™ such that the induced matrix norm of B equals s. Let v; : R® x R™ — R™ be the unique
affine map of the form

vi(z,y) = Ciz + By + E;, (11)
where C; € M,.,m, E; € R™ are such that o
v-(‘le(,)we(,)) =2z, o o P (12)

for al] j- such that' g; € o, and for all i- WN. Let. C {f € C(D,R™) : f(g;) =
zj, 3 = 1,..:,M}. Define a norm || - ||°<> on C I)y Ifllo = sup{llf(z)lls : = € D} and let
o C - C(D R™) be deﬁned as ’

(@f)(z)= vi(u](z), f(u"(x))), ~ forall z € 0y, (13)
i=1,--,N.

Theorem 4. The mapping & in (13) is well-(lefned maps C into itself, and is contractwe in

Il Hoo-
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Proof. Clearly ®(f) is continuous on each o;. Let ¢;-= ®(f)|s;., ¢ = 1,...,N. Suppose o; and
oy intersect along a face, i.e., 0; N oy = F, where F is a p-simplex with p < n. To prove that
® is well-defined it suffices to show that ¢;(F) = ¢,(F). Note that ¢;(¢;) = z; = ¢i(g;) for
each vertex g; € F. But (9) and the fact that each z € F is a linear combination of the vertices
of F imply that ¢;(z) = ¢u(z), for all z € F. Note that ®(f)(¢;) = zj,j = 1,..., M, by (9)
and (12). Therefore, ® maps C into itself. Now let f,g € C. Then

12(f) = ®(9)lleo supicign{llvi(u; ! (z), f(u7H(2))) = vi(yi ' (2), 9(u7 (2)))llB : = € D}

sup1<i<n{llB(f (27 (2)) - g(u; ' (2)))llz - = € D} < sllf - gIIoo'

By the Banach Fxxed Point Theorem & has a unique fixed point f* € C, and if f G C, then
®"(f) converges umformly to f*. The graph G‘ of f* is the attractor of the iterated functlon
system (D X R™; wy,...,wn) where -

(=N [ uilz) . !
w; (y) = (u;(z,y)) (i= l,...,lN.). S (14)

The associated set-valued map W : H(R" x R™) — H(R" x R™) satisfies W(graph f)= graph
d>(f), for any" f € C, and, in particular, ! o '

W (graph f ) = graph f*. (15)

As above we call f* a fractal interpolation function. We refer to its graph as a fractal interpolation
surface. .

Throughout this paper we use the notation (®; f)(z) = vl(u_l(:n) f(u_l(:r))) where v;(z,y)
is such that wi(z,y) = (u;(z), vi(z,y)), for all finite i € .

4 The oscillation of f*

In thls section and throughout the remainder of this paper we will assume that D = g, where o
is an n-dimensional simplex" wnth the property : :

a:Ud;, ' ' T (16)
=1
for some 1 < N € N, and where each o; is similar to o. (That such a simplex exists follows
from the theory of Coxeter groups. At this point we refer the interested reader to [5] for a more
detailed description of foldable figures and.their relation to Coxeter groups. ) This then implies
that if v; is of the form (9), A; has to be a similitude with scaling factor @; < 1, i.e., A; = a,0;,

where O is an orthogonal transformation on R". Let us also assume that B isa similitude, i.e.
B = 50, O an orthonormal transformation on R™.

Definition 1. An e-cover C, of a bounded set § C R" is called admissible if it is of the form v
Ce = {Be(ra): TarTor € S and |ra — ror] > £/(2y/) for all 1o # 1o}, (17)
where B.(7,) denotes the n-dimensional ball of radius ¢ centered at a € S.

Remark. These admissible covers will also be used in the next section to calculate the box
dimension of the projections of graph f* onto R™ x B.
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Definition 2. Let § C R™ be the domain of a function f : R® — R™. The oscillation off over
B C S is defined as

W(fiB) = sup [If(z)— £, ' | (18)
) rr’€B
and the ¢-oscillation of f over S as
Q(f;S) =inf Y w(f;B) : : (19)
BeC, .

where the infimum is taken over all admissible e-covers C, of S.

Now let $ = D, the domain of f*: D — R™. Recall that M is the number of interpolation
points (gj, z;). We need the following lemma

Lemma 1. Suppose that

(a) the set of interpolation points {(g;,2;) : j = 1,...,M} is not contained in any n-dimensio~
nal hyperplane of R**™ and

(b) }:,-’i, sa}"l > 1.
Then
Jim € e(f7 D) = foo. i : (20)

Proof. Condition (a) implies that there exists an i € b (where lo)'denotes the interior of D)
such that V = ||f*(z) -~ n(Z)}] > 0, where 7 : B® — R™ is the unique affine map such that
n(g;) = z,, for each of the n + 1 vertices q1,...,qn+1 of D. Let D’ be a closed and connected

subset of D such that whenever z € D, there is an z' € D’ with [|f*(z) - f‘(:c')|| < V/2. Let
7 > 0 be the distance between D’ and dD. Let 0 < € < na/2 (2 = min{a; : i = 1,...,N}) and
let £, be the collection of all finite codes i € £ such that

2e <na; < 2/a (21)

holds for i but no curtailment of it. Since m() is in the convex hull of {f*(¢;):j=1,...,n+1}
we have () = E"*l a;f*(q;) where a; > 0 and ._,,a, = 1. Let z; € D’ be such that ||f'(q,-) =
=zl < V/2, for j=1,...,n+ 1. Then E ' o

w(f* D) 2 Siagllf1(2) = £7(2)l 2 allf*(2) = 7 (@ = 1S05(f(q5) = f*(z;) 2 V/2.

Using equation (13) we have
w(f*u(D)) 2 N (ui(2)) - ;5 05/ (wi(z;5)
II(d"f')(u'(i‘))— (@) (i (NI - (@57 )(u3(2)) = 325 (25 /) (ui(z5))l

IB; (LS ~(2) - "(T)II = lim(@) = L5 e/ (z)l) 2 5 (V/2).

Note that (f u;(D")) 2 w(f*; u;(D")) since f* is continuous and uy(D’) connected There-
fore, using (21)

v

Q(f" D) 2 Qe(f‘;Uu;(D')) = Z Q (f5y(DN) 2 (Z si) (vV72). . (22)
) 1 1 . 1 .
From (21) it also follows that (ai/s)"_l < (2/1]g)""'=: 77, Thus

L ar 2 JE e = I M) (e oo
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where d is the unique positive solution of ;s a‘f ! = 1. Note that d > n by condition (b).
We define a probability measure [t on T by u(i) = s; a“ ! for any C)lmder set i. Since X, pal-

titions T, we have 1 = Zier pu(i) = le‘" 3 al -1 Therefore Q.(f73 D) 2 (v/2)(@ =DV )e-n+,
where @ = max;{a} and k = min{|i{:i € Z.}. Since k — o0 as ¢ — 0+, the result follows B

Theorem 5. Assume that the hypotheses of Lemma: 1. are satisfied. Then there ezist positive
constants €q,ky, and ky such that

1678 <075 D) < ke ™", @)
for all 0 < € < €9, where § is the unique positive solution of Zf_’__l sal =1, .

Proof. Let i € {1,...,N},let 0 < ¢ < 1, and suppose B,/ (r) C D. By (13) we have

W Baa(r) = sup [l f(2) = iz S ()]
z.2'€Be(ui(r))
< BBIlS"s Bepa (7)) + =Gl (29

Let D; = {z € u;(D) : dist(z, Ju;(D)) > 2c}. Note that D; # @ for ¢ small enough. Further-
more, if C, is an admissible £-cover of a set S and z is a point not covered by C,, then C, U B.(z)
is an admissible ¢-cover of S U {z}. Thus, any admissible cover of a set S may be extended to
an.admissible cover of a superset of S. i o

Let C,/o, be an admissible €/a;-cover of D. If we apply u; to this cover we obtain an
admissible ¢-cover C! of u;(D). Let C! = {B, € C} : BN D; # 0}. Note that C, = |J;C; is an
admissible ¢-cover of |J; D; and may be extended to an admissible ¢-cover C of D by adding
e-balls with centers in D — J; D;, as described above. Thelcfore

QD)< T w(f\B)= ¥ W/ B+ S w(f,Be).

BeeCe B Gét Bl €C, _él

It follows from (17) and vola(D — U; Di) < 4e vol,—1(U; ui(D)) that there exists a posxtne
constant ¢o such that C, — C, contains at most coe~"*+1.¢-balls. Thus

Y w7 B) S 2f"|leos ™.

B.€C.—C
Furthermore, if B, € (f;, then B, = u;(B,/,, ), for some B, o, € C,/,,- Hence
. . . 2¢
DowlfBB)=). > w(fiBea )<Y, D (sw(f i Besa,) + ;IIC-'II) :
Beel, i B.ja,€C, a, t Bija,€Ce 0, t

Note that by (17) ZB (26 /ai)l|Ci]| € e1e~™*1, for some ¢ > 0. Therefore,

/oy €C,/a,

’ QD)LY S solfT Bua) + e,

i Bcla, eCt/:.:,

for some ¢, > 0.
Since the above inequality holds for any admissible ¢/a;-cover we have

QS5 D) €T Qo (S5 D) + ™. (20)
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On the other hand, if C, is an admissible cover of o; = u;(D), i = 1,---, N, then we have again
by (13) (assummg s #0) '
w(f*, Be/a.(u '(ra))) SUP; zreB, (ra) (071 (2, £7(2)) = ¥} (2", S (@)

1B~ |lw(f~; Be (ra))+2IIB 1CiAille,

IA

for all B,(r,) € C, where v! is such that w'(-, ») = (u7}(-), "( L *). Thus

zne/a.‘(f.; D)< Z‘s—]ﬂe(fﬁai) + co (Z ”B_IC.'A‘ ") 5_"+17

that is,
Q(f*:D) 2 Y Qo (f7; D) —cre™™*!, ._ (27)

for ¢; = co(¥; ||B~1C; A¢]|) > 0. Note that (27) holds trivially for s = 0. Hence, combining (56)
and (27), we have

$Qefa, (S D) = 1™ S QUSTDY S Y- 8Qpa ([ D) + ™™ (28)
fas _ $e/a,

Now let v = N sa?! and let @ = max{a; : i = 1,---,N}. By Lemma 1 we can select
€0 > 0 small enough so that Q.(f*; D) > [2¢1/(v — 1))e7"*!, for g9 < € < €o/a. Choose
K, > 0 small enough so that 1\"1556 < [a/(y = 1)]e~™*! and K, > 0 large enough so that
Q(f*, D) < [e2/(1 = 7))e™"*" + Kpc7% for ¢g < € < £o/a. Define functions ¢,7 : (0,€0] — R by

ole) = (76_1

respectively. It follows that, for all £9 < ¢ < £o/a, p(€) < Q(f7; D) < B(¢). Note that

1) et 4 K™t and B(e) = (1—02;) gnHl + 1\"25_6,

p(6) = Lsp(e/a) —aie™™! and - Ble) = 3o sPe/a) +cae T

i

Ifaco<e < so,ihen €0 Lefa; <efa and

Q(f73D) < 3 0o (S D) + c2e ™! < 3 5B (e/ai) + e = Pe).

Similarly, ¢(¢) < Q.(f*; D) for Teo < € < ¢o.

Now yif p(g) < Q.(f*; D) < Ple) holds for (T)leo < € < €0, it must hold for (@) eo < <e < €.
- Therefore, <p(£) < Q(f;D) <) for all 0 < £ < €. Sluce §>n-1, there exnst positive
constants ky and ko such that k=% < QA f" D) < kge

Remark. The inequalities in (24) imply that § = lim,—o4 log Q.(f*; D)/(—loge). In the next
section we will relate this result to (7). .

5 Dimension of Projections

In this section we calculate the box dimension of the projections of graph f* onto R" x R.

We shall assume that u;(z) = Aiz + D;, where A; is a similitude of norm ||A;|| = a;,
and vi(z,y) = Ciz + By + E;, where B =50 for an isometry O, ¢ = 1,...,n. We consider
the components of f* = (f7,. .,_f,,,) (Here T denotes transpose.) In what follows we fix

je{l,...,m}.
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The graph of f; is the projection of graph f* ontoR"X0x...x Rx...x0, where the factor
R is in the jth position. Since f; still depends continuously on all the variables, we refer to it
as a hidden variable fractal mterpolatzon function, and to its graph as a hidden variable fractal
interpolation surface.

Denote by Ay,...,Am and by hy,...,hy the eigenva.lues and orthonormal eigenvectors of O,
respectively. Let us order the eigenvalues of O in such a way that Ay,..., A, are all the distinct
eigenvalues of @, 1 < ¢ < m. The canonical basis of R™ is denoted by {e;,...,em}. Define

cj = (heej) (29)

({-, -) denotes the Euclidean inner product in R™). We can write

2= 3 b, where bi(z) = ([ () he). (0

k=1

Also, f7(z) = (f*(z),e;) . Let I(x) be the sct of all indices from {1,...,m} indexing the same
eigenvalue of O, k € {1,...,u}, and let

de(x)= > bi(x)ey;. . (31)
kel(x)

Theorem 8. Suppose that (i)'d, # 0, for some v € {1,...,u} and (ii)) =%, a" 's > 1. Then

the boz dimension d of graph f; is the unique positive solution of

N .
Za;‘"s =1 : (32)
=1

otherwise d = n.

Proof. To prove the theorem we will make use of a special class K., ¢ >0, of covers of graph f;.
The covers G, € K, are defined as follows:

Ge = {Be(ra) x[yo+(k=1)e, yathe] : yo <ipl f7, Yot nae 2 sup fiik=1,...,n4; nq €N},

where {B.(ro)} is an admissible - cover of D. Let N (f7; D) = inf{|G.|: G, € K.}.
Next we show that it suffices to consider covers from K, to calculate the box dimension
of graph f7. Let G. be an arbitrary minimal cover of graph f] consisting of sets of the form

B.(r) X [2,z + €],z € R. Denote by /\f(_f] ; D) the cardinality of this minimal cover. Then we
obviously have

Nf5: D) < Nu(f5 D). (33)
But since {B.(r,)} is an admissible cover of D, we also have that B, m(ra) N Bt/z\/—(rg)

B, ro # rg, and that the number of balls B, ;2 /m(ra) contained in the ball B, 2 m(ra) is less

than or equal to £ = (4y/m + 1)". Thus any B.(r) meets at most £ elements of any admissible
g-cover of D. Hence

No(£3:D) < 3ENL(f3: D). - (34)
Note that by (17) there is a constant ¢ > 0 such |C.| < cc™™ for any admlssxble e-cover of D.
Furthermore, from (18), (19) and the definition of N, (f;, D) we have

€], D) — c1e™ S N7, D) € €7 (S}, D) + cae™" (35)

for some positive constants ¢, and c;.
Since Q.(f}; D) < Q(f*; D), Theorem 5 and (34) imply

Ne(f3: D) < kae™@ : ' (36)

where k2 > 0 and d is given by (32). We next derive a lower bound for /\f,(f) ; D). First we
derive some estimates on Q..
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Definition 3. For f.: D — R we define

ﬁz(f; D):sup{ Z w(I;Be)} (37)

Bl GCI

where the supremum is taken over all admissible £-covers C, of D.

Lemma 2. Let f : D — R and let ¢ > 0 be arbitrary. Then there ezist positive constants K, ki,
and k, so that

(i) Qe(f; D) < Qe(f; D) < KQ(f; D) and

(i) 51926(f; D) € Qec(f3 D) < k2 (f: D), for any ¢ > 0.

Furthermore, ky and ky depend only on f and c.

Proof. (i) Let C, be an arbitrary admissible ¢-cover of D and let C, be an admissible -cover of
D such that ¥ gieos w(f; B') < 2Q.(f; D). For each B € C, let S(B) = {B' €C,: BN B' # ¢}.
Then any B’ meets at most £ = {44/ + 1)" elements of C,. Furthermore, since S(B) > BN D,
we have w(f; B) £ 3_prespyw(f; B') for any B € C,. Thus

SufiB)s Y Y wfiB)<E Y wifiB) < 2%(f; D).

BeC, BeC. B'eS(B) B'eC!

(ii) As in Section 4, it follows that any B.,.(r) meets at most [2(¢;/cz + 1)y/n + 1]" elements of
an admissible cae-cover of D for any ¢;,c2 > 0. Now the result follows as in (i) @

We obtain a lower bound for Q.(d,; D) using a functional inequality as in the proof of Theorem
5. In order to get the induction started we use the following lemma whose proof is given in the
appendix.

Lemma 3. Suppose that conditions (i) and (ii) of Theorem 6 are satisfied. Then

51_1.1(1)1‘ "N (f]i D) = +oo.

Observe that

;=3 de (38)
. x=1
Using Lemma 2(i) and (38) we obtain
I M
QD)< S Me(de; DY < K Y. Qu(des D). (39)
x=1 ' x=1
Lemma 3, (35), and (39) and possibly reindexing yields
- limsup e~ 'Q,(d,: D) = +00. (40)

e—0+ -

By taking the inner product of (30) with ))k and using (31) we obtain a functional equation for
d,: )
d,(ui(z)) = <c.~z + E;. Z ’lkaj> + sA,d,(z) , (41)
’ kel(n) :
forz € D,i€ {1,...,N}. Arguments similar to those in the derivation of (27) lead to

Qu(d,; D) 2 Y sQsa,(dyi D) = cs™™*!,. for some ¢ > 0. (42)
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By Lemma 3 and Lemma 4(11) there exists an 50 > 0 such that Q.(d,; D) > 2¢/(y — 1) for
€0 < € < geo/a where y = TN, sa?™! and @ = minja;]. Thus we can choose K; > 0 small

enough so that

Q.(d,; D) > (7 < 1) e 4 Kiem¥, forep < € < ofa. (43)

Using indgction and (42) we see that (43) holds for all 0 < £ < g¢. In particular, we have
we(dy; D) > K678 for 0 < ¢ < ¢ (44)
Let i € 3, |i| = £. Note that by (30) we have -
[ (ui(2)) = vi(z, f7(2)) = iz + B f*(z) + E;,

for z € D. Therefore, equations (30) and (31) imply

fi(ui(z)) - f(u, v)) = (Ci(z ~ y),¢; +Zs’A‘ d z)—d(y)),

x—1

for z,y € D. Hence
Qe(f5;ui(D)) 2 —%Ci'inf"“ + lec/u:i (Z Medi; D) )
and by Lemma 2(ii)
Qz(f,-"; ui(D)) 2 —@6‘"“ + kys'Q, (Z Ad; D) , (45)
i ®
where k; = ky(a;). Therefore
Q(f7:D) 2 —cee ™t + 0, (Z Md,; D) (46)

where ¢4, ¢, > 0. To obtain a lower bound for Q e(f;3 D) we will relate the lower bound for
Q.(dy, D) to a lower bound for Q.(3", A%d,; D). Since the Vandermonde determinant of A, ..
Ay is non-zero, there exist constants ag,...,a,_; such that

d, = uz_: oy (Z dﬁ.) . (47)
=0 ®

Therefore, by (44) and Lemma 2(i) we have the inequalities

i8]

0< I, liminfe_o+ €941 (dy; D) = liminf,_gr €441 (Tpae (Lo M) 5 D)
liminf,_o+ Tee™4* arl, (£, Aidas D)
liminf, o+ g9+ ag| K, (ZK Mde D)

liminf, o+ ¢ Tpe™4+1Q, (£, Aodsi D),

IA IA A IA

where ¢ = max{l|a,| : € = 0,...,1 — 1}. Thus there exists an g > 0 such that, for each
0 < ¢ < o, there is some £ € {0,...,p — 1} with :

K
—d+l 4 1
& (Z AL (l,‘, ) 2 W (48)
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Hence, using (46) and (48), there exist x1,x2 > 0 such that Q.(fj; D) 2 xie™"** + x26~9%%1,
for0 < e < g0l

Example. The following sequence of pictures displays the two projections of a fractal function
f*:D - R, with D={(z,y) €R*:2,y20,2+y<1},Q={(j/3.k/3): j+ Kk <3 j,k =
0,1,2,3}, zjx = (sin(j/3),cos (k/3)), and s = 4/5.

Figure 2: Two views of the projection fa of f.

Appendix: Proof of Lemma 2.
Since O is an isometry we have |A%| = 1, for all n € N. For a.f8 € span {(A})2q:v = 1,---,u}
we define
1 & =
(a,8) = Tln_mw T"z;oa"ﬂ"'

Now it follows from hypothesis (i) in Theorem 6 and
((A:), (’\:’)) =6,z

that there exists an ng € N with 3~ d,(z)A]° # 0. Assume without loss of generality that
ng = 0. We may also assume that zy = -+ = zp41 = 0 in R™, with one of the vertices being the
origin. . '

s

Definition 4. Let a,b € R"t! and let © be a plane perpendicular to b containing the point
" P €R"!. Then '

(z - Pb)

) a, for all z € R"*1,

Proja;b.P(:) =z -

Since f; #0 and continuous, there exists a. b € B" such that Proj(.0).(b.0).0 (graph j’;) contains
an n-dimensional cube C,, of side 2p, for some p > 0 (here O denotes the origin in R"*}). By
the Poincaré Recurrence Theorem there exists a subsequence {n;} € N such that
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|As = A¥| < pf2c

forallv =1,---,pu, and ¢ = maxp ¥ ,|d,(z)|. Hence

Let i

After

1 (@) = (@™ )@ = | D du(@)(h = NI < D (a)- 2 < £
€X,li|=ng,and a = wi(b,0) — w;(0,0). Then
Proj,,(,0),p(graph f;loi) = Projg,,0.p({(i(2), f; (ui(2))) : z € D}).

some algebra, this reduces to

T(i) (z - %b,((@""f.)(z)’ei )> ’

where TH) : R* x R™ — R" x R™ is defined by

Note

TW(z,y) = (uj(z),s™y + Cjz + E).
that the Jacobian of T is given by

JacTH = ai‘"s"'l, ie I,

Thus o
vol T™(Cqp) = Jac T™ vol Cyp.

Now, if N(f;; D) is the cardinality of a minimal ¢-cover C, € K, of graph f7, we have that, for
€ < 2p(a)™*, :

. . N i

s"Ne(fj’; D) > ZJacﬂT“) volCy, 2 (Z a?"ls> volCo, 8

’ i i=1 )
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