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Exact Difference Schemes and Difference Schemes of Arbitrary Given Degree 

of Accuracy for Generalized One-Dimensional Third Boundary Value Problems 

1. P. GAWRILYUK 

A variational problem is formulated which is a generalization of the third boundary value prob-
lem for one-dimensional equations. Conditions of existence and uniqueness of solutions are 
considered. The numerical approximation of arbitrary given degree of accuracy (truncated 
difference schemes) regarded in this paper is based on the three-point difference relations for 
the exact solution (exact difference scheme). 
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0. Introduction 

In [1,21 exact three-point difference schemes and truncated difference schemes of arbitrary 
prescribed degree of accuracy for the Dirichiet problem for one-dimensional equations in gen-
eralized formulation have been regarded. The book [1] contains a bibliography concerning the 
history of development and application of the exact and truncated difference schemes since 
their appearance at the end of the fifties (for linear one-dimensional equations with piecewise 
smooth coefficients). It is sufficient to mention only their great advantages for the construction 
of the difference schemes of great rate of accuracy for various practical problems and their 
significance for the theory of finite difference methods for one-dimensional equations and 
partial differential equations with generalized solutions to understand their role in modern nu-
merical analysis. We study the exact and truncated difference schemes for a generalization of 
the third: boundary value problem and extend some assumptions and results of [1,21 in a natural 
way. Throughout this paper we denote by c various constants independing of the meshsize h. 

1. Formulation of the problem. Existence and uniqueness of solution 

Let us consider the bilinear forms 

a(u,v) = aO1](u,v) + Q(1)u(1)v(1) - Q(0)u(0)v(0) + xu(1)v(1) +xou(0)v(0)

(1.1) 
a j(u,v) = f[k(x)u'(x)v(x) - Q(x)(u(x)v(x)]dx 
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and the linear functionals 

1(v) = i j( v)	v(0) - v(l) and l[° ](v) f[fo(x)v(x) - fi (x)v'(x)]dx	(1.2) 
Oc

of 

defined on the space W,'(O,l). Here x 1 , x 2 2- 0 and t '1 I i are given real numbers and t, I, k, Q 
are given functions satisfying the following conditions, where K	{v € W21 (0,1): v(x) 2! O}: 

(C l ) k is measurable and 0 < k0 s k(x) :^ k, < + for some constants k0 , k1 

(C2) Q € %(O,l) with p a 2 and 1/2 <A -1 I 

(C3) f € L q(0,1) with q a 2 and f € W(0,1) with r a 2, 0 <0 1 

(C 1) _JQ(x)v(x)dx + Q(l)v(l) - Q(0)v(0) a q0 J 'v(x)dx for all v € K, q0 > 0 some constant. 01

The problem now reads as follows: 

(P1) Find u E W,(0, I) such that a(u,v) = 1(v) for all v E W'(0,l). 

This problem is equivalent to the following minimization problem of functionals: 

(P3) Find u € W(0,i) such that J(u) = min{J(v): v € W(0,l)}, J(v)	a(v,v) - 2 1(v). 

Now the following statement holds. 

Theorem 1.1: Suppose the conditions (C 1 ) - (C 4) are satisfied and q0 , x0 , x 1 are not equal 
to zero simultaneously. Then the problems ( Pt ) and ( P2) have a unique solution. 

Proof: The bilinear form a = a(u,v)is symmetric and W'(0,1)-elliptic. This statement for 
qO > 0 follows immediately from (C 1 ) and (C6): 

a(v,v) a k0 Ivi,1 + q0 flvii	a min(k0,q0)iivlij. 

if q0 0 and for example Xc, T 0, then using the inequalities 

V2( x) 
= (Tv's)ds 

+v(0))2	20v1,t+v2(0)) 
Ox  

for arbitrary € E (0, k0 ) we can obtain 

a(v,v) a k0 i vj ,1 +x0v2(0)

and	
11,11 2	( s 2 lv1

2
 L2	 + v2(0)) 

a (k - c)Ivi,j + min(c,x0 )(ivi ., 1 + v2(0)) 

a min(kc, - €0.5 min(s,xo))ijvii&,i. 

The Sobolev imbedding theorem and Cauchy -Schwarz - Bunyakowski equality lead to the fol-
lowing estimates as well:
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Ia(u,v)i 15 kjiuiwjl v iwi + iiQIiL(f(u'(x)v(x) + u(x)v.(x))2dx)I2 

-(2 llQiic + x. + x)ilu IIC IIVII 

	

( , IV 	2	2	2 )1/2 
:5 k1 Iui	iVIwa + lliQiii_ 2 Iivlic i u ij + iiu ii . Iv 

+(2 iiQiic +	+ x 1)liulic iiVIiC 

:5 C iiUiij liv liwi, 

ii(v)l = Ilfo ilL2 ii V "L2 +	1L21"1W + 11.101 liv ilc + i1.' i liv 1c	C liv iIi, 

where the constants c are independent of u, v. These inequalities signify the continuity of the 
bilinear form a = a(u,v) and the linear form I = 1(v). The desired result thus follows as a con-
sequence of Lax - Milgram's lemma [iii 

2. Exact difference scheme 

Let us untroduce the grids Wh { x1 ih: i = 0(l)N, h	l/N} and Wh	w"\{0, i}. Let G.

= G . ( x,) from W(e1), e = ( x 1 _ 1 , x1+1 ) be the solution of the problem [1] 

xi +
dG1(x,)	d(G1(x,hi()) f	d	-	d&

]d	(x) for all i € 141(e.), x € e.	(2.1) 

xi-i 

We choose in (1.7) v() = G1 (x,) for € e1 and v() = 0 for E [0,l]\e1 . Then we obtain the 
following three-point relation connecting the exact solution u = u(x) in three neighbouring 
nodes:, 

u(x i) a 1 u(x 1+1 ) + b, u(x 1-1 ) + f, i = l(l)(N - 1),	 S	 (2.2) 

where

xi + i 
a = 0,5 -	-Jk()Gj(x1,) - Q()(( - 

Xi-1 

bi = o,s +	- J(k()a;(x,,) + Q()((x+ - 
Xi-1 

xi*1 

fi = j'(a1(x1,)1) - d1dG1(x1,)f))d. 
x...1  

Let us introduce the functions v 1' and v2' , I = 0(l)N which are the solutions of the follow-
ing generalized Cauchy problems (j = 1,2; x - , x0 = 0, XN*j = XN
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(P3) Find vJe W 1 (e) such that 

	

a(v11,i) +	= 0, v(x1_ 1 ) = 0 for all 1 E W21(e) with 1(x+ 1 ) = 0 ej

	

+	= 0, v2'(x, 1 ) = 0 for all 1 E W 1 (e1) with 1(x,) 0. Ci 

Similarly to [1: pp. 66-73] one can prove that every problem (P 3) has a unique solution. More-
over the functions v 1 have the following properties: 

1. The function v1' is monotonely increasing on the interval (x_ 1 , x+ 1 ], Vi( x ) > 0, and the 
function v' is monotonely decreasing on the interval [x_ 1 , x+1), V2 (X) > 0. 

2. The relations 

v1(x1).=v'(x_1) for i = 0(l)N	and	v2(xi) = vji1(x,1) for l(l)(N - 2) 

	

x •	 xi..1 

v ( x ,+) = VAX) + v2' ( x ) -	 ii(x)f(vi())Q()d for i = 0(1)N 

	

x i _ 1	 x. 

hold where x is an arbitrary point of the interval e. Set in (P1) 

10	for e(h,l) v() 
= lv) for € 

Then ü(0) = 0 and 

4(uv°)+X 0 u(0)+Xo=0, '2  

where

and	u() u() - h 1 (h - )u(0).

(2.3) 

(2.4) 

Xo	- , v2° ) + (x - Q(0))v(0) 

h 

= h1J(k()j_ - Q()d((h -	+ (x - Q(0))v(0) d 
0

h	 h 

X.= j0(,0) + iv(0) 
fdv)f()	

- Jv!o()d 

By virtue of the definition of the function vrelation (2.3) yields -u(h) + X 0 u(0) + x O = 0 or 

A0 u :z -u(h) + X0 u(0)	= 0	 (2.5) 

We take into account the equalityf0"k()(dv2°/d)d =fhQ()(d(vo)/d)d - h which is a 
a consequence of the second equation (P3) with the substitution for 1(e). Then one can 
transform A0 in the following way: 

11 

A 0 -I
 Pdv) 
- -
	 d +(x -Q(0))v(0), 
0
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and (2.5) can be rewritten in the form 

A0 u h'A0 u = - u(0) +xu(0) + 11 0 = 0
	

(2.6) 

I' 
x0h = -hJ'Q( d -(x - Q(0))htv(0) 

0

h	 (2.7) 

VO = h1f(I() dv2°()	-	 + i0h'v20(0). 
0 

Analogously, the substitution v() = 0 for E £ [0,1 - h], v() = v1 4() for E € eN in (P3) leads 

to the equation 

A 1 u = uk( 1 ) + xu(1) +li 1 = 0	 (2.8) 

where 

Xh = d + (x + Q(1))hlvf4(1) 
i-h

(2.9) 

= h-iff) - v)))d +jh1V(1). 

Taking into account the properties of v'and the representation of Green's function [1: p. 72] 

-	i	Jv1i(x)v2() for x3_1 ^x :5

G(x,) - v(xi)tvi()vi(x) for	E s x _- x+1 

the relations (2.2) can be rewritten in the divergence form (see [1: pp. 76 - 80]) 

Au (au) - du = -p(x), x €wh (2.10) 

where, for  = 1(1)(N- 1), 

a, = a(x i ) = h/v1'(x,), d . = d(x1) =	Q) p = p(x1) = yXi( f) 7'i(f) + T0"i(f0) 

	

Xi	 xi+i 

T xI(w) -	1	f(v1i'€,d -	1	

J d 

	

hv'(x1 ) j	 hvI(x) (2.11) 

	

Xi	 xi,1 

I	Iv1i()w()d + 1 

	

= - hv(x1 )J	 hv(x1) f
v.i)w()d. 

	

xi _ i	 xi 

Thus the exact solution of (P2) and (F3) satisfies the three-point difference equations (2.6), (2.8) 
and (2.11) representing exact difference schemes.	.	.
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3. Truncated difference schemes 

In order to calculate the coefficients of the exact difference schemes one needs to solve pro-
blem (P3). But this problem has in principle just the same complexity as the original one. For 
this reason our aim in this section is the construction of an algorithm for approximate compu-
tation of the coefficients of a scheme of the form (2.6), (2.8), (2.10). 

We first set in (P3) 

x

	 I f-r 
ii() = 

It

for

for	
and

£ [x, x 1] 

t[x1_1,x] 0	for€[x1_1,x] 
) 

=	 kt)dt for € IX, x1,1]. 

After simple transformations for the functions vj1 we obtain the integral equations 

- v1 (x) - Jk1(t) J'(Q() - Q(t))(v11())ddt + Jk 1()d = 0
x i _ 1	Xi_i	 Xi-1

(3.1) 

- v(x) - j'k(t) J'(Q() - Q(t))(v())ddt + fk1()d = 0. 

Let us set in (3.1), for i = 0(1)N, x = x, + sh, 

v1'(x + sh) ha'ks, h), v21(x 1 + sh) = h3'(s, h) I[-i, 1] for I = 1(1)(N -1) 

and s	[0,1] for i = 0 

	

k(s) = k(x1 + sh),	b(s) = Q(x + sh)	 [[-1,01 for I = N 

Then we obtain the following equations for the functions a,l3': 

S	 $ 

ks, h) = h	-i() j'() - (ii)) 
da 1 , h)

+ ^k"(&)d^ di 
_ 1+80,i _i••&o,i 	 +80, i 

18N,i 1SN	 (3.2) 
1 (s,h) = h 

1 	
j(() - (dI3'k11h) di1d 

+ 

where S i,j is the Kronecker symbol. Differentiation of (3.2) by s gives a Volterra integral 
equation for the derivatives (the equality sign means equality of elements in L 2 ; I = 1(1)N): 

S 

h)
= h	1(s)J,((s) - (7))) d kii, h) d + 

ds

(3.3) 

d'(s,h) 
= h1(s)f((s) - (1))d'(Thh) d  ds

S 

Each of the equations (3.3) has a unique solution in L2 , hence each of the equations (3.2) has a
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unique solution in	(see [1: p. 811 where the similar equations have been regarded, except

when j 0 and i = N). Formal substitution of the series 

h) =	 2k i)(5, h) +
	h a ( 

k
(i) s, h) with	(i)(, h) = m hh1a)(s, h) 

kmi	 k=o
(3.4) 

0 ( ' )(s, h) =	(s,h) +	h213ks,h) with	(s, h) =	h2k,.(s,h) 
k=mi	 ko 

into (3.3) and comparison of the coefficients results in the recurrence relations (s e E1 , k '^ 0)

dc4,'ks, h)	dcx1(s, h) = J( (s) -	
))dl:Lk(Jl h)d(a)(l +8	, h) = 0 

ds	K(s)'	ds	hk(s)1s
o,

(3.5) 

1- SN,	
h) d	h)	d )(1, h) = 0 'ks,	= -	 .1(s, h) = -	J'(() - ds	i(s)'	ds	hk(s) 

where E . [-1 + , , - 8N, J. Using mathematical induction over k one can prove that 
is a monotonely increasing function on E . , czks,h) ^ 0, and 00) is monotonely decreasing 
function on E, 0 .ks,h) 0. Analogously to [1: p. 821 one can also prove that the series (3.4) 
with the coefficients satisfying (3.5) uniformly converge to the functions a( ' ) and 

Substituting the functions
rn 

M	in. 
v1 '(x)	v1 '(x 1 + sh) = h''(s, h)	and 5 '(x)	x1 + sh)	h 1)(, h) 

instead of vJ in (2.7), (2.9), (2.11) we obtain instead of xJ', till, a 1 , d1 , p the coefficients Xi 
m) a i( m) , dfm ), m) and the corresponding difference scheme 

A( m)y (m) = ( a(m 4m))x - d(m )Y ( r11) = .p(m)(X) 
X € 

= _y. m )(0) + x m )y( hu3 )(0) + rn) = 0
	

(3.6) 

A(1m(m) = - y m)(1) + x m)y( m)(1) + (m) = 0, 

which is called the truncated difference scheme of rank m for problem (F1 ). If 
X o denotes-any of the functions ct' or	then the following estimates hold: 

o	h)	 X p,e ko *h ) 'P_ 1) IQi	(11k,) -2)/(2p) 
,  

0 s ø(s,h)-	(s, h) =	h2ko)(s,h) :1 c.1 h(m+1X1.1jp)IQInpt	(3.7) x',ei 
kmi 

d a"')(s,h ) II	 _________ M11	tIdo(')(s,h)110,
 z,E0 ^

II:5c,,,,.1	 ds  ds	ds	IIo,z,E0 

where Ea = [-1,0], E = [0, 11,
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Cm = 

C) = (0, 1), e, = (x1 _ 1 ,x,), I Ir. and II '1 S, r , D denote semi - norm and norm, respectively, in 
the Sobolev space W(D), W20 (D) = L 2(D). These estimates are proved in [1: pp. 83 - 88] for i 
= l(l)(N-l) and in the same way one can prove them also for I = 0,N. The estimates (3.7) show 

rn that the functions	approximate the functions o'and for this reason one can expect the 
nearness of the coefficients of exact and truncated difference schenes. 

4. Coefficients stability of difference scheme with boundary condition of the third kind 

Let y be the solution of the problem 

Ay (ay) - dy = -p(x), x €

(4.1) 

-y(°) + xy(0) +	= 0, y(1) + xy(l) +	= 0 

and y the solution of a problem of the same kind but with the perturbed coefficients , d, 
(j = 0, 1). Suppose that the following conditions hold: 

0 < ko :^ a(x),(x) :r k1 , 0 < q0 s d(x),(x) s q 1 , 0 ^ J,xj7 ^	(j = 0, 1).	(4.2) 

Let us rewrite the problem (4.1) in the index form 

Ay1 = a-y,_ 1 - (d1 + a + a, 1 )y + a1, 1 y 1	 , I = 1(1)(N -1)	 (4.3) 

y1 = (1 + hx)y0 +h, YN-I = (1 + 
hxJ)y +h'.	 (4.4) 

Eliminating the unknowns y0 , YN from (4.3) with i = I and i = N and using (4.4) we obtain the 
following problem with Dirichiet boundary conditions: 

Ay' (a), ) - dy -p'(x), X € Wj, Yo YN 

where

a x 1 h	 .	ax1'h a	a1(i2(1)(N_2)), a =dj +10 h	af..J_af..J1, aN=dNl+h 

ajvI.L' = cp (i = 2(1)(N -2)), q; = p1 -
	) 
________ ' 

PN-t	 (4.6) 
h(1 +hx	= PN-1 - h(l +hxh) 

y	y1 (i = I(1)(N-1)); d,' = d1 (I = 2(1)(N-2)), d1 = 0, d_ 1 = 0. 

In the same way one can obtain a similar problem for y[	= y1 , I 1(l)(N-l). It is easy to
see that in view of (4.2) the following conditions are fulfilled: 

0 < 1ç : min {k0 , q0) --, a ' (x), a ' (x)	max {k1 , q1 + k1 ') and 0 s d(x), d'(x). (4.7)
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Now we use the estimates (see [21) 

IIp"(x)z(x)II	S -L"1 - p ii t,C.J	iiy',iid"-d'O1, 

Iiid"II 
+	 ^1)11.11P(,I1a"- a'iIp2,*)

(4.8) 

	

k; Ix(1-) for x^	 k 
0 :5 G(x,)	

k,i., (1 - x) for x z-'	maxG(x,) :5 --p(x) 

k;(IIdII

x, forO^ ^x1\ 
G(x,)I ^2(k)',	GE (x,	^ -

 k'" o	11-x, for.^ x ^ 1 J) 

where G = G(x,) is the Green function of the operator A" or A', ddenotes d" or d respecti-

vely, z y" -y', p(x) = x(1 - x),

— 

	

= ( , h(d P)	and	iidii,,, , = maxjd()i, 

11p0 +11p1 + I/p2 = 1 1 p . ^ 1(1 = 1,2,3), jr w uf1j. Using the representations 

y'(x) =	G'(x,)p'()h	and	y(x) = c. 

and the estimates (4.8) one can obtain 

IIy '( x)i, :5 --iip 'ii 1 , iiy,Lu+	--ti p'Ii, iIy(x)II 1	+ :; IIy(x)ii+. (4.10) k.

For p E [1,2] the last estimate can be improved in the following way. Let us multiply the 
equation Ky' = (a'yj) - d'y' = -p' by y' and sum by parts over w. Then 

:1 (A,y,,y,) hA'y'(x)y'(x) :5 i(p,,y,)I 
XE C,) 

= ('(x)	h G'(x,)p'()) :9	hi p'(x)i	h(G(x,))si(G(x,))s2i p'()i 
CCC,)	 XC(,) 

hi p'(x)i max(G'(x,s1,,h max (G'(x,))52ip'()i	 (4.11) 
XEc,)	 EC,)	X 

' k'' 
(-f-

0/
) Ii p 'p Silli C,)IIPQ 2211 

\  

where s 1 + 2 = 1 Hence we have 

.2 Sjll	II,,,',.S2ii II	c	p Iii	 (p1 E [1, 21, s 1 s2 = i),
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in particular 

iLv . 11=	c iiPp12 iL,	(p	[1,21).	 (4.12) 

Returning to the old notations in (4.8) and taking (4.9) - (4.12) into account we obtain the 
following inequalities of coefficients stability: 

p1/Po(y

	

II	+ ^	-	 + (u0 1	h(II +IhI)) lid -	ll 

+ (' I pII 1 ,() + h1)(ll +l D)( lla - 0 

	

+ h12(Idj(N2)+I - (N2)+1i + hIx' -	+ h i a (NI) , l - ai(Nl).li)) 

+(' hi I I +j_	+iiijh 
_ ii	(N	- a (N_ 1, 1I i=o

4 0 forp1>2 
pj	I (J=0,1,2), s(p1) - 

0,5 for I :5 p 1 :5 2 

1 y0 - 3'1 = (1 +hx)1((y1 - 51 ) - h(ti' -	'))i ^ 1 y1 -5i +hI ti - 4."1 

IYN - YNI = 1(1 +h	 YN-i 

	

)1((yN	) -	-	YN-i YN-i ))i ^ I i +h i L 1h -	i 
'- h

l• 

S. Estimate of accuracy of truncated difference schemes 

We first prove that the coefficients of the exact three-point and truncated difference schemes 
satisfy conditions under which the estimates (4.13) are realized. Taking (C l ) and the non-

	

negativity of the functions xj, and	into account, we have 

v1 1(x1 ) = hz()(0,h) a h'(0,h) a h&'k0,h) = hJ' k_ l(s)ds = hfk,(x 1 +sh)ds a hk,. 

Together with (3.7) this leads to the relations 

0 < - ,
	I	=	h	

= a(x1 ) 15 am(x) 

= (o,h)	'(0,h) 
k1 .	 (5.1) C0	( ' )(oh)	v1'(x1) 

Analogously 

o<-1-^ 
co	(i)(o/,)	ko,h)	)(0, h) 

^ k1 .	 (5.2) 

The formula for the coefficients d(x) can be transformed in the following way:
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h	 I v1 ()/v(x1) for € ( x1 _ 1 , x•) 
d(x1) TXI(Q) = I 

- hj d& Q()d, where t'() = v2'()/v2(xi) for € (x,, 
hf 

 
0 for £ [0, 11\(x,_ 1 , x,+1). 

Due to the condition (C 4) (we assume further that q0 > 0) and the boundary conditions i?(0) = 

= 0 we obtain 

1	
xi	 Xi-1 

d(,,) ! L0 fP(&)d& q0
	

()d +	fvl'(&)d& 
o	- hv1'(x)x	 hv2'(xi) 

0	 1 
- q0 

fr)(s h)d	
q0	' 

- a( ' )(0, h)	
'	+ (jko,h)J ds 

-1	 0 

Taking into account

S 

h) a J (s, h) = f 1 (7)d1 2! 0 +s'k 
-1 

we have j'°ct.')(s, h)ds 0,5 k1 . Incomplete analogy with this result we may prove that 

1	 1	 0 

f13( 'ksh ) ds	 f P i ks, h) ds 2t0,5k 1 , J' ' )(sh)ds z0,5k1 
0	 0 

and together with (5.1), (5.2) we have 

d(xi ) k q0( c0 k1 ) - '.	 ( 5.3) 

Let us consider the coefficients x,' and	Conditions (C 4) yields 

h 
= h'JQ() dv)d - h 1 Q(0)v(0) + h'x0v(0) 

0
(5.4) 

h	 h q0h 
a h qoJv()d + h1x0v20(0) = q0hJ'13(0ks,h)ds + h1x0v(0) 

0	 0

On the other hand, 

h
dv°() 

Ix,'I	h1J'Q()_	d 
+

(IIQII C[o ,h] +x)c. 

The first term can be represented in the form 

h 

Xc1 
hUJQ() d	

dx01+x02, 
0
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where

h =
 h1f[

h	h 	
h2V2df[Q() - Q(]thid Q() - h1JQ(1l)dll] dv()d 

=	J d 
0	 0	 0	0

OW dvl 
= h2JQ() dif_	d = -°ko, 

0	0	 0 

Applying the Cauchy -Schwarz -Bun iakowski and I-Iölder (with the exponents p12 and p/(p -2) 
inequalities as well as the inequalities (3.7) we obtain the following estimate: 

h	h	 h 
12 'l/2(fF-

P

Mv 
IxI ^ h-i(J[Q() - hJ'Q(i)diij d1

 
0 

hh	 h 
'1/2( i[d 0 ks, h) 2 1/2 ^ h-2(hfJ]Q() -	 dil 	

U L	ds	
] ds) hi/2 

00	 0
(5.5) 

hh
\i  :5 c0h1(j'fQ() -Q(ii)'thid 

/2 
) h(P2)P 

00

hh 
^ c0 h 2 P(Jf K -_Q(.vJi_ - I 1	dd-fl)"I coh1/PIQIA pcO• I - T11 1,XP 00 

Since the imbedding 1' C Cfor X E (p 1,1] and the estimate (5.2) hold it follows that 1x021 

:5 c0 IIQllç , , j , hence 

Xh :5C, 2 IIQII C[o h]	+hX1/PIQI) 

It is easy to verify that the same estimate is valid for xm). Analogously to (5.4), (5,6) one 
can also prove the estimates 

xO( M 	- 
q0h 

_ + 
x0

(5.7) 

xf', xm) :5 cO (2IIQIIc[ lJ7l I + x0 + hX1/PIQIX,P,eN) 

Now let us consider the values if' (i = 0, 1). For example, the value ic h can be represented as 
WO	Poo 1101 1102 , where

	

h	 h 

h 1v(0),	- -h 1J	)v)d,	h1j'()d. 

	

01

0	 0
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Using the condition (C 3) and the inequality (5.2) one can estimate p h and	as follows: 00

1^ 11i10 
^5 co 110 

I11I = h 1 J'fo()v)d	ffo(sh)v(sh)ds	hJf0(sh)0)(sh)ds 01

Il	I :5 Cohfo(sh)Ids = c0 ()Id	 c0h1 -1/q ll	I
10, q. e0 

Let us represent the value p h in the form 1.L 2 11021 + 11022 where 02

h	 h 

11021	h - lf[f,(^) - h-1Jf1(11)d7)] d 
dv2°()

d 
0 

11022 
= h2j'()dJ	= 

0	0 

The proof of the estimate 111021 1 , coh 1r Ifi I rc is completely analogous to that one of 
(5.5). If a - hr :5 0, then the imbedding W,-9 C W O Lr is valid. Therefore using Holder's in-
equality we obtain

'3 

1 11022 1 S c0 h'jif1 (ii)Id < coh_1nIIfi1I0,r,eo 
0 

In the case - 1/r > 0, due to the imbedding W,. C C, we have 1 11022 1 CO IIf "c[ohj' Hence

I I11'I	c0(110 + h 1_1/II 1uiII 0,q,0 + he-1/rlf 1	 + 

	

= 

h 1/r1IIr, for 4-1/r^O 
(5.8) 

 II f, I1c[o.h]	for 4 - hr > 0 

ore more roughly 

I11'I ^ c0h_t00) 

I1/r for	- hr s 0 

o)= 0 for	- 11r>0	
(5.9) 

1 

[ hIf Ift r ro +1 1 4, 1 0 , r,e for 4 - l/r -i^ 0 

lconst	 for	 -1/r>O 

The same estimate holds also for	with the replacement of e0 and F (0) by eN and F.	re-
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spec tively. 
Now let us consider the difference x -	 + x01 hm + x	where0	00 02hm 

XhM = h_1x0(v(0)_0(0)) 
00

h	h 
= h-1f[Q() - h'JQ(i) 

1rdv) d()
xhm	

] 
diijLd	-  

0 

= h2(v(0)v(0))J'Q()dm 

Using (3.7) in complete analogy with (5.5), (5.6) we can prove the estimates 

Ix"I ^X0c	h(m*1X1/P)1_.m*1 mi	 IyIx,p, Co 

Ix"I 21 c	h(m+2)(i+X-1/p)-i .- m+2 
m * 1	 IVI),p,e0

m + j Ix"I :5 IQIIC[O,h]Cm+l h(m+1Xi*X1/P)IQI,,0 

which lead to the inequality 

Ix, _x m )I ^ h2(m*1)TxF(Q,h)	
(5.10) 

= (m +1)(1 +1/p-X), F(Q,h)=(x0+ DQIic [o h] +hXl/PIQIXpe)Cm*iIyIXpe 

where FX (Q, h)— 0 if h - 0. The proof of the inequality 

Ix h-	2; h2(m+11F1(Q,h)	 (5.11) 

is completely analogous to that one of (5.10), where F(Q,h) is of the same form as F(Q,h) 
with the substitution of C[1 - h, 1] for CEO, hi and of eN for e0 . In the same way one can ob-
tain the estimates 

I1j
h - V( -)1Ch2(m1)F. (j = 0,1)	 (5.12)

where

(m+1)(1+1/p-),)	for 15 -1/r>0 
=

(m+1)(1+1/p-),)+1/r for	 -1/r:^O 

F1 . =	 r,m,h) = (5.13) 

vo + i_i/qf	
+ h_ 11r If1 I TC .N + IIilIC(e.N)	for	- l/r > 0 

xi
h'i, + 111q11rf	+ h & 111	 + If 11	for	- hr :s 0. 

	

0 o,q,ej .j	8r.ejJ...J	I o,r,epq
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In [1: p. 100] the inequalities

M-2 id(x)d (m)(x)i ch2(m1)IQiX,P,C(X)
(5.14) 

m -2  
lid - d( m) 1I 1,. :1 Ch2(m*1)diQiX,P,fl 

are established, where

(m+1)(1-A+1/p)1/p -A form +2ap 
n	(m + 2)(1 + i/p - A),	d =	 (5.15) 

(m+1)(1-X)+1-A for m+25p 

These estimates as well as (5.6), (5.7), (5.10), (5.11) yield 

lid - d (m) 11 1, + h 2 (1 + hxJ')ixj' - x5m )I ^c h 2(m*1)-nd 
J=O 

In order to estimate the norm ii - p	11 ,we represent 

X 
4(x) = —?o(x), ?(x) = ffo(x)dx E Wqt(0,1). 

Xi 

Then we have T0'' f0, = Txi(f) p(x) T"(7) +7"i(f1 ) and in analogy with [1: pp. 100,104] 

we obtain 

lip -	s ch 2(m*t) wQ m 
p 

1 
ç ji4 iioq,Q + uhli&,F,Q)	 (5.17) 

p(x)i 1	 +	 iI6ilo.g,e'	 (5.18) 

where n = max(n q,( rE, n,( q, 1)) and 

(m + i)(1 - A+1/p)+1/s - t	for (m +1)s a (s -i)p 
n(s,t)=	 (5.19) 

I(M + 1)(1 - A) + 1 - t	for (in + 1)s - (s - 1)p. 

Summing (5.18) over i and applying Holder's inequality with exponents r, r/(r - 1) at the first 

sum and q, q/( q -1) at the second one we obtain 

iIpii1	= 2 1 *811rkc0 he1ifiir0 +2 2-1/g	
i6iio,qM	 (5.20) 

and then using (5.8) we have 

iip11 1, , +hP'(i'i +i'i) ^
	

(5.21) 

for -1/r>0 
n	= n(p1 ,r,&) = 

max { I -,1/r-s(p1)} for	- 11r 15 0	
(5.22)
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F,pp	F(f,p,r,h) 

const	 for ( - hr > 0) v ((1 - 2: 1/r - s(p1 )) A	- l/r S 0)) (5.23) 

' II! ii	iif ii I O,r,c	1 O,r,e, for 0 - < hr - s(p1 )) A 05 - l/r 0) 

To estimate ha - a(m)Ii 
P2 

11 we use the inequality (see [1: p. 1011) 

0 s a( m)(x) - a(x) s kCm h2(m+1)x	rn*I 
*1	 iQi,p,e' e = (x - h, x).	 (5.24) 

This way we obtain 

ha -	 _ 
= (	hi a(x) - a(rn)(x)iP2)2 

P2 ' '= \ xc 

I	•- h' +1)(1+X_l/P).PI(	i IQi 
P2(m*I))1/'P2 

A, p, 
XE () 

In the case p2(m + 1) < p one can estimate the last sum using Hö1ders inequality with expo-
nents p/p2(m + 1) and p/(p -p2(m + 1)): 

I) (
	

p	\p(ni +1)/P(	 p2(iz, +i))/p 
^ h .02( m .i)/p 

i	
p2(rn 1) 

Xc *	 XE	
Xpe)	

XE(	
Q X,p, p, e 

In the case p2(m +1) a pwe have 

Q1 p2 ( mi )	p2(m*l)-p	
IQ	

p2(m*i) 
A p c	hQix ,, o	A p e 

XC(.S	 XC(.) 

Hence 

Ia - a(m)1 152(nI+i)na1Q mi 
P21 W

.	 c 	 'X,p,C) 

	

na(m,X,p,p2 ) = 

(m + 1)(1 - X + i/p) - (m + 1)/p for p2(m + 1) <P	
(5.25) 

I (M  + i)(l - X + l/p) _l/P2	for p2(m + 1) a P. 

Similarly to (5.21) one can obtain 

iIpiI l,(.) + h(hh + iph) ^ chhcp hI 1	ch'.	 (5.26)

Let us set 

Y u, Y = y(m),	= (m) d =	= a m Ifr	= x5 mn )(i = 0,1) 

in (4.13). Taking into account the estimates (5.1) - (5.26) as well as the relations 

rn I n1 =n	il/pA n^n, F. ^ Ct QA peN (i0,1)
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FJ"^F	mt 
nx +n o)= n 11, CIQIXP,eN	jN CIQIx,p,eijNFi 

we find 

IIp_ 1 1bo(u _y(m))tI0,1, :1 c  2(m+1)-nF(m h),	 (5.27) 

where 

fl max {np,nd_+1,na+np11,nx+np11_l_1/p2,n11} 

F(m,h) = F(m,h,Q,f0,11)

(o) 

	

= h""c' + h	1]d'1 + h	 +h "'d +p;1	 (5.28) 

(
	m-1	m*1	+ h ' '11F + F, 1 ) IQI X.p,ej + IQI X,p,eN) FPp	V( FL.  

Thus we have obtained the following final result of the paper. 

Theorem 5.1: Let the assumptions (C 1 ) - (C 4) be satisfied and q0 > 0. Then for the solution 
y(m)0f the truncated difference scheme of rank m (3.6) the estimate (5.27) holds, where u is 
the unique solution of the problem (P1 ), the constant c> 0 does not depend on h, the functional 
F=F(m,h)is bounded or tends to zero ifh-O,p 1 +p 1 '+p' =1,p1(j=O,1,2). 

We see that the accuracy of the truncated difference scheme of rank m depends on the 
exponents of smoothness of the input data p, X, q, r, 4 as well on the parameters p0 , p 1 , p21 m 
which are available. For instance, if p0 = Co , p 1	, P2 = 1, q = Q ' E L,(0, 1), f f +f' E L,,(O,l), 
i.e.p q=r=co,X	I, then n = n= n	n 11 = n = n11 = n = 0, F(m,h) = 0(1) and we
obtain the well-known Tichonov-Samarski estimate for the third boundary value problem for 
ordinary differential equations with piecewise smooth coefficients Ilu _y( m)ll	^ 

Remark: Let us consider the Dirichlet problem in generalized formulation 

0	 0	 01 
a[0, . 1 J(u. v)	plo, 1 ](V) for all v E SAl2 (0,1) 

under the assumptions 

Q E W X(0 , 1) (p22,O<).%1)	 (5.30) 

-Q(x)v'(x)dx 20 for all v c	1(0, 1) with v(x) k 0.	 (5.31) 

The exact difference scheme in the interior nodes of the grid and its coefficients have the 
form of (2.11), (.12) and together with the boundary conditions 

U(0) = u(1) = 0.	 (5.32) 

It forms just a complete system of diffference equations. Similarly to (3.6) one obtains the 
truncated difference scheme of rank m
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A(m)y (m) ..,(m)(X) for x C uh, y(m)(0) = y(m)(i) 0.	 (5.33) 

Choosing in (4.8) y'(x) u(x), y"(>) y(m)(x) and using the estimates (4.9) - (4.12) we have 

'.	- (rn), 
U - Y (m) U m,C.)	P	lIj,	Ilpcp II, 	lid - d(m)tI

I, C.)

(5.34) 
IIPS(Pi)Q Ill, (Itd( m) II 1, ,j +1)fla - a(m)II& .=) 

	

Po ' P1 1 'P.' =1. l'j s 1 (j 0,1,2), and s(p 1 ) = 0 for p 1 > 2, s(p)	0,5 for Is p 1 s 2. From
(5.14), (5.17), (5.25), (5.34) we easily derive the inequality 

Ip'°(u	 Ch2(m 1) n, where n = rnax(np.nd -	'a	• 1).	(5.35) 
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