Zeitschrift fur Analysn_.
und ihre Anwendun: g
Vol. 12 (1993),.567 -

Sequence Spaces and Stability of Integer Translates

Qryu SUN

In this paper, ‘we introduce sequence spaces of Triebel-Lizorkin type, especially Hardy spaces
and bounded mean oscillation spaces. We establish F*9-stability of integer translates of general
distributions which extends the results of [7.8] to general distributions. Also the corresp_onding
David - Journe theorem for sequences is established.
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1. Introduction

The main objective of this paper is to study stability of integer translates, sequence spaces
of Triebel-Lizorkin type and the David-Journé theorem for sequences. The I?-stability
of integer translates of univariate spline functions, exponential spline functions, cardinal
spline functions, etc. has well studied in last ten years or more early. Ron [11] gave a
criterion for the [2-stability of integer translates of a compactly supported distribution
by global linear independence. The [P-stability (1 < p < o) of integer translates of a
function which satisfies some two-scale difference equation was studied by Jia, Micchelli
and Wang {7, 8] . In this paper, the [P-stability of integer translates of any compactly
supported distribution is considered. The IP-spaces are classical sequence spaces. In this
paper, we use the Littlewood-Paley theory for sequences (4, Chapter 7] to define sequence -
spaces Fp9(Z) of Triebel-Lizorkin type on Z (the set of all integers) and establish two
connections between F29(Z) and F'9(R), the function spaces of Triebel-Lizorkin type on
R (the set of all reals). We construct first an immersion operator from F;'9(Z) to F;(R).
Secondly we find appropriate function ¢ such that, for f € §'(Z) (the set of all tempered
sequences), the conclusions f = {f(n)} € F29(Z) and 3, f(n)é(z — n) € F29(R) are
equivalent. For example, as such function ¢ there can appear univariate spline function
By with degree & > max(a + 3,2) and a generating function ¢ with high regularity of a
multiresolution analysis of L?(R). The {*>-boundedness of infinite matrices is subject with
a long history going back to Hardy, Littlewood and Paley, and to Schur and Hilbert (see
(9]). The David-Journé theorem for sequences is devoted to some class of infinite matrices
which is of Calderon- Zygmund type.
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The inspiration comes from two aspects directly. One comes from multiresolution anal--
ysis introduced by Meyer and Mallat. We know that the IP-stablity of integer translates
of the generating function ¢ € L? (1 < p < o0), i.e.

C'lalls <[> a(n)é(z = n)|,, < Clialli» (1)

for all @ = {a(n)} € I? and some constant C independent of sequences a, plays an essential
role in multiresolution analysis [7]. Hereafter we denote by |[-||z» the norm of p-integrable
functions and by || - ||;» the norm of p-summable sequences. The other one comes from
sampling theory. It is well known that the LP-norm of a function f € LP(R) with support
of its Fourier transform f contained in (—m,m) is comparable to the IP-norm of its sampling
values on the integer lattices f(n)(n € Z) where 1 < p < oo (see [6, 13]). In particular, we
can write f(z) = 3 ., f(n)é(z — n) for some appropriate function @, which is essentially
[P-stability of integer translates of . '

- The theory of function spaces is well-studied in last thirty years [14]. In recent years,
Frazier and Jawerth unificd the function spaces of Triebel-Lizorkin-Besov type by using
¢-transform (see [5] and references therein). Our problem to consider is which appropriate
sequence spaces should be introduced when L? in (1) is replaced by Hardy spaces or more
generally by spaces of Triebel-Lizorkin-Besov type and under which appropriate conditions
on ¢ (1) holds. ' .

Similar to the sequence spaces of Besov type introduced by Torres [13]) and the sampling
theorem for sequences [6], we define the sequence spaces of Triebel-Lizorkin type in Section
2 by using Littlewood-Paley theory [4, Chapter 7] and study some fundamental properties.
Especially we define the Hardy space H'(Z) and bounded mean oscillation space BMO(Z)
and give their characterizations.

The David-Journé theorem on R is an important contribution to the development of
harmonic analysis [3]. We establish a corresponding theorem for sequences in Section 3.

The stability of integer translates arised in the interpolation of sequences by functions.
The iP-stability of integer translates of the generating function ¢ of a multiresolution
analysis is well-studied. Cohen, Jia, Sun and Wang etc. gave some characterization to [2-
stability by using zero point sets of the characteristic trigonometric series H and eigenvalues
of the characteristic polynomial P, respectively (see [1, 8] and references therein). Jia
and Wang (8] pointed out that the IP-stability (1 < p < oo) is equivalent to each other
in one spatial dimension. Let ¢ be a compactly supported distribution. We say that
the integer translates of ¢ are globally linearly independent for tempered sequences if,
for all @ = {a(n)} so that |a(n)] < C(1 + |n|)V for some C,N .> 0, the conclusion
Yneza(n)$(z —n) = 0 implies a(n) = 0 for all n € Z. Let {#;}i=, be a family of
compactly supported distributions. We say that the integer translates of {¢j}§-=1 are
globally linearly independent for tempered sequences if the integer translates of Z;=l a;f;
are globally linearly independent for tempered sequences for every 2;=1 la;|? # 0, or

if the ! x (+0c0) matrix (8(¢ + 2km))i1<j<t,kez has rank [ for every £ € R (c.f. [11)),
where ¢ means the Fourier transform of ¢. If dokez |$,({ + 2k7)|? < 400 for every
§ € R, then the integer translates of {éj}j:l are globally linearly independent for tempered
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sequences if and only if (ai;(£))1<ij<t are uniformly positive definite matrices, where
ai;j(€) = ez b€ + 2kw)$j({ + 2kn). In [7], Jia and Micchelli pointed out that the
[P-stability of integer translates of ¢ are equivalent to each other when ¢ satisfies some
two-scale difference equation in high spatial dimensions. In Section 4, we consider the

inequality
!
- Z lajlr < ||2 > ai(m)gi(z =), <C D llaslle (1)
. ) 1 neZ j=l
where a; = {a;(n)}nez € IP. More generally the corresponding inequalities on spaces

of Triebel-Lizorkin type are considered. We show (Theorem 11 and Corollary) that the
left inequality of (1') holds if and only if the integer translates of {¢,}}_, are globally
linearly independent for tempered sequences, which extends the result of Jia and Micchelli
[7] to general distributions. But we encounter difficulty to treat the right inequality of
(1') on general spaces of Triebel-Lizorkin type (Theorem 8), though we get a simple char-
acterization on the Hardy space H'(Z) (Theorem 13). Also we give a method to study
sequence spaces via function spaces. Precisely we use Theorem 9 to get a characterization
of the Hardy space H!(Z) and bounded mean oscillation space BMO(Z) by the Hilbert
transform.

For simplicity in the exposition we restrict ourselves to the one dimensional case, all the
results can be easily extended to high spatial dimensions.

The author would like to thank the referee for his useful suggestions and careful correc-
tions. Also thanks to Dr. J. Synnatzschke to his suggestion on the representation of the
material and correction in English.

2. Sequence spaces of Triebel-Lizorkin typé

We begin the study of sequence spaces of Triebel-Lizorkin type with a decomposition
of Littlewood-Paley type, or ¢-transform. To this end, we introduce the concept of an
admissible pair. First let

5(2) = {f = {f(n)} : f afunction on Z,|f(n)| < Cn(1 +|n|)™™,Cn >0, VN >0 }
S'"(Z)={f ={f(n)}: f afunction on Z,|f(n)| < C(1 + In})¥ for some N,C > 0},

and

P(Z) = {f = {f(n)}nez: fisa polynomial on R},

the set of polynomial sequences. For a function ® on R and f on Z the Fourier transforms
of & is defined by ¢ and the Fourier series of the sequences f = {f(n)} is defined by
f(z) =Y ez f(n)e'"* (z€R). Let Z_={v€Z:v<0}andforve Z_

T, = [(—m, m)\[-3m, 2n) forv=20
(-3.2¢~ 271'3 2"'21r]\[ 3-2v737,3.2"731) forv< —-1°
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Definition 1. We say that (p,,%,) € S(Z) x S(2) is an admissible pair on Z if

supp@y, suppi, C (2", 2°n\[~ 292, 29" 2m] (2)
) . .
Z B (2)y(z) =1 for z € [-n,n]\{0} (3)

and if there exist constants A and A4, (k > 0), independent of v, such that

I(aﬁx’)k‘rsv(.z)'» |(%)&¢Z’u(-‘5)| < A2k . for z € [—7r,7r] and —k,v<0 (4)
[ou(2)], [¥u(2) 2 A for z€T,. ' (5)

For an admissible pair (¢,,%,) € S(Z) x S(Z) on Z we define sequences {5, x }rez and
{Yuvr}rez by

Puk(n) = 2720, (n - 27%k) and Yoi(n) =272, (n — 27Vk).

Lemma 1. Let (9y,%,) € S(Z) x S(Z) be an admissible pair. Then, for f €

S'(Z)\P(Z), we have
.0
F= 3 (froun)bon : (6)

v=—-00 k€Z
where the inner product (-,-) is defined by (f, 9) = Lnez f(n)g(n).

We omit the proof of Lemma 1 since a detailed proof for f € 1*(Z) was given in [6].
The correct interpretation of (6) is that, for f € §'(Z), there exists a non-negative integer
M and a family {Py}n>0 C P(Z) with degree of Py at most M such that

0 ) .
f= h}g.nm( Z Z(f.‘?u.k)ll’u,k +PN) + P inS'(2).

v=—N k€Z

Definition 2. Let o € R, 0 < p,g < +oo and let (¢,,%,) € S(Z) x S(Z) be an
admissible pair on Z.

(1) we define the sequence spaces F9(Z) of Triebel-Lizorkin type as the collection
of complex-valued sequences f € $'(Z2)/P(2) such that the quasinorms

1 lezeczy = (2% leu  £))¥]|, (0 <p< o)

v<0
IflFes(z) = sup 2" 3 D (2*pu = f(n)9)

Y 2-vkgn<2-v(k+1) 02420

are finite, where g« f(n) = 3, ., 9(n — k)f(k) for g € S(Z) and f € S'(Z), the l9-norm
is replaced by the supremum over v or y if ¢ = +o0.



Sequence Spaces and Stability of Integer Translates 571

(i) Furthermore, we define the sequence spaces f;%(Z) as the collection of complex-
valued sequences s = {s,1}(v,5)ez_ xz such that the quasinorms

1
sl g2+ (2) =||( > (2”°lsv,k|xu,k)") ) ||“ (0<p<oo)

€Z_.keZ

sl s (2 =S:f§(2" > ( > (2"°Isu.k'|x‘..u(n)")%))

2-vk<n<2-v(k+1) 27VkL27HE
274 (k' +1)<27 Y (k+1)

are finite, where we denote

(n) = 2-v/2 when 27k <n< 27 ¥(k+1)
Xv.k 10 otherwise.

Theorem 1. Suppose that a € R, 0 < p < +o0, 0 < ¢ < o0 and that (p,,¥,) €
S(Z) x §(Z) is an admissible pair on Z. Then

Se: FpU(2) 3 f — {{fipun)} € £9(2)

and

Ty: ff9(2) 3 {sux) — D sustbur € F¥(2)
i (v.k)eZ_xZ

are bounded operators. Furthermore TyS, = 1 on F;9(Z) and 1 fllreecz) = 1S fll o2y
ie., :

CHIflkreezy S NSefllsee(zy < Cllfllresczy (Y € FP9(2))

for some constant C not depending of f.

The corresponding relation between Fy9(R) and f79(R) is given in [5, Theorem 2.2].
The proof of Theorem 1 can follow the proof of Theorem 2.2 and Theorem 3.2 in [5] line
by line with the Fefferman-Stein vector-valued maximal inequality there being replaced by

the following lemma.

Lemma 2. Suppose 1 < p < 400 and 1 < ¢ < +oo. Then, for any sequences
fi = {fi(n)}nez € IP, there exists a constant C independing of f; such that

(e, < el(Z )’

where the Hardy-Littlewood maximal operator M on Z is defined by

]
w»

1 .
M ik = t .
filk) aSk;;ff;,,,ezb_aKZM|f(n)|
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Lemma 2 follows from the Fefferman-Stein vector-valued maximal inequality [5,Theorem
A.1] and the following observation. For a sequence f = {f(n)}, we define a function f
on R by f(z) = f(n) for n < ¢ < n+ 1. Therefore there exists an absolute constant
C such that C'M f(z) < Mf(n) < CMf(z)forn < z < n + 1, where M denotes the
Hardy-Littlewood maximal operator on R as usual.

Remark 1. By Theorem 1, we know that the definition of F29(Z) is independent of
admissible pairs.

Define a natural map  I: f29(Z) — f39(R) by

_ J sux when v<0
(Is)q = { 0 when v>0

for s = {s,x} where Q = [27Vk, 27¥(k 4 1)). Therefore we have

Cisllseoczy < Wsllsgomy S.Cllsllgeezy (Vs € £29(2))

for some constant C independent of s. Using the above map we can study the dual spaces
and atomic decomposition of F9(Z). Precisely by the dual theorem in 5, Section 5] and
Theorem 1 we have

Theorem 2. Suppose o € R and 0 < ¢ < +o0. Let ¢' = q—z—l for1 < ¢ < o0 and
q¢' = 400 for0 < ¢ < 1. Then
(i) (F29(2))" = F;°9(2) for1 < p < +co.
(1) (Fp(2)) = FB>(Z) for0 < p <1, where f = —a + n(% -1).

Fora € Rand 0 < p < 4+00,0 < ¢ < +00 let
No = max([1/min(p,q,1) =1 —a]+1,-1) and Ko =|o+2)4,
where [a] denotes the integer part of the number a.

Definition 3: Let a,; € F9(Z) for (v,k) € Z_ x Z and fix N > No, K > K,. We
say that {ayx}(v,k)ez_xz is a family of (K, N) — smooth atoms of F9(Z)if -
(i) supp @y k C3Qus - S .
(i) nezn"avk(n) =0for |y| < N
(ii1) |AYay k(n)|1= < 2¢/2+7 for |y] < K,
where Qu & = [27Vk,27Y(k +1)).

Theorem 3. Leta€ R, 0 < q_S +00 and 0 < p < +00. Then for each sequence f €
F29(Z) there exists a family of (K, N)-smooth atoms {ay,k }(v,k)ez. x z and coefficients s =
{svx} € f39(Z) such that f = 2wk SukGuk in S'(Z)\P(Z) and Isllree(zy < Cllfll e zy,
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where C is some positive constant. Conversely we have || Evksu,kau'kllp:v(Z) < C

sl fee(zy for any family of (K, N)-smooth atoms {a,} and s = {Sv,x}(v.0)ez_ xz, where
C is a positive constant independent of s.

Proof. We follow the same procedure as in [5, Theorem 4.1). For v < 0, let P, =
{Py(n)}nez be a family of sequences defined with help of Fourier series by

A . 2—!)—1 +1 z 2M+2N )
P,,(:t) = Z Pu(n)e""’ = 22vN (sin _ /sin 5) (1 _ e—lz)ZM,

nez 2

where M and N are large integers chosen later. Obviously the P, are trigonometric poly-
nomials with degree less than (M + N)2=* +2M, |P, (z)]>2 A forall |z]€ (2~ 2%x, 27,

and |(a YYPy(z)] < A,27Y for v > 0 for some constant A and A, independent of
v <0.

Let (év,¥,) € S(Z) x S(Z) be an admissible pair and 1, € S(Z) be defined with help of
Fourier series by 7, = ¥,/ P,. Therefore #, is supported in [2*~2x,2%x] and I(£)7he(z)l

< A,271 for all integer v and A, independent of v. Write #,(z) = 2onez Mu(n)e inz,
Therefore

i1 nIPy(n) = (—)713 (:r)[,_o =0 for y<2M -1,
nez

[70(n)] € Cn,2°(1 + 2°[n)™ M forall N, >0.
Observe that 3 AYP,(n)e'"* = (1 — e~ '%)7P,(z). Hence

1A P,(n) e 5/ 11— e[7|By(z)ldz

< CZ2UN /

for v < 2N — 2, where A denotes the difference defined by Af(n) = f(n) — f(n + 1)
for every sequence f = {f(n)}aez. Let g, i(m) = 22_,k5"<2_u(k+l)Pu(m — n)ny(n).
Therefore g, x is supported in [27%(k —2M — N),27%(k+2M + N)|, 3 . czn"9uk(n) = 0
fory < 2M —1and ||AYgy kllie < Cn, (14 |k|)‘N‘2(|’|+’)” for some large integer N,. For
f € Fp9(Z), we write

2-v=1 41 z |2V
Sin —_—T /Sin 5

dz < ¢2Uhi+v
) <

f= Y (fipurdtux

(v,k)EZ_%x2Z

= Y n ((C, e een2 P gumi(n = 278)) /15

(v.k)EZ_xZ

r
= E tu,mavy""

(v.k)EZ_.Xx2Z
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where t] = (3 iez {fioui)l"(1 + |k = m]|)”  and 0 < r < min(p, ¢,1). - By the
procedure used in (5, Theorem 4.1], it suffices to prove that the a, . are (K, N)-atoms
which is easy to be proved when 2N > K + 2 and 2M > N + 1 is chosen.

Let (¢,,%,) € S(Z) x S(Z) be an admissible pair. To prove the converse, it suffices

to show that (ayk,dv &) is an almost diagonal matrix, i.e, there exist constants C,e > 0
such that

, ~J-e
’ —Uk - 2_u kl ’ {3 ’ = [ 1
|<av.ks ¢u’,k')| < Colv=v)a (1 + %W) min [2(v—v )%—,2(0 —v) (=4t -+J)]

where J = 1/ min(1, p, g). We prove this estimate in three cases v = v',v' < v and v' > v.
Observe that a, x(n) = @,(n — 27%k), where &, is an atom supported in [-A2~", A2""],
and @y x(n) = 27Y/2¢,(n — 27*'K'). Let us denote ay(€) = > nez du(n)et™. Therefore
it suffices to estimate 27v'/2 J7 Gy (n)dy (€)e'® k=27 ¥)éd¢. By the properties of {a, i},
we have :

I(—)"‘ o(€)] < C27el iy,
l(—)°&v(£)l =3 au(n)noetn]
S|Z&n(n)n° Z (iné)ﬂ/ﬂgl+Z|&u(n)|nﬂ’+llélﬁ—|o|+1

181<N~al
. C2-v(N+D g N-lel+1  for |a| < N
Cco-vllal+}) for |a|>N +1
and

I(— °4,(6)(1 - 7K < ¢ 5 |1aK (n%a,(n))] s C2F-lel- b,

Therefore we have

C(l+|k—k'|)~7I—* i when v =1
Havk, dorp)] S  C(1+ |k = 2v k)= /=22~ (V+DIv='l  when o' < .
C(1+ k- 2v—u'kll)—J—cz—(K—%)]v—u'l when v <

Observe that N > J —1—a and K > & + 1. Therefore Theorem 3 is provedll
Remark 2. Our indices (K, N) on smooth atoms are larger than the ones on R.

Now let us see two special sequence spaces: the Hardy spaces HP(Z) = F° 2(Z) for
0 < p < o and the bounded mean oscillation space BMO(Z) = F%*(Z). Therefore
H?(Z) = I’(Z) for 1 < p < oo by the Littlewood-Paley theory for sequences [4, Chapter
7] and we have (H'(Z))* = BMO(Z) by Theorem 2. As to the characterization of H!(R)
in (10, Chapter V] and (12, Chapter VI|, we have
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Theorem 4. Let f = {f(n)}nez = ¥ (, nyez_xz Svk¥uk € S'(Z) and {9,} be a
family of sequences with their Fourier series satisfying (2), (4) and (5). Then the following
definitions of the Hardy space H'(Z) are equivalent to each other:

(1) suprcz_xz sUP(yky=1 | Xy pyer €(vs K)Suk¥uklln < oo, where the first supre-
mum is taken over all finite subsets F of Z_ x Z.

(i) Ik IsvxP1u k)l < oo.

(i) 1y & Iswk?X %o p)) i lln < 00 for someset  R(v,k) C [277k,27¥(k+1)) with
its measure |R(v,k)| > r2™" for some absolutely constant r > 0, where 2*)2}2(0,,‘) is the
characteristic function of R(v, k).

() I,k |s‘,_k|2>23_,‘)}2' [l < co,where 2% %, x is the characteristic function of [27 "k,
27v(k +1)).

(v) f =2 yk Suxtok can be written as 3, Amam with 3 |Am| < oo, where ap =
{am(n)},,ez are supported in some intervals Qm with 3. am(n) = 0 and |lam|lie <
|Qm]™*.

(vi) ||sup,,<o|(§ *fllln < +o00, where {®,} is a family of sequences such that supp®, C

[-2¥n 2“7r] $,(0) = 1.and |8°®,| < Co27°" for some C, independent of v and for all

Theorem 5. Let b = {b(n)}aecz € §'(Z). The following statements for b are equiva-
lent:

(i) b€ BMO.

(ii) SUPa.bGZ(Z'l—a EaSn(b [b(n) - 5‘5? ZaSk(b b(k)|7)§ < oo.
(iii) SUPy k2" Lg-vikcnc2-v(k+1), 02130 [(#1 * 0)(n)|? < +o0.
(iv) = Loez b(n)X(nns1) € BMO(R).

The characterization of H'(Z) and BM O(Z) by singular integral operaters will be given
in Section 4.

3. David-Journé theorem on 2

We say an operator T defined on S(Z) is a Calderon-Zygmund operator if the following
hold: : ’

(i) Tf(n) = L k(n,m)f(m), V¥ f€S(2)
(i5) k(m, n)| < C(1 + Jm — n])~". |
(iii) |k(m + 1,n) — k(m,n)| + |k(m,n + 1) — k(m,n)| < C(1 + |m — n|)~1~" for some
0<n<l.
(iv) T can be extened to a bounded operator on 2.

We call the kernel k = {k(n,m)}(n,m)ezxz the Calderon-Zygmund kernel if it satisfies
(ii) and (ii1).

By the standard Calderon-Zygmund theory on R, we know
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Theorem 6. Let T be a Calderon-Zygmund operator. Then T maps [P(Z) into IP(Z)
(1 < p <o), 1(Z) into weak I'(Z) and I°(Z) into BMO(Z).

Here we give the definition of Tb for b € I%°. Let

: 1 for n=k
gi(n)=4¢ -1 for n=0
0 otherwise

for k € Z\{0}. Define

(Tb,gx) = (T(bx-2pmi2ikn)s 96) + D Y (K(0,n) = k(m, n))gx(m)b(n).
m |n|224|

Now we define

(o) = { oo fr k20

For example let b(n) = sign n, the sign function, and T be the Hilbert transform H with
the kernel K'(m,n) = sign(m —n)/(m —n). We know Hb = +oc0 in usual sense, but in our
sense Hb(k) < 400 forall k € Z.

We say that T has the weak boundedness property and write T € WBP, if

12 (T3] < CN(IIf o + N{Af i) (llgllim + N Aglee )

holds for all sequences f,g € 1° with supports contained in [n — my] < N, where C is
some constant independent of f, g, N and mg, and where we use the difference operator A
as usual. '

Theorem 7. Let T be an operator defined on S(Z) with kernel satisfying (1)-(iii).
Then T can be extended to a bounded operator on I* if and only if T € WBP, T1 ¢
BMO(Z) and T*1 € BMO(Z). Here we use T* as the conjugate operator of T.

To prove this theorem we will use

Lemma 3. IfT€ WBP andT1=T*1=0, thenT is a bounded operator on I2.

This lemma follows from the same precedure used as in [5] and the observations that
(TYy.k, %y 1v) is an almost diagonal matrix and there is a natural map [ : f}9(Z) —
fo3(R).

As to the proof of the David-Journé theorem on R, we want to construct a paraproduct
on Z. Let (py,%,) € S(Z) x S(Z) be a special admissible pair on Z satisfying (2)-(3)
and supp &, C {|z] < %2"#} for v < —1. Let {®, = {q’“(n)}"EZ}uez_ be a family of
sequences such that supp %, C [—%2“, %2"] ,&’U(O) =1 and |D*®,| < C,2°" for all
o € Z4 and somie constants C, independent of v. Define the paraproduct operator T, by

Tof = Y @ur(0u(b)(20 * f)) (7)

v<—-1
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where ©,(b) = ¢, * b. Observe that the Fourier transform of ¢,(b)(®, * f) is supported in
{lz] < 2¥n}. Hence we can write Ty f = 3_, ; dv.x{wu.k, bY(f, Pu )27 7.

Lemma 4. . Let b€ BMO and T, be the paraproduct operator (7). Then Ty is bounded
on 2. . . . ’

Proof. Observe that suppy, Nsupp®, = 0 for |v — v'| > 2. Therefore

ITAE <% lpu kIR, + (R

k€eZveZ.

By Theorem 5 and a.discrete version of Carleson measures [10, Chapter V], we have

ITsfllf: < C Y (F)(k) < C Y IMFR)P < ClfIES
k k ’

where ) : ’
(k)= sup |V, * f(K")]
|k’ —k|<2™Y vEZ. .

<C sup DI +2%In = K'])772° < CM f(k)-

|k'—k|<2"V,v€Z. T,

and M denotes the Hardy-Littlewood maximal operator in the above four lines (see Lemma
2 for its definition )l

Now the proof of Theorem 7 reduces to proving that the kernel Ky = {Ky(m,n)}m ez
of T is Calderon-Zygmund kernel which is easy to_check.

4. Stability of integer translates

In this section, we establish a connection between a sequence {f(n)} € S'(Z) and its
corresponding function g(z) = 3¢z f(n)d(z — n), where ¢ is an appropriate function.

Let « € R, J = n/ min(1,p,q), No = max([J—n—a]+1, =1) and Ko = [a+2]4, where
|z] denotes the integer part of z and y4+ = y for y > 0 and y4+ = 0 otherwise. Let B, be the
univariate spline function defined with help of the Fourier transform by B,({) = (l—:;—'()’
for i > 0.

Theorem 8. Assume | > K0~+‘l,-a € R,l 0< p <‘;+-oo, 0 < ¢ < 4o00. For a sequence
{f(n)} € §'(Z) and the function By, write its corresponding function g as

o(z) = Y f(n)Bi(z - n).

nez

Then g € F39(R) provided {f(n)}e Fpi(2). . ’ '
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Proof.. By Theorem 3, we.can write f(n) = Z(u K)ez. xz Sv,k@uk(n), where a, ¢ are
(Ko, Np) atoms on F29(Z). Hence g(z) = Zv £ Su.k 2p Gy k(n)Bi(z —n). Now the matter
reduces to showing that {@vi(z)} = {3, av k(n)Bl(z —n)}isa fa.rmly of (Ko, Np) atoms
of F*9(R). Observe that B; has compact -support and DiB, = AIB,_ jfor0<j<i-2

where D’ and A’ denote j-th differention and j-th dxfference respectively. Therefore by
the properties of {a, s} we have the following:

(i) supp @y, & Csupp ay,k-+supp By C [27%(k — [ — 2),2"’-(k +1+2)).

(i1) [Day4(z)| = |2, @0 k(R)AYBiy(z — n)| = |3, AVayk(n)Bi—(z — n)| <
C2%*7 for |y| < Ko <1 =1 and some constant C independent of v and k.

(iii) 2@, x(z)dz =), Z-’S‘r ayk(n)n?"2(7) f2°Bi(z)dz =0 for |y| < N.
This proves that {a,} is a family of (Ko, No) atoms of F9(R) {5, p. 60]. Therefore

lgllrgecry < CllSukllseery S CllSvillgeezy < ClI{f(n)}|Fpe(z)y and Theorem 8 holds
true l

Remark 3. From the proof of Theorem 8, we see that the univariate spline function
B; can be replaced by some compactly supported function ¢ satisfying D7¢ = A74., for
some bounded compactly supported functions ¢, and all |y] < Kj. But the condition on ¢
is still too restrictive. In case a =0, =2 and 1 < p < oo, |lgllrae(ry < Cl{f(n) Mreezy
if and only if ¢ € LP(R) provided ¢ has compact support. In Theorem 13 below, we give
a characterization of ¢ whena =0,g=2and p=1. .

Now we give the reversé form of Theorém 8.

Theorem 9. Let « € R, 0 < p < +400,.0 <'¢ < 400 and {#}1<j<1 be some

distributions with compact support. Assume that the' | x | matrix (éj(27rkj’.)),5‘j,~j:51 has
rank | for some k; € Z(1 < j <1). Write

Z > f,(n)¢,(x “n)
. J=1n€z-
forvfj = {f,(n)} E,S:"(Z:.).' Fhrthefm_ore ‘we ass;xme
o lpu » f,‘“lll» <'C- < 400 , - . o (8)

hold for every 1 < j <1, v < 0 and a family of sequences {y, € S(Z)}.,<o sansfymg (2), (4)
and (5). Then f, € F""(Z) prowded e?kimizg(z) € F29(R) for all 1 £ j < 1. Furthermore

k; mi
E :"fj”F,?'(Z) <C E ||{3.2 M g(x)lppecry
ij=1 )=l

holds for a constant C dependent on C, in (8),{99.,} and ! only .
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Proof. Let ¢,,®, . be defined as in [5, p.45-46] with the modification that (2.2) in
5] is replaced by supp® C [-w, 7]\[-Z Z,%) and (2.3) in (5] is replaced by [8(6)| > C >0
on (-3, %ﬂ]\[—%w, 37). Write e?%i™i2¢..(z —n) = Z(v'k)Esz ok (n)(b,,,*(x). Therefore

ClL(n) = (*™ 4 j1(z - n), Buu(2))
=2 / $i(€ + 2mk;)B(277E)e~ "2 R,

Let %) € S(Z) be deﬁned by 1,1) (5) = $;(€ + 2nk;)B(2" v:) for v < 0. Denote
11)” (n) = 27¥/24J:"(n — 2-*k). Therefore -

! : "
Z Z fi (n)¢] (z —n)ekimis Z(Z Z fj'(")c.{:el(fl))@v.k(l)
nez

)y'=1 nEZ kv =1

and

”{Z(f” }(uk)EZ. xZ

j'=1

17'(2) ""{ Z fi (n)C }(.v,k)EZxZ

i'=1nezZ
SC”C“’ ""9(3)||F:'(R)»

(R

Observe that (¢>, (2mk; ))1<J j*<i is a non-singular matrix. Therefore there exists an integer
N > 1 such that |det(¢; (€ + 27k;))| = 2Idet.(diJ (27rk Nl on {|€] < 27Nx}, where we
denote the determinant of A by detA. Denote by (*@77'(€)) the inverse matrix of (d), (€+
27kj)). It is easy to construct a family of sequences {¢, € §(Z)},ez_ satisfying (2), (4)

and (5) such that ¥, 5, 827 ()9, (€) = 65,4 on [~2-¥=3x,2-N=37] -where 32 (¢) =
317 (6)g,(€) and 8i; is the Kronekker symbol. Let ¥ € 5(Z) such that ¥(6) =1 on
[2=N=4m, 7| U -7, —27V~47], and supp\P C (27N *m, 7] U [=m, -27N"3x]. Denote F, =
fi — f;j = ¥. Therefore:we have .

!

=2 2 (B

Ja=1v<~
E'ez

and .
]
fi= Z Z(f,, ]k'*'sz'*‘I’J)a

Ji''=1uv<-N Ji'=1.
kez :

where supp¥; ; C [27N =5, 7] U [—m, ~2"N-37]. Therefore
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l TN . a2 . 1
eur (0 2 ()80 [2r)’)"

{P

e =, F(2)
kez
l I N -t ’ ' '
<C ). ”Z(fi" ok W ez S € 20 N5 ™2 9@l pg i
j"=l j’=l L4 N j"=l

On the other hand we have

0 = @it} < T leusfillo < +oo.

-N-6<v<0 -N-6<v<0

Combining the two estimates above, we proved Theorem 9B

Remark 4. The inequality ||p, * fj|lir < co can be replaced by the conclusion f; =

{f;(n)} € I since the convolution operators , are bounded for all v < 0 (see also Lemma
5 below).

Now we give a simple characterization for (8) to hold.

. Lemma 5 ( see (14, Section 1.5.2]). Let 0 < p < oo and f € L?(R) ;vith its Fourier
transform having compact support. If ¢ is a Schwartz function, then ¢ x f € LP(R).

Lemma 6 (c.f. [14,-Séction 1.3.3]). Let 0 < p < o0 and f € L?(R)N.S'(R)

with Fourier transform f being supported in [-%,%]. Then there exists.a constant C
independent of f such that

e (S ) <l < (S Imr)’.

neZ

Theorem 10. Leta € R, 0 < p <-+oo ,0 < g £ 400 and let ¢;,9 and f; =
{fj{n)}nez be as in Theorem 9. Assume the integer translates of {¢,~}§-=, are globally
linearly independent for tempered sequences. If e?*™'*g(z) € F29(R) for k € Z, then (8)

holds where g(z) = Z;=1‘Zn€z fi(n)¢i(z —n).

Proof. Obviously it suffices to prove [|®;, * fjllir < +o0, for all z; € [—7,#]\0 and
some &, € S(Z) with &,,(z0) # 0. For fixed zo € [—m, ]\ {0}, there exists {v; € Z} such
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that the matrix (¢;:(zo + 2v;7)) has rank [ by the definition of global linear independence
[11). Since zo # 0, there exists v} such that éu; (zo +2v;m) # 0, where ®; is defined as in

(5, p-45]. Let & be a smooth function with its Fourier transform supported in [zo—€,z0+¢]
such that

- 1 N
|det @i (€ + 2v;7)| > §[det @i (zo + 2v;m)| > 0,
. 1,
|Dy, (€ + 2v;7)] > §|d>,,,.:(:co + 2v;7)] >0

on [zo — 26,79 + 2¢] and %(xo) = 1, where ¢ < }|zo| is chosen small enough. Recall that
e?*mizg(z) € FPI(R). Therefore ®,,, *(e?i"*g(z)) € LP(R) and &« (e2vi ™t g(z)) € LP(R)
by Lemma 5. Let (&;;,({))15,<,,~:51 be the inverse matrix of (¢;(€ + 2v;7))1<; 7 <t Let

2. _J1 whenjzo—¢€|<ce
\I/(E)_{O when |zg — €| > 2¢

Denote by éj'j, = @q@;;, and by q"s,,,v its inverse Fourier transform. Therefore by Lemma
5 we have Zi-:l J)”v * (& * e?¥i"7g(z)) € LP(R). By an easy computation of Fourier

transform we have

!
D b x(Bxe?imTg(z)) = Y fi(n)d(z - n).
Jj=1 .

nezZ

By the sampling theorem of Lemma 6, we have 3 1> ¢z fi(n)®(m = n)P < +oo.
Recall that &(zo) # 0. Thus Theorem 10 is provedll

Theorem 11. Let o € R,0 < p< o0 and 0 < ¢ £ +oo. Let {¢; ;»:1 be a family of
compactly supported distributions so that | x (+00) matrix (&,(2k7r))15j5“kez has rank
l. Then the following conditions are equivalent:

(i) The integer translates of {de};:l are globally linearly independent for tempered
sequences.

(ii) There exists a finite subset K C Z and a constant C independent of {f,'}ﬁ:, such
that

:
ki

z Ifillegezy <€ Z Ne*™* g( Ml ree(rys

Jj=1

keEK
where f; = {f;(n)} € 8'(Z) and g(z) = Ly Tnez fi(n)d5(z — n).

Theorem 11 follows easily from Theorems 9-10 and the Fourier characterization of global
linear independence by Ron (11].

Corollary. Let 1 < p < oo and {4, € L’};~=l be a family of compactly supported
functions. Then the following conditions are equivalent:
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(i) The integer translates of {¢;}}_, are globally Iinea.rly independent for tempered
sequences.
(ii) There exists a constant C mdependent of {f,}]_l such that E] it £

Cllgllzs, where f; = {f;(n)} € S'(2) and g(z) = Ticy Tnez fi(n)i(z = n).

The corollary follows from the observations that ]]e"oglle = |lgllz» and [I{e™ f(n)}lw

= [[{f(n)Hle-

Remark 5. (i) implies (ii) when the condition {¢,} =1 in the above corollary having
compactly support is replaced by ¢, € S'(R) being smooth functions for 1 < j < 1. In
particular it suffices to assume that the ¢; are continuous local L?- -multipliers for some
q > max(p, —L) When we assume [ = 1 in Theorem 11, the matrix (¢1(2k7r)) having

rank 1 can be replaced by ¢(0) = 1 and the set K can be {0}. This fact will be used in
the proof of Theorem 12 below.

Before we finish this section, we give an application of Theorem 9 to the chlaracterization
of -H'(Z) by singular integral operators. Let the Hilbert transform H on Z be defined by

Hitn)= Y —

m#¥n

). (9)

Theorem 12. Let the Hilbert transform H on Z be defined by (9). Then the conclu-
sion f € H'(Z) and f, H f € I'(Z) are equivalent.

Proof. The necessity follows from the atomic decomposition of H!(Z) and an easy
reduction (see Theorem 4 (v)). Now we assume f € I and Hf € I'. Let ¢ be a compactly
supported CZ-function with f[¢dz = 1. For example,' ¢ may be the univariate spline
function By. Define a function f on R by f(z) = zneZ f(n)¢(z — n). Obviously, fe
L'(R). Let H be the Hilbert transform on R defined by

- / — T | (10)
Therefore forn <z <n+1 we have
I:}A'(:r) =
|m~ x|>2N+l
f(m) 1 $(z—y—m)-¢(z+y—m)
+ 3 ~+5 2, fm) / . dy
Im—z|>2N+1 Im—z|<2N
and

\Ff(z)] < |Hf(n)] + C Z |f(m)]

21
oy 1+|n m|
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where N is an positive integer such that supp ¢ C l-N,N-1]and C is a_constant

independent of f. Hence Hf € L'(R) and f € H'(R), the Hardy space on R By
Theorem 9 and the conclusion {f(n)} € I}(Z) we get f € H'(Z)l

Theorgm 13. Let ¢ be a compactly supported functxon with $(0) # 0. Then

1S f(n)é(z — m)llmmy < cn{f(n)}umm

neZ

holds for all f = {f(n)} € H’(Z) and a consta.nt C independent off if and only if ¢ and
Hd) are locally integrable, where H is the Hilbert transform on R defined by {10)..

Proof. Assume that ¢ is sgpp.c).rted in [-—N,N]. Define
"1 n=0
fo(n) = -1 n=3N
0 . otherwise

Therefore {fo(n)} € H‘(Z) and the necessity follows from the observations that

2”¢“L’(R) -“Z fO(n)¢(z )IILL(R) v

-n€Z
/ T 1Hg(@)dz <Y folm)é(z - n)llm(m +Clllom-
l . nEZ

On the other hand, we have || ZnEZ fo(n)¢(1: - n)||L1(R) < EnEZ |fo(n)|||¢||L1(R) and

/_ lff..(Z f(m)o(z - n)) ‘.dz

<y [T % |I¢(y)ldy
m=-00"™  |n—m|22N
Ly A2 |I¢(0>l+ DI /m“ H(z - n)ldz

m=—00 |n— m|>2N m=—00 |n-m|<2N

2N
<Clélu e +C [ 1Ho)ldz 3 1f()] < oo

n€Z

Thus Theorem 13 is proved®
Also we have the following decomposition of BMO(Z) by Theorems 3 and 12.

Theorem 14. Let H be the Hilbert transform on Z defined by (9). Thenbe BMO(Z)
if and only if there exist b, and b; € 1°° such that b= by + Hb,.
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Remark 6. From the proof of Theorem 12 we get that if the identity operator [

and Calderon-Zygmund operator T characterize the Hardy space H'(R), then the identity
operator I on Z and the operator T' with kernel being the restriction of that of T to
Z x Z\{(m,m),m € Z} characterize H'(Z).
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