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Exact Difference Schemes and Difference Schemes of Abitrary Given Degree
of Accuracy for Generalized One-Dimensional Third Boundary Value Problems

I.P. GAWRILYUK

A variational problem is formulated which is a generalization of the third boundary value prob-
lem for one-dimensional equations. Conditions of existence and uniqueness of solutions are
considered. The numerical approximation of arbitrary given degree of accuracy (truncated
difference schemes) regarded in this paper is based on the three- pomt difference relanons for
the exact solution (exact difference scheme).
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0. Introduction

In {1,2] exact three-point difference schemes and truncated difference schemes of arbitrary
prescribed degree of accuracy for the Dirichlet problem for one-dimensional equatlons in gen-
eralized formulation have been regarded. The book [1] contains a blbhography concerning the
history of development and application of the exact and truncated difference schemes since
their appearance at the end of the fifties (for linear one-dimensional equations with Apiecewise
smooth coefficients). It is sufficient to mention only their great "a’dvantagés for the construction
of the difference schemes of great rate of accuracy for various practical problems and their
significance for the theory of finite difference methods for one-dimensional equations and
partial differential equations with generalized solutions to understand their role in modern nu-
merical analysis. We study the exact and truncated difference schemes for a generalization of
the third:boundary value problem and extend some assumptions and results of [1,2]in a natural
way. Throughout this paper we denote by c various constants independing of the meshsize h.

1. Formulation of the problem. Existence and uniqueness of solution

Let us consider the bilinear forms

a(u,v) = al, 4(u,v) + Q(Mu()v(l) - 0(0)u(0)v(0) + x,u()v(1) + xou(O)ii(O)
? 1.1)
e, p1( V) = ![k(xmx)v'(x) - OUx)(u(x)v(x)]dx
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and the linear functionals
£]
Iv) = 10 V) = uov(0) -u,v(1) and  IP, 54(v) =f[f°(x)v(x) - Hlxv(x)]dx  (1.2)

‘defined on the spacé W.‘,"('O',‘l). Here %, x, 2 0 and Uy, 1, are given real numbers and £, f,, k, Q
are given functions satisfying the following conditions, where K := {v € W;(0,1): v(x) 2 0}:

(C,) kis measurable and 0 < k, s k(x) s k, <+ for some constants K, k,

(Co) Qe WMO,1) with p22and1/2 <A st

(Cy) fyeL0,1) withg22and f, e W%0,1) withr22,0<9s1

(cJ) -J:O.(.\')v'(x)dx + Q()v(1) - Q(0)v(0) 2 qOJ:v(x)d.\: ;’or allveK, q,> 0'some constant.
The problem now reads as follows:

(P,) Find u e W,(0,1) such that a(u,v) = v) for all v e W,}(0,1).

This problem is equivalent to the following minimization problem of functionals:

(Py) Find u e W,'(0,1) such that J(u) = min{J(v): v e W,A(0,1)}, J(v) := a(v,v) - 2(v).

Now the following statement holds.

~ Theorem 1.1: Suppose the conditions (C,) - (C,) are satisfied and q,, %, %, are not equal
to zero simultaneously. Then the problems (P,) and (P,) have a unique solution.

Proof: The bilinear form a = a(u,v) is symmetric and W,1(0,1) -elliptic. This statement.fqr
9o > 0 follows immediately from (C,) and (C,):

alv,v) 2 Kolvlg + qollvlly | = min(ky, go)lIvlig..

if 9 = 0 and for exampie x, * 0, then using the inequalities
L x s , - ) o, .
= . 2
va(x) = (ojv (s)ds + V(O)) s 2AIvigy +v20)  and  IVIE s 2Ivid +vE0).
for arbitrary € € (0, k,) we can obtain
alv,v) 2 k°|v|§vzl + %o v 2(0)
2 (ky - 5”"'5\/2' + min(s,xo)(lvlivz, + v2(0))
. . 2
2 min(k, - €,0.5 mm(e,xo))llV”‘,vzx.

The Sobolev imbedding theorem and Cauchy - Schwarz - Bunyakowski equality lead to the fol-
lowing estimates as well:
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1
., . /
la(u, V)| kllul“,21|v|“,21+IIOIIL2(£(U(x)v(x)+u(.\')v(x))2dx)’ 2
+(211Qle * %o+ x)llullc vl
2 2 2 2 1/2
s k,lul“/zx |V|‘,V21 + 6"OI|L2(|IVHC |U|W21 + lu ”c |V|“/2x)
+2l0lle + %o + x ulic vl
s c ”U "W12||V||Wé,
vl = |Iz‘},|l,_2IIVII,_2 + I, II,_2IVIW2. +llliviie +llliviie s cIlVI|W2;,
where the constants ¢ are independent of u,v. These inequalities signify the continuity of the
bilinear form a = a(u,v) and the linear form / = I(v). The desired result thus follows as a con-
sequence of Lax -Milgram’s lemma [1] 8
2. Exact difference scheme
Let us untroduce the grids &, = {x; = ih: i = O()N, h = 1/N} and w, = ©,\{0,1}. Let G;

= G;(x,£) from W (e;), e; = (X;_,, X;+,) be the solution of the problem [1]

x; .

dG;(x,E) d(G;(x,E)n(E) 2

fl:/\(i) dE : n(E) - O(E)Ld—én—a):ldi = 5(x) forall neWl(e;), x € e;. (2.1)
Xj-1

We choose in (1.7) v(E) = G;(x,E) for € e; and v(E) = O for E € [0, 1]\ e;. Then we obtain the

following three -point relation connecting the exact solution u = ‘u(x) in three nelghbounng

nodes:.

ulx;) = a;ulx;,) +bjulx; )+ f, i =10(N-1), . (2.2)
wherev

2 = 05-3- f(k(a)c (x;E) - o<a>((z Xi- ,)G(v,,a)))

b; = 05+2—hh(f(5)o(v,,5) QUE)(X;, - E)G;(x,,E)) ) dE

f; = [(Gilx®E) - d/dEG(x, DIF(E))dE

Let us introduce the functions v,’ and v’ , i = 0(1) N which are the solutions of the follow-
ing generalized Cauchy problems (j =1,2; x_, = x5 =0, Xpnuy = Xy = 1):
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(P) Find vjie W)i(e) such that
ag (v/m) +n(x;-,) =0, vix;-) = 0 for all n e Wi(e;) with n(x;,,) =0
agi(vzi,n) +0(x;,,) = 0, vi(x;.,) =0 for all n ¢ WMe;) with n(x;_,) =0

Similarly to [1: pp. 66 -73] one can prove that every problem (P,) has a unique solution. More-
over the functions vji have the following properties:

1. The function v,’is monotonely increasing on the interval (x;_,, X;.,], v,(x) > 0, and the
function v/ is monotonely decreasing on the interval [x;_,, x;.;), vi(x) > 0.

2. The relations

Vi(xjey). 2 vilx; ) for i = .O(I)N . and vix;) = yl"“(xiﬂ),‘fo; 11N -2) '
Vi(x;0,) = vi(x) + vi(x) - v, (\')f(v {®)0©)de - v(x) [(vi(£) Q) dE for i = 0N

hold where x is an arbitrary point of the interval e;. Set in (P,)

for £¢ (h,1)

v(®) _{ 2(E) for E € €

and a(g) = u(g) - hi(h _:E)‘.’(ol)'

Then d(0) = 0 and

288,0) * Agu(0) +3, =0, | ey
where ’
o = a2 (h- Eu9)+ (xy - QOIV20)
| o
; f( KOZE - 0T gg (v, - 0000v20) 2.4)

dv2(E)
dg

h
£.(8)dE - f (EVE(E)dE +ugv2(0).

(]

Xo = ~I2(v2) + uovSI0) - f
o]

By virtue of the definition of the function v, relation (2.3) yields - a(h) + A,u(0) + y, = 0 or
i\ou = =u(h) + Xu(0) + x4 = 0. . : (2.5)

We take into account the equalxtyf k(E) dv2/dE)dE f Q(E)d(EvP)/dE)dE - h which is a
a consequence of the second equation (P,) with the substitution & for n(£). Then one can
transform A, in the following way:

fom Y28 e+ (x, - 0(0)V2(0),
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and (2.5) can be rewritten in the form

Agqu = h A u = -u,(0) +x° u(0) + ph =0 _ ' (2.6)

vz (E)

e foaa) dE + (g - Q(O)A-v9(0)

(2.7

h
h _ o de(é) o vy h-1y®
W = h f(t;(z) aE g—fo(z)vz(ﬁ))dﬁ Hoh Vz(o)"

Analogously, the substitution v(£) = 0 for £ ¢ [0,1 -h] v(E) = v,(E) for E e epyin (P,) leads
to the equation .. . ;

Au = ug(D) +xfu() +pf =0 (2.8)

where

dv| (5)

= - fom g + (x, + QWA v NY)
2.9)

N, :
uh o= f(dv 9y - vMOL®)dE + b7

l—.h

Taking into account the properties of vjiand the representation of Green's function {1: p. 72]

Gi(x,E) =

’(x,ﬂ)

[V,i(x)vzi(i) for x;_, S xs&

vi(E)vi(x) for  Esxsx.,
the relations (2.2) can be rew.ritten in the di\;ergence form (see {1: pp. 76 - 80])

“Au = (aug), - du = -p(x), xew, _ (2.10)
where, fori = 1(1)(N-1),

a; = alx;) = hvi(x)), d; = d(x;) = TUQ), @; = o(x;) = T¥iF) = TI(£,) + T,Xi(£,)

X = __1— ‘ i 4 - 1_ lﬂi ’
T = - s Jei@rwtoae = Joierwerae
Xi_ N . 2 i Xl' R R (2.11)
TXi(w) = hv‘,( )f WD) dE + s 5) v;(aMa)da

Thus the exact solution of (P,) and (P,) satisfies the three -point difference equations (2.6}, (2.8)
and (2.11) representing exact difference schemes.
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3. Truncated difference schemes

In order to calculate the coefficients of the exact difference schemes one needs to solve pro-
blem (P,). But this problem has in principle just the same complexity as the original one. For
this reason our aim in this section is the construction of an algorithm for approximate compu-
tation of the coefficients of a scheme of the form (2.6), (2.8), (2.10).

We first set in (P,)

_[JerHndr forgelx;x] and ®) =] ¢ forgelxiyx)

ne) 0 for £ e [, x;.,] J‘jk"(t)dt for € ¢ [x, x;., 1.

After simple transformations for the functions vjiwe obtain the integral equations

X t x .
-vix) - [k () - ) (v,ie)ydedt + [k HE)dE = 0

Xjeg Xjay Xj1 3.1
-vi(x) - [k (0 - Q) (vi(E)y dEdr + [k H(E)IE = 0.
x t x
Let us set in (3.1), for i = 0(1)N, x = x; + sh,
vi(x; + sh) = haliXs, h), v i(x;+sh) = hB' (s, h) (-1,1] for i = ((N - 1)
\ and s €{(0,1] fori=0
k(s) =k(x; +sh), O(s) = Q(x; +sh) (-1,0] fori=N
Then we obtain the following equations for the functions a(i),B(i):
s 14 (G ' s
“s.t) = b [k [0 - G2l an e [7@ae
'l"so'i '1"'80',' -1+8°',~
‘_SN,i ‘"SN.i - ’_SN.I: (3'2)
8s,m) = 1 [E@ (000 -G LRl anae + [¥eae
s E s

where 3, ; is the Kronecker symbol. Differentiation of (3.2) by s gives a Volterra integral
equation for the derivatives (the equality sign means equality of elements in L,; i = 1(1)N):

(i) N U W -
delah) - k) [(06s) - By LBy < oris)

ds
“1+8g, j
o (3.3)
@) ~ ! o dRC) ~
BB - hE 9 [(066) - Gm) LB gy v,

Each of the equations (3.3) has a unique solution in L,, hence each of the equations (3.2) has a
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unique solution in W,! (see [1: p. 81] where the similar equations have been regarded, except
when i = 0 and i = N). Formal substitution of the series

=) . X m .
s, h) = X5, h) + > h*Ka{iXs,h) with &(s,h) = > h*a§ s, h)
k=m+1 k=0
(3.4)
BUXs, h) = BUs, ) + thka iXs,h) with BG(s,h) = zh“‘a"’(s,h)

k=m+1 k=o

into (3.3) and comparison of the coefficients results in the recurrence relations (s ¢ E;, k 2 0)

doalhs,m) 1 dadid(s h_ 1 k (n B, )
o ’ = = +13\9) — _ 3 1 ‘1"’80 i,h)=0
ds K(s)’ ds T hK(s )_"(O(S) Ot )) meict ’
3 (3.9)
dpgAs, h) Bl (s, h) _ s ( m,
S, 1 k+1 S, 7, (i)
_ro 7 7 - — - R Lh =0
T o ds hk( ) J(O( 9 -0 B 4 61, m)

where E; =[-1+8, ;, 1- 3N, i]- Using mathematlcal induction over k one can prove that a( D

is a monotonely mcreasmg function on E;, a,\ (s h) 2 0, and B(’)ls a monotonely decreasing

function on E;, Bk X(s, h) 2 0. Analogously to [1: p. 82] one can also prove that the series (3.4)

with the coefficients satisfying (3.5) uniformly converge to the functions ol i) and g9,
Substituting the functions

m

. . m, .
Vii(x) = Vii(x; +sh) = ha s, h) and Vyi(x) = Vyi(x; +sh) = hBYXs, h)

instead of v}/ iin (2.7), (2.9), (2.11) we obtain instead of x, pJ , a;, d;, @; the coefficients xj(’"),
("’) ("’) d(”’) ( ) and the corresponding difference scheme

A("’?y(”’) - (a(m?’,’g(m))x _ d(m)y(m) - —<p(m)(x),_ X € Wy

A(om)y(m) _y’(‘m)(o) + x(()m)y(n))(o) + u(()m) =0 (3.6)

l\(,m)y(m) _ y§m)(1) + xé’")y(’")(l) + usm) =0,

which is called the truncated difference scheme of rank m for problem (P,). If o¢i)= 3,2 h2k
x oS(") denotes-any of the functions o) or (9, then the following estimates hold:

. k
0 < ofiXs, b) s kg k=DpkA-1P=D| Q| (1/k!) P2V (2P)

o0
0 s o'iXs, h) - 84 Xs, h) kZh“‘o(')(s, h) S €y AU TXEAP QI pei B
=m+1
||do(i)($,h) = dgl(i)(sth (m+1X1+X-1/p) dd(i)fs,h)
mﬂh |O| A.p.ej S Co
|| ds ds °-2on ds o.2,E,

where E, = [-1,0], Eg = [0,1],
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em = kst 37 (ks 101y p,0 22k m 1kt P 2P

0=(0,1), ¢; =(x;_4,x;), | -5 ¢, pand |l - 5 ; p denote semi-norm and norm, respectively, in
the Sobolev space W (D), W,2(D) =L,(D). These estimates are proved in [1: pp. 83 - 88] for i
= 1(1)(N - 1) and in the same way one can prove them also for i = 0, N. The estimates (3.7) show
that the functions g-(")approximate the functions o‘*)and for this reason one can expect the
nearness of the coefficients-of exact and truncated difference schenes. ‘

4. Coefficients stability of difference scheme with boundary condition of the third kind
Let y be the solution of the problem
Ay = (ayg)y - dy = -9(x), x cwy
(4.)
“x(0) +xJy(0) +ul =0, yr(D+xly()+ul =0

and y’ the solution of a problem of the same kind but with the perturbed coefficients 7, d, e,

%D, b (j =0,1). Suppose that the followmg_ conditions hold:

0 <k 5 a(x),30x) 5 Ky, 0 <o 5 d(x),d(x) 5 g, 05XPxP <% (j=0,0). (4.2
Let us rewrite the problem (4.1) in the index form

Ay = a; ¥y - (di +8; % 3,00 * 814y Yies = -h%@;, i = 11N - 1) ‘ (4.3)

B= (12 hxd)yo vhull, yn-, = (1+ hxl)yn +hult. ) (4.4)

Eliminating the unknowns y,, yn, from (4.3) with i = 1 and i = N and using (4.4) we obtam the
following problem with Dirichlet boundary conditions:

Y = (ayz)x - dY = -9'(x), x cwp, Yo =N
where

h : h
a,xg'h 3 anxh

aj =a; (i =2()(N-2)), a/ =d, +1+hx£’ v AN-1 TAN-y, AN SdN ot 1+ AP

h
=9; (i = 20N -2)), Ak yve @
f=ei( NN-2)), ¢; =9, - At + B PN-1 = PN " A1+ hh) (4.6)

Yizyi (i =10N-1); d; = d; (i = 20)N-2), d; =0, dfy_, = 0.

In the same way one can obtain a similar problem for y;* = % = y;, i =1(1(N-1). It is easy to
see that in view of (4.2) the following conditions are fulfilled:

0 < kg = min{k,, g5} s a'(x),a"(x) s k; == max{k,,q, +k,%) and 0= d’{(x), d"(x). (4.7)
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Now we use the estimates (see [2])

. K} .
lo P 2(x), ., s —t(ucp"- ol Iyl o lld™-d'll,

© ok
hd“l, o ) .
+ (_ko_.:_ +1)||_y’—( ||P1_w¢||a -a ||p2'w*)
ki [x(1- ) forxsE 2 “s
L [x(1 - orx s X
0 s G{x,E) s _k_(',{i(l “x) forx 2’ max ¢ G(x,E) s E?o(x)

“wei kil o x, forOsEsx
(k) =20k, [Ggledl « (et | 0 RS RS

where G = G(x,E) is the Green function of the operator A” or A, d denotes d” or d°, respecti-
vely, z=y" -y’ o(x) = x(1 - x),

_ 1/ —
11 = ;h(d”(i))") P and Il = maxge oldE),
€w

1/p, +1/p, + 1/p, = 1, p; 21(i =1,2,3), " = wu{l}. Using the representations

y(x)= ; G'(x,8)e(E)h and  yp(x) = ; Ge(x,E)'(E) h

€w €W
and the estimates (4.8) one can obtain
. ki . 2y . .
Iy (e, o < k—(.)”O(P I, 0, 1yl wr < k_[,"q’ Iy ||y,—‘(x)||pl,u,+ Sy (), o+ (4.10)

For p, € [1,2] the last estimate can be improved in the following way. Let us multiply the
equation Ay’ = (a¥ys), - d¥ = -9 by ¥y and sum by parts over w. Then

Klyzliwe s (Wyiy) s SNy (x)y(x) s (", ")

‘(qo'(.x), 2_1); G'(x,g)¢'(g))

‘ Zhlcp'(x)l mEax(G'(x,E) ";h max (G'(x,Ej)”lq’:'(E)I (4.11)

s S hle(x)l ?_‘h(o'(x,a))s=(o'(x,§>')szlep'<z)|

w

WAL, .
s (%) oot wllee *2, e,
i .
where s, +s, = 1. Hence we have

Iys 5, oo s cllee® i ol®eli,0 (P e[1,2) s, +s,= 1),
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in particular

sllp, v = cllo0*? 0 (P, el1,2D).

(4.12)

Returning to the old notations in (4.8) and taking (4.9) - (4.12) into account we obtain the

following inequalities of coefficients stability:
llo™*Po(y = Plco,
< c(“(P =3l o+ (el o+ A(e®] +lulD)ld - 1, .,
+ (uén,,m B P (1uB] b)) (la - 7, e

L ~ . ~
+ h*/P2 Z)(ld;(zv-z)ﬂ = G- 2yl HBIE = ZP] 4 Blagn syes - Bin-1) o)
&

1 .
+ (el ain-1yes = Fin-syesl * Bl |2l - 3P|+ [ul - 'ﬁf'l))

1=0

) . _ _J0 ~forp >2
P21 (=012, sp) {0,5 for 1sp, <2

|.YO 'yol = I(l +hxg)_1((y| —yx) - h(UOh "ﬁg))l s Iyx _.;;tl +h|u:_ﬁ;’|

H

|.YN - 7N| = |(1 +hi’th)_l((yN-1 'YN-x) - h(Uxh - ﬁ?»l s IyN—x 'yN—xl +h|u~1h - 'l:':x .

S. Estimate of accuracy of truncated difference schemes

We first prove that the coefficients of the exact three -point and truncated difference schemes
satisfy conditions under which the estimates (4.13) are realized. Taking (C,) and the non-

negativity of the functions «j, and 8/ into account, we have
f i

113

vi(x;) = hal0,h) 2 ha'X(0,h) 2 h&UX0,h) = h [K~X(s)ds = h [k~*(x; +sh)ds 2 hk;*.
. -1 -1

Together with (3.7) this leads to the relations

1 1 h

1.1 __n 1 1
€ «liX0,h)  vix;)

- < - s k,.
4o, p) " &lio,n) !

0 < = a(x;) s a™(x;) =

Analogously

1 1 1 1
Lo — < < o <
% BX0, h) gr(i)(o‘h) 8(')(0,11)

0< k,.

The formula for the coefficients d(x) can Be transformed in the following way:

(5.1)

(5.2)
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n o v HEVvi(x;) for E e (x;_, X;)
d(x;) =T,*(Q) = - %I%QO(E)dE , where #(E) = { v{E)/vi(x)) for E e (x;, x;.,)
o ¢ 0 for £ € [0,10\(x;_,, Xj4,)-

Due to the condition (C,) (we assume further that g, > 0) and the boundary conditions #(0) =
#(1) = 0 we obtain

Xj

d(x;) 2 q_h-‘!v Bdt = “(X‘)XJ;

XNj+y

5 ‘[ V() dE

.9 G
oliXs, h)ds B(‘.)(O'h)fe Xs, h)ds.

9o
(1)(0 h)

Taking into account
s
o s, b) 2 oNs, b) = [R2(mdn 2 (1 +s)k,7",
KA .
we have foa(i)(s, h)ds 2 0,5 k;”*. In complete analogy with this result we may prove that

1 1 o
fﬁ""(s,h)ds 20,5k ¢, fﬁ'“)(s,h)ds 20,5k, f’&‘(")(s,h)ds 20,5k
o [o] -1

and together with (5.1), (5.2) we have
d(x;) 2 golco k)™t (5.3)

Let us consider the coefficients xf and x{. Conditions (C,) yields

h (o]
xg = -h'*fo(z)d%(g)dz - hQ(0)v2(0) + hHxovE(0)
° (5.4)

. _h h
2 h"qofv;’(i)dﬁ +htxov (0) = g, hJ‘B(°)(s,h)ds + h txov (0) 2 ;°
o o
On the other hand,

fooz)‘"* ©,

Ixh| E[ +(10llcro. ) *%o) o

The first term can be represented in the form

xo: = h” fO(E) v2(®) dE = %o, *+ %oy,
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where

] h"hl:O(E) . h-lfom)dn] P gt - f dv(®) d&f [0t®) - o] em e

]

2 = h fO( )dnfd“&(&) -B(°)(0,h)h“f0(n)dn.

Applying the Cauchy-Schwarz - Buniakowski and Holder (with the exponents p/2 and p/(p - 2)
inequalities as well as the inequalities (3.7) we obtain the following estimate:

Ixo,] = h-*(T[O(g) - h''f(J(n)dn:lzdg)'/z(ﬂ:dﬁ(E 2dg>"’
hh

oo onane) ([

hh
S coh (f ‘O(a)— o(n)| dndg) *np-2p

(5.5)

hh

- - /1 _
< coh z/p(f QELOQLZI_ € - nl* kpdédn)l P o B> 1/p|o|x‘p,e°'

|1*)\p

Since the imbedding Wp>‘ C Cfor X € (p7%,1] and the estimate (5.2) hold it follows that |xg,I
s ¢, IQllcro, 17, hence

%3 < c°(2 IQllcro, n + %0 + hx_‘/plolk,P.eo).

It is easy to verify that the same estimate is valid for x((,"’). Analogously to (5.4), (5,6) one
can also prove the estimates

h
§m )’xlv l(m)ZC %o *@

Xo o
(5.7)

%™ < co(210le1-m 17 * %o * hx_l/PlOI)\,p,eN)'

Now let us consider the values pi” (i =0,1). For example, the value [.1;' can be represented as

h - h h h
Ho = Hoo * Hoy * Hoz » Where

h
N e ON R (TG R ff(&)"“f) .

o]
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Using the condition (C,) and the inequality (5.2) one can estimate plt, and pf as follows:

Mok ' S Ui S Collo

h 1
| [rvzae] - | [rismvasmas

1
ludl = = h|ff°(sh)ﬁ(°)(sb)ds
o

1 h h
/¢
S coh [I£(sh)ds = e [I6ENAE = cof [IA(ENTAE] 79 = coht AR by g,
o o o .

Let us represent the value pl, in the form pf, = uy,, +ug,, Where

Hoas = f[f(z)—h ff(n)dn] d:f;(adi

h R 4vo(e) o
V.
Mooz = h'sz,h;)dnf;—E dg = - BeX0, h)A™ !f.(n)dn.

o o

The proof of the estimate |y,,,| s ¢, K27 27If, lg. . e’ completely analogous to that one of
(5.5). 1f 9 - 1/r s 0, then the imbedding W;® C W = L_is valid. Therefore using Holder’s in-
equality we obtain

- 0
ltozsl s coh™Hfif,(mldn < co b7 IE g e -
o
In the case 9 - 1/r > 0, due to the imbedding W, C C, we have lig,,l s ¢, lIf, oo, n)- Hence

ludl < co(o * B UL N, 4. e, s AN RCR YY)

BN N, ey for 9= 1/r 50 (5.8)

(£,,8,r,h) =
Holli & 1 if, “C[O.h] for $-1/r>0

ore more roughly

_nfo)
wll s coh ™R

nlo) =

w

1/rfor 9-1/rsoO
(5.9

0 for9-1/r>0

hOIf,| + 1y, e, for 8-1/rs0

119, r, e,

F{®= FOXF,9,r,h) = .
const for $-1/r>0

The same estimate holds also for u” with the replacement of e, and Fo) by epn; and FN), re-
1 [} N N N
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spectively.

Now let us consider the difference x' - x{™ = x2um + xm + 3B where

x$T = b xo(v2(0) - VO(O))

xhm = f [oa:) s fomwﬂ[dvff) d'ﬁ(i)]dz

h
xbm = - h2(v2(0) 7v.2(0)) fO(n) dn
o
Using (3.7) in complete analogy with (5.5), (5.6) we can prove the estimates
|Xg°m| $ %o Cpm h(mn)(nk x/p)|o| "";,‘co

|th| se¢,, h(m»z)(nx—x/p)—xloun;z

.
|x°m| < "O”C[O h1Cm+1 plm+1)1ex- 1/p)|o|njp,1e°

which lead to the inequality

|x$’ - x(()m)| < h2(m01)‘anxéO’h)

nye = (m+1)(1+1/p %), F (O, ) = (%o + 10 lcro, s *h* P10 p, o) s |©

where ,h)—> 0 if h = 0. The proof of the inequality
h Fxo(Oh) 0if h—=>0.Th f of the i li

|xlh _ xgm)l < hz(mol)-anx‘(o,h)

(5.10)

m+1

A.pieg

(5.11)

is completely analogous to that one of (5.10), where Fx‘( Q, h) is of the same form as Fxo(O,h)
with the substitution of C[1 - h,1] for C[0, A} and of ep for e,. In the same way one can ob-

tain the estimates

h_ ) 2{m+1)-n .
{TH u§m|sch uFuj (j=0,1)
where
(m+1)Q+1/p-2) for 9-1/r>0
n =
P lm DA+ 1p -2) +1/r for $-1/r 50
FJ = Fuj(O,fo,f,,l,p,S, r,mh) = cmﬂIOl,’\'f;:ejN
o+ BNl g o0 * ha“/’lf,lalrlejN *Millcyy  for 8-1/r>0
x
h‘/rllo + p1-1/9-1/r I|f°”°"7-°jN + h8|f’|s‘r' ein + ||f; ||°'r,ejN

(5.12)

(5.13)

for 9 -1/r < 0.
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In [1: p. 100] the inequalities

-+ - (O) -
ld(x) - d ™ x) s c h2m D7 |QIT L2 1y

(5.14)
"d _ d(m)||1,u < Chz(mtl)‘ndlolgﬂ,;:n
are established, where
(m+1)(Q-x+1/p)+1/p-X form+22p
0= (m+2)1+1/p-2), ng= (5.15)

(m+1)A-X)+1-2x for m +2 s p.
These estimates as well as (5.6), (5.7), (5.10), (5.11) yield
1
Ild - d(m)"x.w + h2J=Z°(1 *hx}’)lx}’ - xgm)| s cp Xm*1)-ng
In order to estimate the norm |lp - qa("’)ll,‘ o We represent
d x
folx) = =-Fx), Rolx) = J;fo(x)dx € W0, 1).

Then we have T,5i(f,) = TXi(f,), ¢(x;) = T}(F)+TXi(f,) and in analogy with [1: pp. 100,104]
we obtain ’

e - ™I, o, s chX™ V01017 o (Ilo 0.0 * 1o r.02) (5.17)
lo(x;) 52‘-8_‘”1‘100)’9_1”-1lf1|a_,-_e,.’22“/qktcoh-‘/q "fo"o.q.ei’ . (5.18)
where n, = max (n,(r,9),n,(q,1)) and

(m+1)(1-A+1/p)+1/s -t for(m +1)s 2 (s -1)p
(m+1)(Q-2)+1-¢ for (m +1)s s (s -1)p.

ng(s,t)= [ (5.19)

Summing (5.18) over i and applying Holder's inequality with exponents r, r/(r - 1) at the first
sum and q, ¢/(q - 1) at the second one we obtain

lpll, o = 227827k c, ha"lf,la',_n +22°Y9 k¢ lIflly, g0 (5.20)
and then using (5.8) we have
lplly, o + B5Plul) +lull) s ch™"PuF,, : (5.21)

(o 18) 1-9 for $ - 1/r >0 (5.22)
=n, (p,,0n9) = .
Fuo e max{1 - 9,1/r - s(p,)} for & - 1/r s 0

n
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F,

PR = Ftpp(flypxr'ax ryh)

5.23
const for (9 -1/r>0)v((1-921/r-s(p)a(8-1/rs 0)) (5.23)
e, c + M, ren fOF (1-9<1/r-s(p))a(8-1/r s0)
To estimate lla - a(”’)llpz,w+ we use the inequality (see [1: p. 101])
05 al™(x) - a(x) s kf’cmﬂh"’("’")_”XIOIQ’,;‘J, e=(x - hx). . (5.24)

This way we obtain

la - o e = (3 blalx) - sl e

Xew*

- /]
S Kiq o imeesa e 3 o)

A, pre
XNEW

In the case p,(m +1) < p one can estimate the last sum using Holder's inequality with expo-
nents p/p,(m +1) and p/(p - p,(m +1)): :

(m=+1) “ plm+1)/p (p-p(m+1))/p (m +1)/ (m+1)
ol PN Bl e R TG

X EW

In the case p,(m +1) 2 p we have

(m=+1) (m=+1)- (m=+1)
SIOIE s 10170 T S0 e 510132000

Hence

m+1

lla - a(m)npz‘m‘ < ch2(m“)_n‘°|0|>\,p,0

(m+1)(1-X+1/p)-(m+1)/p for p,(m+1)<p (5.25)
2 = (mX,p,p,) =
. (m+1)(1- X +1/p)-1/p, for pz((r) +1)2p.
Similarly to (5.21) one can obtain
loll, o * A(lull +iulbl) s CII<p||‘ oSchS™ : (5.26)
Let us set
=u, y = ym @), g =d(m) g = alm) ghs (m)gh = x{m (i =0,1)

in (4.13). Taking into account the estimates (5.1) - (5.26) as well as the relations

n$=n,+1+1/p-X, n,2n,, F.; sclol)'\"';fejN (i%0,1)
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(o) = m+1 UN) - m+1 UN)
n, +n® =n,, C‘O|>\.p,ejN1‘L SFin S cIOIk’P’chi{L
we find

||p“/P°(u _y(m))"w,w < chz(mﬂ)_"F(m,h), (5.27)

where
n = max{nq,.nd =91 ng tagy, My Y g, -1 -1/p,, ”u}
F(m,h) = F(m,h,Q,f,,f,)

R L R Ry La (5.28)

m+1

(1017 oo, * 101 e Fou * B (B * -
Thus we have obtained the following final result of the paper.

Theorem 5.1: Let the assumptions (C,) - (C,) be satisfied and q, > 0. Then for the solution
y(”’)of the truncated difference scheme of rank m (3.6) the estimate (5.27) holds, where u is
the unique solution of the problem (P,), the constant ¢ > 0 does not depend on h, the functional
F=F(m, h) is bounded or tends to zero if h—>0,pg* +p, ™" +p;* =1, p;21(j=0,1,2).

We see that the accuracy of the truncated difference scheme of rank ‘m depends on the
exponents of smoothness of the input data p, X, q,r, 9 as well on the parameters p,,p,, Py, M
which are available. For instance, if p, =, p, =, P, =1,9=0"¢ L(0,1), f= £, +£" ¢ L_(0,1),
x=n,=n=0, F(m, h) = O(1) and we
obtain the well-known Tichonov-Samarski estimate for the third boundary value problem for

le.p=g=r=o A =9=1 then n, = ng=n,= ny,, = n
ordinary differential equations with piecewise smooth coefficients {lu —y(”’)lloo’ wS c h2(m=1),

Remark: Let us consider the Dirichlet problem in generalized formulation
o [ ©
afo,1)(u, v) = Ifg ;](v) for all v e W,(0,1)
under the assumptions

Q cWrO.D (p=z2,0<xs1) ' (5.30)

1
- J‘O(x)v'(x)dx 20 forallv e \?V;(O,l) with v(x) 2 0. (5.31)

The exact difference scheme in the interior nodes of the grid and its coefficients have the
form of (2.11), (2.12) and together with the boundary conditions

u(0) = u(1) = 0. (5.32)

It forms just a complete system of diffference equations. Similarly to (3.6) one obtains the
truncated difference scheme of rank m
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Alm), (m) _ —o{™x) for x ¢ wp y{mX0) = y(mX1) = 0. (5.33)

Choosing in (4.8) y(x) = u(x), y"(x) = y(m)(x) and using the estimates (4.9) - (4.12) we have

o™ Pocu -y ™, o = c(lle - {1, + el wlid - d ™,
(5.34)
+ 105 P, (1 ™l ko +1)la - 2™, o)

p&‘*p‘_‘ op.;‘ =1, pjz1 (j=0,1,2), and s(p,) = O for p, > 2, s(p,) = 0,5 for 1 < p; < 2. From

(5.14), (5.17), (5.25), (5.34) we easily derive the inequality

Ilca_‘/p°(u —y(m))llm_u < ch2M*DN Ghere n = max {ng.ng -8+1,n,- 8+ 1} (5.35)
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